-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpreprocess.m
470 lines (357 loc) · 17.6 KB
/
preprocess.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
function preprocess(todo,D)
% Dec 2018 Redone for spm12
% Based on script by Adam McNamara, edited by Philip Dean
% INITIAL PREPROCESSING:
% Dicom transfer to get structural image (d: f*.nii & s*.nii)
% [Slice timing if necessary (a: af*.nii)]
% Realign and unwarp functional data (r: uf*.nii)
% Segment structural data (s: c1*.nii; c2*.nii; c3*.nii; ms*.nii; y_s*.nii)
% [Optional Skull-strip bias-corrected structural (ms*.nii) using imcalc]
% Coregister invididual structural data to mean functional and apply to all functional data (c: headers changed)
% Normalise functional data using deformation field (y_s*nii) (n: wuf*.nii)
% Smooth normalised functional data (g: swuf*.nii)
% INPUT ARGUMENTS:
%%%%% 'todo'
% if todo not given, then it defaults to 'drsbcnog'
% d = dicom transfer
% a = slice timing (af*.nii)
% r = realignment
% s = segment
% b = Skull strip bias-corrected Brain using Imcalc
% c = coregistration to structural
% n = Normalise (functional)
% o = Normalise Structural
% g = Smoothing with Gaussian kernal
% OTHER POSSIBLY USEFUL COMMANDS:
% x = Delete uf*.img and wuf*.img to save disk space (only do if performed CheckReg to see if preprocessing OK)
% p = print movement parameters to pdf
% (NB these are already saved as .ps postscript files in format e.g. spm_2017Jan25.ps along with other preprocessing figures)
%%%%% 'D'
% This is the Directory, e.g. 'E:\MRI\BECi_Study\Data\Subject_01'
% So could call script as:
% preprocess('drsbcnog','E:\MRI\BECi_Study\Data\Subject_01')
% or, if just want to do dicom transfer:
% preprocess('d','E:\MRI\BECi_Study\Data\Subject_01')
% Global Variables
spm('Defaults', 'FMRI'); % Reset SPM defaults for fMRI (not sure necessary - safety catch?)
global defaults; % Reset Global defaults (not sure why needed?)
if ~exist('todo','var'); todo='drsbcnog'; end; % if nothing entered in "todo" bracket, then this is the default action
way='E:\MRI\BECi_Study\scripts\batch_files'; % Path to the "jobs"/batch files needed
TR = 3; % Bunched acquisition (2s acquire, 1s gap for EEG)
nslices_fMRI = 25; % Number of slices
sliceorder = []; % Left blank here, but can be used to specify slice order for slice time correction
vxl_fmri = [3 3 3]; % fMRI resolution 3x3x3 with 1mm gap (3x3x4)
vxl_str = [1 1 1]; % Structural resolution
tic % start clock timing how long analysis takes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Dicom transfer
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strfind(todo,'d')
% if folders for each import dont exist, create these folders
if ~exist(fullfile(D,'sess1'),'dir'); cd(D); mkdir('sess1'); end;
% if ~exist(fullfile(D,'sess2'),'dir'); cd(D); mkdir('sess2'); end; % add these if more than one session
% if ~exist(fullfile(D,'sess3'),'dir'); cd(D); mkdir('sess3'); end;
if ~exist(fullfile(D,'structural'),'dir'); cd(D); mkdir('structural'); end;
% use num_scans to get data to import (see nums_scans function below)
[T]=num_scans(D);
% import fMRI and structural
for tt=1:length(T)
load(fullfile(way,'dicom_spm12.mat'));
if length(T(tt).files) > 123;
[cr,ap]=fileparts(D);
for ii=1:size(T(tt).files,2);
matlabbatch{1}.spm.util.import.dicom.data{ii}=fullfile(fileparts(fileparts(D)),'Raw_Data',ap, T(tt).files{ii});%put the scans in
end;
fprintf('\n Number of Volumes = %d\n',size(matlabbatch{1}.spm.util.import.dicom.data,1));
matlabbatch{1}.spm.util.import.dicom.outdir{1}=fullfile(D,T(tt).scantype);
% keyboard Used in bug-testing script
spm_jobman('run',matlabbatch);
end;
end;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Slice-timing correction NOT USED IN THIS ANALYSIS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strfind(todo,'a')
