forked from smrfeld/physics-based-ml-reaction-networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
make_graph_params.nb
4753 lines (4709 loc) · 267 KB
/
make_graph_params.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 272740, 4745]
NotebookOptionsPosition[ 269542, 4677]
NotebookOutlinePosition[ 269940, 4693]
CellTagsIndexPosition[ 269897, 4690]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Load packages", "Title",
CellChangeTimes->{{3.823627675287674*^9, 3.8236276781228657`*^9},
3.824662923566228*^9},ExpressionUUID->"9878b597-20eb-4e77-86d1-\
0175c3add88f"],
Cell[BoxData[{
RowBox[{
RowBox[{"SetDirectory", "[",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], "<>", "\"\<../../package/\>\""}],
"]"}], ";"}], "\[IndentingNewLine]",
RowBox[{"Get", "[", "\"\<funcs_rxns_moms.m\>\"", "]"}]}], "Input",
InitializationCell->True,
CellChangeTimes->{{3.823627678658452*^9, 3.823627699574668*^9}, {
3.8254373085051603`*^9, 3.825437309291643*^9}, 3.8267233833462563`*^9, {
3.8269848854588537`*^9, 3.8269848860088463`*^9}, {3.828035359100648*^9,
3.828035365518331*^9}, {3.8287298287002907`*^9, 3.828729834651469*^9}, {
3.8308081425289087`*^9,
3.830808143239388*^9}},ExpressionUUID->"75999278-5bfa-48ab-aeee-\
773f8335a351"]
}, Open ]],
Cell[CellGroupData[{
Cell["Make graphs & Export", "Title",
CellChangeTimes->{{3.825702224369665*^9, 3.825702224746971*^9}, {
3.827527685221188*^9, 3.827527686813209*^9}, {3.8287299213248253`*^9,
3.828729922662261*^9}},ExpressionUUID->"281c863f-c7ba-4e11-bbc0-\
b1f079eec65f"],
Cell[CellGroupData[{
Cell["Import data description", "Chapter",
CellChangeTimes->{{3.827527703502594*^9,
3.827527709088173*^9}},ExpressionUUID->"34fdc24b-801b-40be-b90c-\
bd045ccd05d1"],
Cell[BoxData[{
RowBox[{
RowBox[{"volExp", "=", "14"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"cdir", "=",
RowBox[{"\"\<../../\>\"", "<>",
RowBox[{"getCacheDirRaw", "[", "volExp", "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dataDesc", "=",
RowBox[{"importDataDesc", "[",
RowBox[{"cdir", "<>", "\"\<data_desc.txt\>\""}], "]"}]}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"nv", "=", "3"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"nh", "=", "1"}], ";"}]}], "Input",
CellChangeTimes->{{3.825082330083366*^9, 3.8250823508182898`*^9}, {
