Skip to content

Latest commit

 

History

History
1142 lines (967 loc) · 28.7 KB

ti-ads1015.c.org

File metadata and controls

1142 lines (967 loc) · 28.7 KB

/*

  • ADS1015 - Texas Instruments Analog-to-Digital Converter

*

  • Copyright (c) 2016, Intel Corporation.

*

  • This file is subject to the terms and conditions of version 2 of
  • the GNU General Public License. See the file COPYING in the main
  • directory of this archive for more details.

*

  • IIO driver for ADS1015 ADC 7-bit I2C slave address:
  • * 0x48 - ADDR connected to Ground
  • * 0x49 - ADDR connected to Vdd
  • * 0x4A - ADDR connected to SDA
  • * 0x4B - ADDR connected to SCL

*/

#include <linux/module.h> #include <linux/of_device.h> #include <linux/init.h> #include <linux/irq.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/pm_runtime.h> #include <linux/mutex.h> #include <linux/delay.h>

#include <linux/platform_data/ads1015.h>

#include <linux/iio/iio.h> #include <linux/iio/types.h> #include <linux/iio/sysfs.h> #include <linux/iio/events.h> #include <linux/iio/buffer.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/trigger_consumer.h>

#define ADS1015_DRV_NAME “ads1015”

#define ADS1015_CONV_REG 0x00 #define ADS1015_CFG_REG 0x01 #define ADS1015_LO_THRESH_REG 0x02 #define ADS1015_HI_THRESH_REG 0x03

#define ADS1015_CFG_COMP_QUE_SHIFT 0 #define ADS1015_CFG_COMP_LAT_SHIFT 2 #define ADS1015_CFG_COMP_POL_SHIFT 3 #define ADS1015_CFG_COMP_MODE_SHIFT 4 #define ADS1015_CFG_DR_SHIFT 5 #define ADS1015_CFG_MOD_SHIFT 8 #define ADS1015_CFG_PGA_SHIFT 9 #define ADS1015_CFG_MUX_SHIFT 12

#define ADS1015_CFG_COMP_QUE_MASK GENMASK(1, 0) #define ADS1015_CFG_COMP_LAT_MASK BIT(2) #define ADS1015_CFG_COMP_POL_MASK BIT(3) #define ADS1015_CFG_COMP_MODE_MASK BIT(4) #define ADS1015_CFG_DR_MASK GENMASK(7, 5) #define ADS1015_CFG_MOD_MASK BIT(8) #define ADS1015_CFG_PGA_MASK GENMASK(11, 9) #define ADS1015_CFG_MUX_MASK GENMASK(14, 12)

* Comparator queue and disable field * #define ADS1015_CFG_COMP_DISABLE 3

* Comparator polarity field * #define ADS1015_CFG_COMP_POL_LOW 0 #define ADS1015_CFG_COMP_POL_HIGH 1

* Comparator mode field * #define ADS1015_CFG_COMP_MODE_TRAD 0 #define ADS1015_CFG_COMP_MODE_WINDOW 1

* device operating modes * #define ADS1015_CONTINUOUS 0 #define ADS1015_SINGLESHOT 1

#define ADS1015_SLEEP_DELAY_MS 2000 #define ADS1015_DEFAULT_PGA 2 #define ADS1015_DEFAULT_DATA_RATE 4 #define ADS1015_DEFAULT_CHAN 0

enum chip_ids { ADS1015, ADS1115, };

enum ads1015_channels { ADS1015_AIN0_AIN1 = 0, ADS1015_AIN0_AIN3, ADS1015_AIN1_AIN3, ADS1015_AIN2_AIN3, ADS1015_AIN0, ADS1015_AIN1, ADS1015_AIN2, ADS1015_AIN3, ADS1015_TIMESTAMP, };

static const unsigned int ads1015_data_rate[] = { 128, 250, 490, 920, 1600, 2400, 3300, 3300 };

static const unsigned int ads1115_data_rate[] = { 8, 16, 32, 64, 128, 250, 475, 860 };

/*

  • Translation from PGA bits to full-scale positive and negative input voltage
  • range in mV