load(fullfile(way,'slice_timing_spm12.mat'));
matlabbatch{1}.spm.temporal.st.nslices = nslices_fMRI;
matlabbatch{1}.spm.temporal.st.tr = TR;
matlabbatch{1}.spm.temporal.st.ta = TR - (TR/nslices_fMRI);
matlabbatch{1}.spm.temporal.st.so = [1:2:n_slices_fMRI 2:2:nslices_fMRI]; % interleaved bottom up
matlabbatch{1}.spm.temporal.st.refslice = 1; %Reference slice is first slice
P=cellstr(spm_select('FPList', directory,'^f.*\.nii$'));
for ii=1:size(P, 1);
matlabbatch{1}.spm.temporal.st.scans{ii}=P{ii};%put the scans in
end;
fprintf('\nTR = %d',matlabbatch{1}.spm.temporal.st.tr);
fprintf('\nnslices = %d',matlabbatch{1}.spm.temporal.st.nslices);
% keyboard %Used in bug-testing script
spm_jobman('run',matlabbatch);
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Realignment: Realign & Unwarp
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strfind(todo,'r')
load(fullfile(way,'realign_unwarp_spm12.mat')); % change this to e.g. "realign_unwarp_2sess_spm12.mat" if more than one session
for ss=1:3; %number of sessions
directory=fullfile(D,['sess' num2str(ss)]);
P=cellstr(spm_select('FPList', directory,'^f.*\.nii$'));
for ii=1:size(P, 1);
matlabbatch{1}.spm.spatial.realignunwarp.data(ss).scans{ii} = P{ii};
end
clear P;
end;
% keyboard %Used in bug-testing script
spm_jobman('run',matlabbatch);
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Segment
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strfind(todo,'s')
load(fullfile(way,'segment_biascorrected_spm12.mat'));
struct_directory=fullfile(D,'structural');
matlabbatch{1}.spm.spatial.preproc.channel.vols = cellstr(spm_select('FPList', struct_directory,'^s.*\.nii$'));
% matlabbatch{1}.spm.spatial.preproc.channel.write = [0 1]; Save Bias Corrected Image
% matlabbatch{1}.spm.spatial.preproc.warp.write = [0 1]; Forward Deformation
% keyboard %Used in bug-testing script
spm_jobman('run',matlabbatch);
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Skull Strip ImCalc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strfind(todo,'b')
load(fullfile(way,'imcalc_brainstrip_spm12.mat'));
struct_directory=fullfile(D,'structural');
matlabbatch{1}.spm.util.imcalc.input(1) = cellstr(spm_select('FPList', struct_directory,'^c1s.*\.nii$')); % i1: GM Segment
matlabbatch{1}.spm.util.imcalc.input(2) = cellstr(spm_select('FPList', struct_directory,'^c2s.*\.nii$')); % i2: WM Segment
matlabbatch{1}.spm.util.imcalc.input(3) = cellstr(spm_select('FPList', struct_directory,'^c3s.*\.nii$')); % i3: CSF Segment
matlabbatch{1}.spm.util.imcalc.input(4) = cellstr(spm_select('FPList', struct_directory,'^ms.*\.nii$')); % i4: Bias Corrected Image
matlabbatch{1}.spm.util.imcalc.outdir = {struct_directory}; % Output directory
% keyboard %Used in bug-testing script
spm_jobman('run',matlabbatch);
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Coregistration: Estimate
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strfind(todo,'c')
load(fullfile(way,'coregister_est_spm12.mat'));
struct_directory=fullfile(D,'structural');
matlabbatch{1}.spm.spatial.coreg.estimate.ref = cellstr(spm_select('FPList', struct_directory,'^Brain.*\.nii$'));
directory=fullfile(D,'sess1');
matlabbatch{1}.spm.spatial.coreg.estimate.source = cellstr(spm_select('FPList', directory,'^meanuf.*\.nii$'));
P=cellstr(spm_select('FPList', directory,'^uf.*\.nii$')); % input session 1 scans
% directory=fullfile(D,'sess2'); % add these if more than one session
% P=[P;[cellstr(spm_select('FPList', directory,'^uf.*\.nii$'))]]; % add session 2 scans
% directory=fullfile(D,'sess3');
% P=[P;[cellstr(spm_select('FPList', directory,'^uf.*\.nii$'))]]; % add session 3 scans
for ii=1:size(P, 1);
matlabbatch{1}.spm.spatial.coreg.estimate.other{ii} = P{ii};