3.825082391904275*^9, 3.825082400708823*^9}, {3.8250824353831463`*^9,
3.82508244992666*^9}, 3.8250838347220507`*^9, 3.825089493560918*^9,
3.825117766963459*^9, 3.825121617980295*^9, 3.8260415746838913`*^9, {
3.82633100507691*^9, 3.826331006950534*^9}, {3.826331117275402*^9,
3.826331123566317*^9}, {3.82633127250555*^9, 3.826331272961165*^9}, {
3.826984409019142*^9, 3.826984435827317*^9}, {3.827423361434414*^9,
3.8274233634781322`*^9}, {3.828729843972192*^9, 3.828729844183605*^9}},
CellLabel->"In[5]:=",ExpressionUUID->"eebfd544-ad32-4fc4-91f8-210962c7d116"]
}, Open ]],
Cell[CellGroupData[{
Cell["Freqs", "Chapter",
CellChangeTimes->{{3.825707583528008*^9,
3.825707583948347*^9}},ExpressionUUID->"1e8590ee-e200-4808-9185-\
262972a8c456"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"freqs", "=",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6"}], "}"}], "//",
"N"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"freqs", "=",
RowBox[{"2", "*",
RowBox[{"Pi", "/",
RowBox[{"dataDesc", "[", "\"\<noTpts\>\"", "]"}]}], "*", "freqs"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"freq", "*",
RowBox[{"(",
RowBox[{"t", "-", "1"}], ")"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"freq", ",", "freqs"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "1", ",",
RowBox[{"dataDesc", "[", "\"\<noTpts\>\"", "]"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"freq", "*",
RowBox[{"(",
RowBox[{"t", "-", "1"}], ")"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"freq", ",", "freqs"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "1", ",",
RowBox[{"dataDesc", "[", "\"\<noTpts\>\"", "]"}]}], "}"}]}],
"]"}]}], "Input",
CellChangeTimes->{{3.825707349912259*^9, 3.825707472302904*^9}, {
3.825708112724615*^9, 3.8257081251588383`*^9}, {3.8257204953956957`*^9,
3.825720498715851*^9}, {3.8257243276167192`*^9, 3.825724330270266*^9}, {
3.825724360681992*^9, 3.825724364540572*^9}, {3.825774707424811*^9,
3.825774707812969*^9}, {3.825947741768775*^9, 3.8259477426218977`*^9},
3.826035622919372*^9, {3.82745234176702*^9, 3.827452342254388*^9}},
CellLabel->"In[10]:=",ExpressionUUID->"407704ba-b9f4-4eb8-96cc-9b724b8f3808"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.9, 0.36, 0.054], AbsoluteThickness[1.6], Opacity[1.],
CapForm["Butt"], LineBox[CompressedData["