*/ static int ads1015_fullscale_range[] = { 6144, 4096, 2048, 1024, 512, 256, 256, 256 };

/*

  • Translation from COMP_QUE field value to the number of successive readings
  • exceed the threshold values before an interrupt is generated

*/ static const int ads1015_comp_queue[] = { 1, 2, 4 };

static const struct iio_event_spec ads1015_events[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_PERIOD), }, };

#define ADS1015_V_CHAN(_chan, _addr) { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .address = _addr, \ .channel = _chan, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = _addr, \ .scan_type = { \ .sign = ‘s’, \ .realbits = 12, \ .storagebits = 16, \ .shift = 4, \ .endianness = IIO_CPU, \ }, \ .event_spec = ads1015_events, \ .num_event_specs = ARRAY_SIZE(ads1015_events), \ .datasheet_name = “AIN”#_chan, \ }

#define ADS1015_V_DIFF_CHAN(_chan, _chan2, _addr) { \ .type = IIO_VOLTAGE, \ .differential = 1, \ .indexed = 1, \ .address = _addr, \ .channel = _chan, \ .channel2 = _chan2, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = _addr, \ .scan_type = { \ .sign = ‘s’, \ .realbits = 12, \ .storagebits = 16, \ .shift = 4, \ .endianness = IIO_CPU, \ }, \ .event_spec = ads1015_events, \ .num_event_specs = ARRAY_SIZE(ads1015_events), \ .datasheet_name = “AIN”#_chan”-AIN”#_chan2, \ }

#define ADS1115_V_CHAN(_chan, _addr) { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .address = _addr, \ .channel = _chan, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = _addr, \ .scan_type = { \ .sign = ‘s’, \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_CPU, \ }, \ .event_spec = ads1015_events, \ .num_event_specs = ARRAY_SIZE(ads1015_events), \ .datasheet_name = “AIN”#_chan, \ }

#define ADS1115_V_DIFF_CHAN(_chan, _chan2, _addr) { \ .type = IIO_VOLTAGE, \ .differential = 1, \ .indexed = 1, \ .address = _addr, \ .channel = _chan, \ .channel2 = _chan2, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = _addr, \ .scan_type = { \ .sign = ‘s’, \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_CPU, \ }, \ .event_spec = ads1015_events, \ .num_event_specs = ARRAY_SIZE(ads1015_events), \ .datasheet_name = “AIN”#_chan”-AIN”#_chan2, \ }

struct ads1015_thresh_data { unsigned int comp_queue; int high_thresh; int low_thresh; };

struct ads1015_data { struct regmap regmap; /

  • Protects ADC ops, e.g: concurrent sysfs/buffered
  • data reads, configuration updates

*/ struct mutex lock; struct ads1015_channel_data channel_data[ADS1015_CHANNELS];

unsigned int event_channel; unsigned int comp_mode; struct ads1015_thresh_data thresh_data[ADS1015_CHANNELS];

unsigned int data_rate; /

  • Set to true when the ADC is switched to the continuous-conversion
  • mode and exits from a power-down state. This flag is used to avoid
  • getting the stale result from the conversion register.

*/ bool conv_invalid; };

static bool ads1015_event_channel_enabled(struct ads1015_data *data) { return (data->event_channel != ADS1015_CHANNELS); }

static void ads1015_event_channel_enable(struct ads1015_data *data, int chan, int comp_mode) { WARN_ON(ads1015_event_channel_enabled(data));

data->event_channel = chan; data->comp_mode = comp_mode; }

static void ads1015_event_channel_disable(struct ads1015_data *data, int chan) { data->event_channel = ADS1015_CHANNELS; }

static bool ads1015_is_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case ADS1015_CFG_REG: case ADS1015_LO_THRESH_REG: case ADS1015_HI_THRESH_REG: return true; default: return false; } }

static const struct regmap_config ads1015_regmap_config = { .reg_bits = 8, .val_bits = 16, .max_register = ADS1015_HI_THRESH_REG, .writeable_reg = ads1015_is_writeable_reg, };