end
clear P;
% keyboard %Used in bug-testing script
spm_jobman('run',matlabbatch);
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Normalization: Write
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strfind(todo,'n')
load(fullfile(way,'normalise_write_333_spm12.mat')); % Change batch file if resolution not 3x3x3 or change in script below
% matlabbatch{1}.spm.spatial.normalise.write.woptions.vox = [3 3 3] Change to [1 1 1] for structural
struct_directory=fullfile(D,'structural');
matlabbatch{1}.spm.spatial.normalise.write.subj.def = cellstr(spm_select('FPList', struct_directory,'^y_s.*\.nii$'));
directory=fullfile(D,'sess1');
P=cellstr(spm_select('FPList', directory,'^uf.*\.nii$')); % input session 1 scans
% directory=fullfile(D,'sess2'); % add these if more than one session
% P=[P;[cellstr(spm_select('FPList', directory,'^uf.*\.nii$'))]]; % add session 2 scans
% directory=fullfile(D,'sess3');
% P=[P;[cellstr(spm_select('FPList', directory,'^uf.*\.nii$'))]]; % add session 3 scans
for ii=1:size(P, 1);
matlabbatch{1}.spm.spatial.normalise.write.subj.resample{ii} = P{ii};
end
clear P;
% keyboard %Used in bug-testing script
spm_jobman('run',matlabbatch);
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Normalization (structural): Write
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strfind(todo,'o')
load(fullfile(way,'normalise_write_111_spm12.mat')); % Change batch file if resolution not 3x3x3 or change in script below
% matlabbatch{1}.spm.spatial.normalise.write.woptions.vox = [1 1 1] Change to [3 3 3] for functional
struct_directory=fullfile(D,'structural');
matlabbatch{1}.spm.spatial.normalise.write.subj.def = cellstr(spm_select('FPList', struct_directory,'^y_s.*\.nii$'));
matlabbatch{1}.spm.spatial.normalise.write.subj.resample = cellstr(spm_select('FPList', struct_directory,'^Brain.*\.nii$'));
% keyboard Used in bug-testing script
spm_jobman('run',matlabbatch);
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Smoothing
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strfind(todo,'g')
load(fullfile(way,'smooth_spm12.mat'));
% Other possible things to change:
% matlabbatch{1}.spm.spatial.smooth.fhwm = [8 8 8] % Smoothing level
% matlabbatch{1}.spm.spatial.smooth.im = 0 % Implicit mask (0 = no, 1 = yes)
directory=fullfile(D,'sess1'); % add these if more than one session
P=cellstr(spm_select('FPList', directory,'^wuf.*\.nii$')); % input session 1 scans
% directory=fullfile(D,'sess2');
% P=[P;[cellstr(spm_select('FPList', directory,'^wuf.*\.nii$'))]]; % add session 2 scans
% directory=fullfile(D,'sess3');
% P=[P;[cellstr(spm_select('FPList', directory,'^wuf.*\.nii$'))]]; % add session 3 scans
for ii=1:size(P, 1);
matlabbatch{1}.spm.spatial.smooth.data{ii} = P{ii};
end
clear P;
% keyboard %Used in bug-testing script
spm_jobman('run',matlabbatch);
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Delete uf*.im and wuf*.img files to save space
% WARNING: DELETES FILES PERMANENTLY - TAKE CARE!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strfind(todo,'x')
% Preprocessing files:
% f*.nii KEEP
% uf*.nii
% rp_f*.txt KEEP
% meanuf*.nii KEEP
% wuf*.nii
% swuf*.nii KEEP
here = pwd; %remember where I am before I start to work
directory_sess1=fullfile(D,'sess1');
%directory_sess2=fullfile(D,'sess2');
%directory_sess3=fullfile(D,'sess3');
% keyboard %Used in bug-testing script
cd(directory_sess1);
delete ('uf*.*') % to save diskspace (take care!)
delete ('wuf*.*') % to save diskspace (take care!)
% cd(directory_sess2);
% delete ('uf*.*') % to save diskspace (take care!)
% delete ('wuf*.*') % to save diskspace (take care!)
% cd(directory_sess3);
% delete ('uf*.*') % to save diskspace (take care!)
% delete ('wuf*.*') % to save diskspace (take care!)