1:eJwVl3k0ld8XxlVIJWOF0KBkSKJBEZ0dSRFFhnvNojKVe9+LrrloECXTt2RO
kUpmkeKYkjKkuVQyz/e+kVn0e39/3fVZ66y79tnP8+x93o0nvcxOLebh4Xm4
iIfn/7//TI/dFOD5jXyddor2K1/cfz167N2VyVFkIfX20XiwA5J8+98qPs4f
pDg/oZoT7IV2HP1xZ1HbFLp2iZbgHxyCXA653Z8t+oeGfme4qwTfRKdSqm0n
i5ZCWARq3h6UhnobOHvHi8RhbeTGaBu/PJTZvkThT9FGaHwi5SrjjlHzSo1l
vHbqwFd5sKdTqxXp3tSvenBMEzZ1xA5D4xd0avvsSvUbAN5LFnR02tqRsdKp
0TWvDoKm/GCG8UIXKvwY5PO67DAUbvjkxcffh/aJKefx/jsKsdftHPZwBlDL
IuvXzcLGUO3ydU3N1AByHL3WfWuDMQj/rurVXzyILrUOSijpGsPWRs3KvRKD
qCXq4QXjy8Zw8EGTQCMMIscVSma3VpiADrctNC2WOs+rOKEgeQx2d3Odx9WG
0Jm52JTMhOPAMViuUGo1jOJNRmr90o9DtHi/xA+HYVR1V3/IOPs4uIYlMmfP
DCPJw9Mak6XHgetZYrWJPYwa4u1aD305DqJ6p8rkE4aRkqrikoHVptCVunfd
8OdhNOxY4aocZwo8RzxdPI6NIMniNTcXEk1h4FLuy2eWI+jgUkbJ+wxTEHai
mS+yH0HJT+QWBxSawvOFzrEAzxF0dPZqUuM7U3i5Vo53/bUR9CTOrMVTxAwI
cY+ptdUjyKu+f2feDTMg5/6y27dyUBXkeKjcMoPysXL+th0cJPKcce9hqhlI
XmIdb9bkoPy8GbH7eWawY8W0cJIBB40lrBhLeGcGuxc3Cnw4yUG+HtvzQ1ef
gHsaO3YX3eagQJHzKpYpJ2CMl4xRmOOgpoh9Lh8yT8DTM/V/1yziIlk+nuTj
uSdgNV1jcJ6fiypnwlcY4RPAd24nFIpxEU934hDqPAFnB5hlxUpcFFZSma0k
bw7TIq6u6y25KMKaX34+xxwcJeunL2Rz0X41wcnBYnPIikuQXvGEi0b5xF59
fmEOW+z+5Nwo4CJagaxbfpM5TJm1rgks5yJ5gd1PnEfMwb7aZ2C+kYuqSpx3
v9lqAQRrSXw8h4u8I934S3dagOf8iGzmKBcpOHl9ubfPAp4vIfhyJ7goSjDA
L8jIApCYxWD2PBfZOMdWqHlYwKWsNYO6K0k0KVKtf/uRBWz29PnDv5VEj/rq
11wqtIC1pbXdyaoksnvR1M8otwCv1gy5rTtIVHfm6zXDNxYwuDwuXE2TRDGV
ZPP8oAW0HNn0s/0QiVQ811m6KFnC693B3AZHEnUc2Kxgqm4JulkVJ7udSRQn
oTyto2kJS0XdJCdPk2i2ZneixBFLWOUwf5D3LIkapIzb37haQmkxPaqWTSLn
VwGn1bMtYe8aSd3mKBK5aG8xmcyzhJCdRtb2MSQ6XdC6+3mpJUzp2U/2x5HI
NUmeT/+VJaDhitKeBBKd83p7j9ZnCcHBsyaXMkjkL7GpM2SzFfioTJnaFJMo
8Hpzw0EVKzh9+5uz91MSBS1i5y/bZQVuXa2/L5eR6MJwU0icnhVszVzmH/uC
RFew77oHJ62gNYGmbVpHotgzb2xa0q1gKpojfeo9ieJ/eOvFZVtB3knlbL6P
JPrPdP1WWr4VGDv6Zad+IlHCPu/ZTmwFG2oal5R/JVGq8Lo7E+1WIB8rIX2r
nUTplxoulPdZwaa8XJ3ZXyS6O0O4hnCtoNow9J1lJ4nud7/as2zBCia23zKa
6ab0KmV+lpGlwSjx5UL3AIlyVGQqOzfT4Fd5zuYVQyR6crc+M0uFBhOhNnu2
DpMoP1LaR02bBt6KGtnmHBIV8tTbTujRoKqpnc+eS6IiH8bBciMabAixfudA
kuipw0vxgzY0CLf+mn90lERlH73mBJxp8CXrVN2eMRI9O7K2u9mdBr0GPw5K
/yHRi51ehVb+NPhxMy+ycZxEFdlSiTKhNNhalmmaMEGiStm6i53XaCC9tyzM
bpJE1UulTD3uUPXy+m19N0Wivnuqht/u0uBTWoN01DSJBOGgnsEjql6hm+t1
Z0hEY3vt3vScBk79zxxvzpIoeNVl1ZhaGrgfrU5RnKP6k5+o8K+RBrn+lzll
FJMDL6W+/6BBcXRmXeVfEq26/F3sSC8NNE+WGe2aJ5HWxtEVpRwaxLZO9KRT
7FjBzyc/SYP7kSiad4HSmy6zELtAA49qP2MHinMm1Kd4ltJhTjZSpoDi9zEG