static const struct iio_chan_spec ads1015_channels[] = { ADS1015_V_DIFF_CHAN(0, 1, ADS1015_AIN0_AIN1), ADS1015_V_DIFF_CHAN(0, 3, ADS1015_AIN0_AIN3), ADS1015_V_DIFF_CHAN(1, 3, ADS1015_AIN1_AIN3), ADS1015_V_DIFF_CHAN(2, 3, ADS1015_AIN2_AIN3), ADS1015_V_CHAN(0, ADS1015_AIN0), ADS1015_V_CHAN(1, ADS1015_AIN1), ADS1015_V_CHAN(2, ADS1015_AIN2), ADS1015_V_CHAN(3, ADS1015_AIN3), IIO_CHAN_SOFT_TIMESTAMP(ADS1015_TIMESTAMP), };

static const struct iio_chan_spec ads1115_channels[] = { ADS1115_V_DIFF_CHAN(0, 1, ADS1015_AIN0_AIN1), ADS1115_V_DIFF_CHAN(0, 3, ADS1015_AIN0_AIN3), ADS1115_V_DIFF_CHAN(1, 3, ADS1015_AIN1_AIN3), ADS1115_V_DIFF_CHAN(2, 3, ADS1015_AIN2_AIN3), ADS1115_V_CHAN(0, ADS1015_AIN0), ADS1115_V_CHAN(1, ADS1015_AIN1), ADS1115_V_CHAN(2, ADS1015_AIN2), ADS1115_V_CHAN(3, ADS1015_AIN3), IIO_CHAN_SOFT_TIMESTAMP(ADS1015_TIMESTAMP), };

static int ads1015_set_power_state(struct ads1015_data *data, bool on) { int ret; struct device *dev = regmap_get_device(data->regmap);

if (on) { ret = pm_runtime_get_sync(dev); if (ret < 0) pm_runtime_put_noidle(dev); } else { pm_runtime_mark_last_busy(dev); ret = pm_runtime_put_autosuspend(dev); }

return ret < 0 ? ret : 0; }

static int ads1015_get_adc_result(struct ads1015_data *data, int chan, int *val) { int ret, pga, dr, dr_old, conv_time; unsigned int old, mask, cfg;

if (chan < 0 || chan >= ADS1015_CHANNELS) return -EINVAL;

ret = regmap_read(data->regmap, ADS1015_CFG_REG, &old); if (ret) return ret;

pga = data->channel_data[chan].pga; dr = data->channel_data[chan].data_rate; mask = ADS1015_CFG_MUX_MASK | ADS1015_CFG_PGA_MASK | ADS1015_CFG_DR_MASK; cfg = chan << ADS1015_CFG_MUX_SHIFT | pga << ADS1015_CFG_PGA_SHIFT | dr << ADS1015_CFG_DR_SHIFT;

if (ads1015_event_channel_enabled(data)) { mask |= ADS1015_CFG_COMP_QUE_MASK | ADS1015_CFG_COMP_MODE_MASK; cfg |= data->thresh_data[chan].comp_queue << ADS1015_CFG_COMP_QUE_SHIFT | data->comp_mode << ADS1015_CFG_COMP_MODE_SHIFT; }

cfg = (old & ~mask) | (cfg & mask); if (old != cfg) { ret = regmap_write(data->regmap, ADS1015_CFG_REG, cfg); if (ret) return ret; data->conv_invalid = true; } if (data->conv_invalid) { dr_old = (old & ADS1015_CFG_DR_MASK) >> ADS1015_CFG_DR_SHIFT; conv_time = DIV_ROUND_UP(USEC_PER_SEC, data->data_rate[dr_old]); conv_time += DIV_ROUND_UP(USEC_PER_SEC, data->data_rate[dr]); conv_time += conv_time / 10; * 10% internal clock inaccuracy * usleep_range(conv_time, conv_time + 1); data->conv_invalid = false; }

return regmap_read(data->regmap, ADS1015_CONV_REG, val); }

static irqreturn_t ads1015_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct ads1015_data data = iio_priv(indio_dev); s16 buf[8]; / 1x s16 ADC val + 3x s16 padding + 4x s16 timestamp */ int chan, ret, res;