cd (here); % go back to where I was
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Graph and Print Movement Regressors to PDF file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strfind(todo,'p')
here = pwd; %remember where I am before I start to work
directory_sess1=fullfile(D,'sess1');
%directory_sess2=fullfile(D,'sess2');
%directory_sess3=fullfile(D,'sess3');
[path,sj] = fileparts(D);
movesess1=dlmread(spm_select('FPList', directory_sess1, '^rp_f.*\.txt$'));
% movesess2=dlmread(spm_select('FPList', directory_sess2, '^rp_f.*\.txt$'));
% movesess3=dlmread(spm_select('FPList', directory_sess3, '^rp_f.*\.txt$'));
scrsz = get(groot,'ScreenSize');
figure('OuterPosition',[1 1 scrsz(3)/2 scrsz(4)]);
trans1 = subplot(2,1,1);
plot(movesess1(:,1), 'b');
hold on;
plot(movesess1(:,2), 'g');
plot(movesess1(:,3), 'r');
title([sj ' Translation']);
xlabel ('image sess1');
ylabel ('mm');
legend ('x', 'y', 'z', 'Location', 'northeastoutside');
% trans2 = subplot(3,2,3);
% plot(movesess2(:,1), 'b');
% hold on;
% plot(movesess2(:,2), 'g');
% plot(movesess2(:,3), 'r');
% title([sj ' Translation']);
% xlabel ('image sess2');
% ylabel ('mm');
% legend ('x', 'y', 'z', 'Location', 'northeastoutside');
% trans3 = subplot(3,2,5);
% plot(movesess3(:,1), 'b');
% hold on;
% plot(movesess3(:,2), 'g');
% plot(movesess3(:,3), 'r');
% title([sj ' Translation']);
% xlabel ('image sess3');
% ylabel ('mm');
% legend ('x', 'y', 'z', 'Location', 'northeastoutside');
rot1 = subplot(2,1,2);
plot(movesess1(:,4), 'b');
hold on;
plot(movesess1(:,5), 'g');
plot(movesess1(:,6), 'r');
title([sj ' Rotation']);
xlabel ('image sess1');
ylabel ('degrees');
legend ('pitch', 'roll', 'yaw', 'Location', 'northeastoutside');
% rot2 = subplot(3,2,4);
% plot(movesess2(:,4), 'b');
% hold on;
% plot(movesess2(:,5), 'g');
% plot(movesess2(:,6), 'r');
% title([sj ' Rotation']);
% xlabel ('image sess2');
% ylabel ('degrees');
% legend ('pitch', 'roll', 'yaw', 'Location', 'northeastoutside');
% rot3 = subplot(3,2,6);
% plot(movesess3(:,4), 'b');
% hold on;
% plot(movesess3(:,5), 'g');
% plot(movesess3(:,6), 'r');
% title([sj ' Rotation']);
% xlabel ('image sess3');
% ylabel ('degrees');
% legend ('pitch', 'roll', 'yaw', 'Location', 'northeastoutside');
% maxmin_mm_values = [max(movesess1(:,1)), min(movesess1(:,1)), max(movesess1(:,2)), min(movesess1(:,2)), max(movesess1(:,3)), min(movesess1(:,3));
% max(movesess2(:,1)), min(movesess2(:,1)), max(movesess2(:,2)), min(movesess2(:,2)), max(movesess2(:,3)), min(movesess2(:,3));
% max(movesess3(:,1)), min(movesess3(:,1)), max(movesess3(:,2)), min(movesess3(:,2)), max(movesess3(:,3)), min(movesess3(:,3))];
maxmin_mm_values = [max(movesess1(:,1)), min(movesess1(:,1)), max(movesess1(:,2)), min(movesess1(:,2)), max(movesess1(:,3)), min(movesess1(:,3))];
cd (D);
print([sj '_Head_Movement'],'-dpdf','-fillpage');
csvwrite([sj '_Head_Movement_MaxMin.csv'], maxmin_mm_values);
cd (here); % go back to where I was
end;
toc % stop clock timing how long analysis takes
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% OTHER FUNCTIONS USED BY SCRIPT ABOVE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%
function [T]=num_scans(D)
% For DICOM Import
% Returns most likely sorting procedure for your sessions
% Looks into Raw Data, and classifies what data you have dependent on the number of scans in it
% Looks in more than one folder if necessary (multi-session, 1 folder only protocol below)
% In this case:
% Scan Number: 3 = Localiser
% Scan Number: 176 = structural
% Scan Number: >176 = fMRI Data (sess1)
% These labels also used to create folder in Dicom Import as needed
% Change dependent on your setup
cd(D);
[cr,ap]=fileparts(pwd);
%%%%%% Look for Raw Data
d=dir(fullfile('..\..\Raw_Data',ap)); %This assumes you have a setup as described in the "multisubject_analysis" file
scan_mem_d=0;
c_d=0;
for jj=1:20;T(jj).files={};end;
for ss = 3:length(d);
if strcmp(d(ss).name(end-3:end),'.IMA');
f=find(double(d(ss).name) == 46);
scan_d=str2num(d(ss).name(f(3)+1:f(4)-1));
if scan_mem_d ~= scan_d; c_d=1; scan_mem_d=scan_d; else; c_d= c_d+1; end;
T(scan_d).files{c_d}=d(ss).name;
end
end;
c_d=1;
for jj=1:length(T);
if ~isempty(T(jj).files);
t(c_d)=T(jj); c_d=c_d+1;
end;
end;
T=t;
c_d=1;
for jj=1:length(T);
if length(T(jj).files) == 3; T(jj).scantype='localizer'; end;
if length(T(jj).files) == 176; T(jj).scantype='structural'; end;
if length(T(jj).files) > 176; T(jj).scantype=['sess' num2str(c_d)]; c_d=c_d+1; end;
end