v88J0yGi0XZ+huLpbXaDPyTo4EO0kZr/SCT7hugy3EAHA82xPwyKdU+Hfy9T
pAOui1+WRrHr4tSPW9Tp8HZPiVodxVGpRc3xmnTI2nnErYPiYq3X9Yt16ZD/
5XDRH4rbPrdjhiEd7lTnCi1QzMMaL2s3o4PRSnbAP4q3CC8vPGpDh3Hz+zNT
FBs9Xv+43JkOvAW7r/VTzDDYfV/Rk07poabcQvGtbsOUW950sAlJ/vGY4hch
jrd4g+hQdSc0/QLFXdK+N4nLdKiXJH2OUixQFhnecYMOQtd/2wpTrGp+96LJ
LTqcW5Rg8Zq6v/nvp/4vUukwyDvj4E+x3/UmlvIDqv50pUA5ilMVuzwT8ugg
bqf7qJrqd13d1Cn+MjpcBPshK4qHHFc6eFfRIehtonYvpZfIvBytq4EOCYKS
d90o1riz1/T4OzqcYU9L9FL62u42Maz8Rofzok53rSh+cNZPO3GIDvv3eYxs
pPzRtOzmboE/dIjf75zrR/lnLPO+qu8cHSzNo8MaKH/tb3+7wUzQGsglZq5G
lP9c/HulqlZZg9PCcXYI5c+INXNiqrLWYNFET35E+feTyRa+5arWILTMb2Mf
5ffZoX0L5zWs4XrdyrBJKg8brppO9e63hm8j2TPzVF48ceBg9TFr8A1ZrjBG
5WmJ2odmP6Y11A09ifCi8qjYNFDf72cNzj9vJ++l8mriuoAtQq2hsnf65TSV
58R0pUL1OGsIbLnqaN9HInXRC7cGi61B3FwTV3aQqFzgi+KrF9ZQLvScYU3N
C10e1ef366yB5mTpzP1J6UF+/+Xw0Rq04nVW/msjkW/zHqXPf6xBZmY0qJaa
T//qop4XzVmDpJCV7sYPJAp/0Wscs8QGItVaDM+/I9Gdx3HEUXEbiImNVRJs
ofxxjXxes8MGzhdqK3+rJ5H+xUMm6Vo2EDXKWTtDzcMWdkpHkK4NpM1vPCFa
S6JfZ4z4NM1sYNNVbpIyJtHiQw9M8pg2cDP3SjJPKYkOL3boTMq3gcvf9Rq1
Mkn0bqaE5VdmA4IhTV6/qHltPSrIb1VlA0e9NroEppPIo6NcWazVBjxEL+1P
S6LyUrnGO5y0gVXcX2/CqX3w0b+F30fVFlxuPWkeDqDy/EdHxSTHFhy+au6b
NCTRSjGe1o/FtmAg7xxlb0D1T62GZVNhC1b8q/9U6FHz4dyh564ttnC7WHPC
SZvaRwMmhmG/bSEXK8zu30YitXYH17JddlCVPjVnTO1PntcX78tV2IFeYIJw
Qz0XPenXO/zwpR24rm+sX1XDRdb8/CPbW+zgU9Z/JbQKLirWi9ip88sOkg3t
UH0RF7lWxtZYLbKH05e2K+9N56LWonsd1/XtYVnG1wT2eS66m/pSZqrZHnJv
VGj7rueiZFuVLxaf7an52NfxSoqLEtbGxRS328OMF6Etuora97cc+QnSHlru
LqyPFOAi/6g5ckTEAfiUQl5Kj3KQWbB6bdcJB/hPSm+yoIqDeO1T3Fq+OcDI
08j6CjoHFUVpfX9POMKuRHeNZ6wRdDJJiK/c1xGcX8rFRFLvNbHsLtW7/o4w
v1xlndWpEcSojgj1CnWE5Uypz9+o957KeJuSYKwj7AkU5t7QHEH36QFs/QJH
2Da550jhPPX+3PxidRnpCH99z1tNXxhG3uU6x1M8neDw71KnHtYQKrF+tfgb
wwkSvNsjzdyH0OTs8ZJVPk6gIf9H/5njEPLb57L2epATxJSWeTOMh1Dwi4ge
/ygnSDfoFbiyZQhdrfzCpuU7gYiLtPfxL4MosYZ5V3zcCcLFv/H67hxE+E3m
2LWAkzC0YkIh+3M/cjPQrHBjO8Mwc6fjX95elJytXuIR4QKBloJODomdKOZP
xUXG7VOQuyFSJLbzO+p75OPrGnsanm7KP8Cf/BHVHYpNCM04A0XXbiz1q25A
i461dd1MdwVR8jNNcqoA8Rx4uij9jhtoCs3zcM4/wuESU8bvH7iD4qIhbz7P
V5hh7Vwzdc8Drripfn5r/wF3Xtzlgko84a9f4bc3Ft/xqrg7bdeqz0LMTM8x
fqtOnCWi7Pfq+Tn4ebTou25ID64m1usrNHpBoTFfw/nYfpy6IV1Gx4UBQ93C
N2+IDmGhCPWGbacZcMp42CJm7RAO+VPDWufKAJcnbWTUpiHsWN/75p8HA1Qb
vOPP7x7Ccp5b/WpYDEgpcTm1QBvCWaVPPxmEMSAuys+0I3UI55o0R5llMICb