memset(buf, 0, sizeof(buf));

mutex_lock(&data->lock); chan = find_first_bit(indio_dev->active_scan_mask, indio_dev->masklength); ret = ads1015_get_adc_result(data, chan, &res); if (ret < 0) { mutex_unlock(&data->lock); goto err; }

buf[0] = res; mutex_unlock(&data->lock);

iio_push_to_buffers_with_timestamp(indio_dev, buf, iio_get_time_ns(indio_dev));

err: iio_trigger_notify_done(indio_dev->trig);

return IRQ_HANDLED; }

static int ads1015_set_scale(struct ads1015_data *data, struct iio_chan_spec const *chan, int scale, int uscale) { int i; int fullscale = div_s64((scale * 1000000LL + uscale) << (chan->scan_type.realbits - 1), 1000000);

for (i = 0; i < ARRAY_SIZE(ads1015_fullscale_range); i++) { if (ads1015_fullscale_range[i] == fullscale) { data->channel_data[chan->address].pga = i; return 0; } }

return -EINVAL; }

static int ads1015_set_data_rate(struct ads1015_data *data, int chan, int rate) { int i;

for (i = 0; i < ARRAY_SIZE(ads1015_data_rate); i++) { if (data->data_rate[i] == rate) { data->channel_data[chan].data_rate = i; return 0; } }

return -EINVAL; }

static int ads1015_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret, idx; struct ads1015_data *data = iio_priv(indio_dev);

mutex_lock(&data->lock); switch (mask) { case IIO_CHAN_INFO_RAW: { int shift = chan->scan_type.shift;

ret = iio_device_claim_direct_mode(indio_dev); if (ret) break;

if (ads1015_event_channel_enabled(data) && data->event_channel != chan->address) { ret = -EBUSY; goto release_direct; }

ret = ads1015_set_power_state(data, true); if (ret < 0) goto release_direct;

ret = ads1015_get_adc_result(data, chan->address, val); if (ret < 0) { ads1015_set_power_state(data, false); goto release_direct; }

*val = sign_extend32(*val >> shift, 15 - shift);

ret = ads1015_set_power_state(data, false); if (ret < 0) goto release_direct;

ret = IIO_VAL_INT; release_direct: iio_device_release_direct_mode(indio_dev); break; } case IIO_CHAN_INFO_SCALE: idx = data->channel_data[chan->address].pga; *val = ads1015_fullscale_range[idx]; *val2 = chan->scan_type.realbits - 1; ret = IIO_VAL_FRACTIONAL_LOG2; break; case IIO_CHAN_INFO_SAMP_FREQ: idx = data->channel_data[chan->address].data_rate; *val = data->data_rate[idx]; ret = IIO_VAL_INT; break; default: ret = -EINVAL; break; } mutex_unlock(&data->lock);

return ret; }

static int ads1015_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ads1015_data *data = iio_priv(indio_dev); int ret;

mutex_lock(&data->lock); switch (mask) { case IIO_CHAN_INFO_SCALE: ret = ads1015_set_scale(data, chan, val, val2); break; case IIO_CHAN_INFO_SAMP_FREQ: ret = ads1015_set_data_rate(data, chan->address, val); break; default: ret = -EINVAL; break; } mutex_unlock(&data->lock);

return ret; }

static int ads1015_read_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct ads1015_data *data = iio_priv(indio_dev); int ret; unsigned int comp_queue; int period; int dr;

mutex_lock(&data->lock);

switch (info) { case IIO_EV_INFO_VALUE: *val = (dir == IIO_EV_DIR_RISING) ? data->thresh_data[chan->address].high_thresh : data->thresh_data[chan->address].low_thresh; ret = IIO_VAL_INT; break; case IIO_EV_INFO_PERIOD: dr = data->channel_data[chan->address].data_rate; comp_queue = data->thresh_data[chan->address].comp_queue; period = ads1015_comp_queue[comp_queue] * USEC_PER_SEC / data->data_rate[dr];

*val = period / USEC_PER_SEC; *val2 = period % USEC_PER_SEC; ret = IIO_VAL_INT_PLUS_MICRO; break; default: ret = -EINVAL; break; }

mutex_unlock(&data->lock);

return ret; }

static int ads1015_write_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct ads1015_data *data = iio_priv(indio_dev); int realbits = chan->scan_type.realbits; int ret = 0; long long period; int i; int dr;

mutex_lock(&data->lock);

switch (info) { case IIO_EV_INFO_VALUE: if (val >= 1 << (realbits - 1) || val < -1 << (realbits - 1)) { ret = -EINVAL; break; } if (dir == IIO_EV_DIR_RISING) data->thresh_data[chan->address].high_thresh = val; else data->thresh_data[chan->address].low_thresh = val; break; case IIO_EV_INFO_PERIOD: dr = data->channel_data[chan->address].data_rate; period = val * USEC_PER_SEC + val2;

for (i = 0; i < ARRAY_SIZE(ads1015_comp_queue) - 1; i++) { if (period <= ads1015_comp_queue[i] * USEC_PER_SEC / data->data_rate[dr]) break; } data->thresh_data[chan->address].comp_queue = i; break; default: ret = -EINVAL; break; }

mutex_unlock(&data->lock);

return ret; }

static int ads1015_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct ads1015_data *data = iio_priv(indio_dev); int ret = 0;

mutex_lock(&data->lock); if (data->event_channel == chan->address) { switch (dir) { case IIO_EV_DIR_RISING: ret = 1; break; case IIO_EV_DIR_EITHER: ret = (data->comp_mode == ADS1015_CFG_COMP_MODE_WINDOW); break; default: ret = -EINVAL; break; } } mutex_unlock(&data->lock);

return ret; }

static int ads1015_enable_event_config(struct ads1015_data *data, const struct iio_chan_spec *chan, int comp_mode) { int low_thresh = data->thresh_data[chan->address].low_thresh; int high_thresh = data->thresh_data[chan->address].high_thresh; int ret; unsigned int val;

if (ads1015_event_channel_enabled(data)) { if (data->event_channel != chan->address || (data->comp_mode == ADS1015_CFG_COMP_MODE_TRAD && comp_mode == ADS1015_CFG_COMP_MODE_WINDOW)) return -EBUSY;

return 0; }

if (comp_mode == ADS1015_CFG_COMP_MODE_TRAD) { low_thresh = max(-1 << (chan->scan_type.realbits - 1), high_thresh - 1); } ret = regmap_write(data->regmap, ADS1015_LO_THRESH_REG, low_thresh << chan->scan_type.shift); if (ret) return ret;

ret = regmap_write(data->regmap, ADS1015_HI_THRESH_REG, high_thresh << chan->scan_type.shift); if (ret) return ret;

ret = ads1015_set_power_state(data, true); if (ret < 0) return ret;

ads1015_event_channel_enable(data, chan->address, comp_mode);

ret = ads1015_get_adc_result(data, chan->address, &val); if (ret) { ads1015_event_channel_disable(data, chan->address); ads1015_set_power_state(data, false); }

return ret; }

static int ads1015_disable_event_config(struct ads1015_data *data, const struct iio_chan_spec *chan, int comp_mode) { int ret;

if (!ads1015_event_channel_enabled(data)) return 0;

if (data->event_channel != chan->address) return 0;

if (data->comp_mode == ADS1015_CFG_COMP_MODE_TRAD && comp_mode == ADS1015_CFG_COMP_MODE_WINDOW) return 0;

ret = regmap_update_bits(data->regmap, ADS1015_CFG_REG, ADS1015_CFG_COMP_QUE_MASK, ADS1015_CFG_COMP_DISABLE << ADS1015_CFG_COMP_QUE_SHIFT); if (ret) return ret;

ads1015_event_channel_disable(data, chan->address);

return ads1015_set_power_state(data, false); }

static int ads1015_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct ads1015_data *data = iio_priv(indio_dev); int ret; int comp_mode = (dir == IIO_EV_DIR_EITHER) ? ADS1015_CFG_COMP_MODE_WINDOW : ADS1015_CFG_COMP_MODE_TRAD;

mutex_lock(&data->lock);

* Prevent from enabling both buffer and event at a time * ret = iio_device_claim_direct_mode(indio_dev); if (ret) { mutex_unlock(&data->lock); return ret; }

if (state) ret = ads1015_enable_event_config(data, chan, comp_mode); else ret = ads1015_disable_event_config(data, chan, comp_mode);

iio_device_release_direct_mode(indio_dev); mutex_unlock(&data->lock);

return ret; }

static irqreturn_t ads1015_event_handler(int irq, void *priv) { struct iio_dev *indio_dev = priv; struct ads1015_data *data = iio_priv(indio_dev); int val; int ret;

* Clear the latched ALERT/RDY pin * ret = regmap_read(data->regmap, ADS1015_CONV_REG, &val); if (ret) return IRQ_HANDLED;

if (ads1015_event_channel_enabled(data)) { enum iio_event_direction dir; u64 code;

dir = data->comp_mode == ADS1015_CFG_COMP_MODE_TRAD ? IIO_EV_DIR_RISING : IIO_EV_DIR_EITHER; code = IIO_UNMOD_EVENT_CODE(IIO_VOLTAGE, data->event_channel, IIO_EV_TYPE_THRESH, dir); iio_push_event(indio_dev, code, iio_get_time_ns(indio_dev)); }

return IRQ_HANDLED; }

static int ads1015_buffer_preenable(struct iio_dev *indio_dev) { struct ads1015_data *data = iio_priv(indio_dev);

* Prevent from enabling both buffer and event at a time * if (ads1015_event_channel_enabled(data)) return -EBUSY;

return ads1015_set_power_state(iio_priv(indio_dev), true); }

static int ads1015_buffer_postdisable(struct iio_dev *indio_dev) { return ads1015_set_power_state(iio_priv(indio_dev), false); }

static const struct iio_buffer_setup_ops ads1015_buffer_setup_ops = { .preenable = ads1015_buffer_preenable, .postenable = iio_triggered_buffer_postenable, .predisable = iio_triggered_buffer_predisable, .postdisable = ads1015_buffer_postdisable, .validate_scan_mask = &iio_validate_scan_mask_onehot, };

static IIO_CONST_ATTR_NAMED(ads1015_scale_available, scale_available, “3 2 1 0.5 0.25 0.125”); static IIO_CONST_ATTR_NAMED(ads1115_scale_available, scale_available, “0.1875 0.125 0.0625 0.03125 0.015625 0.007813”);

static IIO_CONST_ATTR_NAMED(ads1015_sampling_frequency_available, sampling_frequency_available, “128 250 490 920 1600 2400 3300”); static IIO_CONST_ATTR_NAMED(ads1115_sampling_frequency_available, sampling_frequency_available, “8 16 32 64 128 250 475 860”);

static struct attribute *ads1015_attributes[] = { &iio_const_attr_ads1015_scale_available.dev_attr.attr, &iio_const_attr_ads1015_sampling_frequency_available.dev_attr.attr, NULL, };

static const struct attribute_group ads1015_attribute_group = { .attrs = ads1015_attributes, };

static struct attribute *ads1115_attributes[] = { &iio_const_attr_ads1115_scale_available.dev_attr.attr, &iio_const_attr_ads1115_sampling_frequency_available.dev_attr.attr, NULL, };

static const struct attribute_group ads1115_attribute_group = { .attrs = ads1115_attributes, };

static const struct iio_info ads1015_info = { .read_raw = ads1015_read_raw, .write_raw = ads1015_write_raw, .read_event_value = ads1015_read_event, .write_event_value = ads1015_write_event, .read_event_config = ads1015_read_event_config, .write_event_config = ads1015_write_event_config, .attrs = &ads1015_attribute_group, };

static const struct iio_info ads1115_info = { .read_raw = ads1015_read_raw, .write_raw = ads1015_write_raw, .read_event_value = ads1015_read_event, .write_event_value = ads1015_write_event, .read_event_config = ads1015_read_event_config, .write_event_config = ads1015_write_event_config, .attrs = &ads1115_attribute_group, };

#ifdef CONFIG_OF static int ads1015_get_channels_config_of(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct ads1015_data *data = iio_priv(indio_dev); struct device_node *node;

if (!client->dev.of_node || !of_get_next_child(client->dev.of_node, NULL)) return -EINVAL;

for_each_child_of_node(client->dev.of_node, node) { u32 pval; unsigned int channel; unsigned int pga = ADS1015_DEFAULT_PGA; unsigned int data_rate = ADS1015_DEFAULT_DATA_RATE;

if (of_property_read_u32(node, “reg”, &pval)) { dev_err(&client->dev, “invalid reg on %pOF\n”, node); continue; }

channel = pval; if (channel >= ADS1015_CHANNELS) { dev_err(&client->dev, “invalid channel index %d on %pOF\n”, channel, node); continue; }

if (!of_property_read_u32(node, “ti,gain”, &pval)) { pga = pval; if (pga > 6) { dev_err(&client->dev, “invalid gain on %pOF\n”, node); of_node_put(node); return -EINVAL; } }

if (!of_property_read_u32(node, “ti,datarate”, &pval)) { data_rate = pval; if (data_rate > 7) { dev_err(&client->dev, “invalid data_rate on %pOF\n”, node); of_node_put(node); return -EINVAL; } }

data->channel_data[channel].pga = pga; data->channel_data[channel].data_rate = data_rate; }

return 0; } #endif

static void ads1015_get_channels_config(struct i2c_client *client) { unsigned int k;

struct iio_dev *indio_dev = i2c_get_clientdata(client); struct ads1015_data *data = iio_priv(indio_dev); struct ads1015_platform_data *pdata = dev_get_platdata(&client->dev);

* prefer platform data * if (pdata) { memcpy(data->channel_data, pdata->channel_data, sizeof(data->channel_data)); return; }

#ifdef CONFIG_OF if (!ads1015_get_channels_config_of(client)) return; #endif * fallback on default configuration * for (k = 0; k < ADS1015_CHANNELS; ++k) { data->channel_data[k].pga = ADS1015_DEFAULT_PGA; data->channel_data[k].data_rate = ADS1015_DEFAULT_DATA_RATE; } }

static int ads1015_set_conv_mode(struct ads1015_data *data, int mode) { return regmap_update_bits(data->regmap, ADS1015_CFG_REG, ADS1015_CFG_MOD_MASK, mode << ADS1015_CFG_MOD_SHIFT); }

static int ads1015_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct iio_dev *indio_dev; struct ads1015_data *data; int ret; enum chip_ids chip; int i;

indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM;

data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev);

mutex_init(&data->lock);

indio_dev->dev.parent = &client->dev; indio_dev->dev.of_node = client->dev.of_node; indio_dev->name = ADS1015_DRV_NAME; indio_dev->modes = INDIO_DIRECT_MODE;

if (client->dev.of_node) chip = (enum chip_ids)of_device_get_match_data(&client->dev); else chip = id->driver_data; switch (chip) { case ADS1015: indio_dev->channels = ads1015_channels; indio_dev->num_channels = ARRAY_SIZE(ads1015_channels); indio_dev->info = &ads1015_info; data->data_rate = (unsigned int *) &ads1015_data_rate; break; case ADS1115: indio_dev->channels = ads1115_channels; indio_dev->num_channels = ARRAY_SIZE(ads1115_channels); indio_dev->info = &ads1115_info; data->data_rate = (unsigned int *) &ads1115_data_rate; break; }

data->event_channel = ADS1015_CHANNELS; /*

  • Set default lower and upper threshold to min and max value
  • respectively.

*/ for (i = 0; i < ADS1015_CHANNELS; i++) { int realbits = indio_dev->channels[i].scan_type.realbits;

data->thresh_data[i].low_thresh = -1 << (realbits - 1); data->thresh_data[i].high_thresh = (1 << (realbits - 1)) - 1; }

* we need to keep this ABI the same as used by hwmon ADS1015 driver * ads1015_get_channels_config(client);

data->regmap = devm_regmap_init_i2c(client, &ads1015_regmap_config); if (IS_ERR(data->regmap)) { dev_err(&client->dev, “Failed to allocate register map\n”); return PTR_ERR(data->regmap); }

ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev, NULL, ads1015_trigger_handler, &ads1015_buffer_setup_ops); if (ret < 0) { dev_err(&client->dev, “iio triggered buffer setup failed\n”); return ret; }

if (client->irq) { unsigned long irq_trig = irqd_get_trigger_type(irq_get_irq_data(client->irq)); unsigned int cfg_comp_mask = ADS1015_CFG_COMP_QUE_MASK | ADS1015_CFG_COMP_LAT_MASK | ADS1015_CFG_COMP_POL_MASK; unsigned int cfg_comp = ADS1015_CFG_COMP_DISABLE << ADS1015_CFG_COMP_QUE_SHIFT | 1 << ADS1015_CFG_COMP_LAT_SHIFT;

switch (irq_trig) { case IRQF_TRIGGER_LOW: cfg_comp |= ADS1015_CFG_COMP_POL_LOW << ADS1015_CFG_COMP_POL_SHIFT; break; case IRQF_TRIGGER_HIGH: cfg_comp |= ADS1015_CFG_COMP_POL_HIGH << ADS1015_CFG_COMP_POL_SHIFT; break; default: return -EINVAL; }

ret = regmap_update_bits(data->regmap, ADS1015_CFG_REG, cfg_comp_mask, cfg_comp); if (ret) return ret;

ret = devm_request_threaded_irq(&client->dev, client->irq, NULL, ads1015_event_handler, irq_trig | IRQF_ONESHOT, client->name, indio_dev); if (ret) return ret; }

ret = ads1015_set_conv_mode(data, ADS1015_CONTINUOUS); if (ret) return ret;

data->conv_invalid = true;

ret = pm_runtime_set_active(&client->dev); if (ret) return ret; pm_runtime_set_autosuspend_delay(&client->dev, ADS1015_SLEEP_DELAY_MS); pm_runtime_use_autosuspend(&client->dev); pm_runtime_enable(&client->dev);

ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&client->dev, “Failed to register IIO device\n”); return ret; }

return 0; }

static int ads1015_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct ads1015_data *data = iio_priv(indio_dev);

iio_device_unregister(indio_dev);

pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); pm_runtime_put_noidle(&client->dev);

* power down single shot mode * return ads1015_set_conv_mode(data, ADS1015_SINGLESHOT); }

#ifdef CONFIG_PM static int ads1015_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct ads1015_data *data = iio_priv(indio_dev);

return ads1015_set_conv_mode(data, ADS1015_SINGLESHOT); }

static int ads1015_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct ads1015_data *data = iio_priv(indio_dev); int ret;

ret = ads1015_set_conv_mode(data, ADS1015_CONTINUOUS); if (!ret) data->conv_invalid = true;

return ret; } #endif

static const struct dev_pm_ops ads1015_pm_ops = { SET_RUNTIME_PM_OPS(ads1015_runtime_suspend, ads1015_runtime_resume, NULL) };

static const struct i2c_device_id ads1015_id[] = { {“ads1015”, ADS1015}, {“ads1115”, ADS1115}, {} }; MODULE_DEVICE_TABLE(i2c, ads1015_id);

static const struct of_device_id ads1015_of_match[] = { { .compatible = “ti,ads1015”, .data = (void *)ADS1015 }, { .compatible = “ti,ads1115”, .data = (void *)ADS1115 }, {} }; MODULE_DEVICE_TABLE(of, ads1015_of_match);

static struct i2c_driver ads1015_driver = { .driver = { .name = ADS1015_DRV_NAME, .of_match_table = ads1015_of_match, .pm = &ads1015_pm_ops, }, .probe = ads1015_probe, .remove = ads1015_remove, .id_table = ads1015_id, };

module_i2c_driver(ads1015_driver);

MODULE_AUTHOR(“Daniel Baluta <daniel.baluta@intel.com>”); MODULE_DESCRIPTION(“Texas Instruments ADS1015 ADC driver”); MODULE_LICENSE(“GPL v2”);