EzbbJz+M15XZa+ndZ8Dy72EbN6oO45sbf/fuzGKAwNYzbeYaw5gxLqaz+hED
RKtXz2YfGsY7EmnDXwoYsF563fMlZ4bx095uA7tqBoS92XfnYtYwrgic5XHt
YIA7vl0ds2EET+b1/Q7tYsD1noKkJMURrNb9viOlh7qfxPuUFLURfP/I46oP
AwwwLNESjYARHLHG9gIaZQBUVvvyOo5gy/yKf2sWMyGVcck8KGUEk90XFl5u
YsIg0X+DIcbBihJnuR3yTFDklTwQIMXBJw3p7XMKTNAS0/gWtIGDP+erV6qr
MEGFfjbfXZWDXwR1BaXsYkKk6qO6riMcSs+D8976TJi+973NMISDNxot/bvp
DBOmbn8b5HRz8K5Peu/XujGh3Eq8MmKQgw85XMgW9WDC7+W+phtIDnZnzZj/
O8eEdpZx/u5ZDi5OGn7S5suE8BWvFZeJcPGhkbcOMVeY0LOup91Ui4vdbyTU
LmQyYfVm/etO17g4UOLTnYkHTAiTP9AgHsXFUXdFGSMPmZDheCGpMpaLi0oi
ZNqeMMHujN6ShSQu/vsz0KekhAnWD5PLNuVy8U1VJwXPl0yotbhRv+wdFxe/
VYr81sME5bNd2zRFSRy9qTpzto8Jn2sOdxxdTWKP87Qq6UEmTCZsLrWSIrHc
+qsTdhwm7Hhxr9lsI4lvnutx6Jpggr74uuB2NRK7r0zbNcxPQJaj7rShCYkP
OWkcE1xGQK+WydlWUxJvLGl227aCADuhmImjFiT+avs31UuYgOXv6vZttSWx
fg592bgEAcZ3i8IC3Ui8wWhV+19FAlLtQ9WYoST+m/p4WnYrASd7rc6cuUzi
L2O64mgbAS7d+Rnm4SSOSmQevqhOwNvWO5tWRZF4brClkE+LAE5R1B6FOyT+
rHO6eYs2AUomJQGfkkhcGDPfb7CfgKUScxX+qSR21VSRjdAlYLSxS/PRPep8
+LWrQkYE5JVnzyY/oc7/2JCx3Zj6/0Zt6SX5JL6hVvbi+DECWpeq7XIsJPHB
r32jsScIONZ26ei/pyQuUDhoK2FLwCbBXN53mMTX6xfUNpwlYL/l/WU1b0kM
zD51WS8CJpv0b7PfkXhcumXHWiYBMkaLdBQ+kNiWmbJrlQ8BvGYybz0/k3ib
jPZegSACVus/WnznB4m76jdp8oUQcHPsk75IO4lvMVdoLb5IwNbHsykhv0i8
UN+27+8lArRl6yIPdZG4hemHfl8nQMvqywmffhKHyjgBJ4oAjWGd3U8GSKzx
6vCBoWgCdM7PKv4cJHGqjKReTzwBV2lHDsmPkNjs1T+9zlsEOEUaeulwSMxP
9B9sTyAgnhny0JhLYq9XTw99TSZgb/X545a/SbyZSDX4lPr/+z17YTJK6S1z
5fD7dALqW1U00Rh1f8LCsOk+AcJPy5wExkksIjtuXJVDQI2cjce+KRLXvfpu
UpFLgIDx8hPjFLOJ2mPl+ZS/7usdyZwmccerWNPiYgIcxrMcyRkSxxP+ZgVP
CfjXH3wxfJbEh2VPnsgtI0CMRydfao7Sg1C3yH5BwA+jnxqb/5L4tKyUZWYl
AfaHgqJSKF7bwGOVUUXAzFjwH6F5ql/EgFVaDQG/NtefYlMcKttKS66j9M7e
2/uNYo2GUvqdegI261cydy6QeIhIs77VQMCHZ7DiMsWpsldt4t4QcL7qcUEL
xWYN52yjmwgwFeS4iPyj+seytLvRQrHh+GZDistl99tHtBIgsbFoNIDicw3y
DlffEzClJtuYSbEca6XjpY8EzIsrFryi+LPshOPFzwT8tmu810lxRMMPp+Cv
BJgl89yjvh/wflbdyYA2Ki+WtbnzFI/J5jizfxCwcaXoK+r7AWc1xLn4tFN5
2zc4PEOxNSvgFNFB5cnCWHaEYqF1zqe9ugi4/xpsPlNc02B4xrOHyivP68wy
in1ZO1zd+ii/W3P+xlKsvG6t2+kBAvp3ljqeori9YZG78xABPF3q77ZTHMca
dHccISCkyN1kjOrH2kP+zBNcAtq6Yg/nUpwhuYJ96DcBjcuTUk9SrDycFKw5
RoC5zn/HhSkurFC5rDJOQKLDf/bFVP+1oisi109S80WpoMGU4uqTJrFi0wQk
K/Dc7Kf0bF3KSJueo+63PE3tL6U/rY0na3iegLPyCoIBFHfkxOS0/6P832F2
cIzyC2la9KxuCQukCqUaX1N+8t18sKqUjwV7b89JKVO8MPmx/tFSFvwtFaoP
pfwnlDz5IXoFC6Rp7hqylD9vnbvaFraSBSbaAnP2kySWPSDZ6SvMAiwfKntn
gsQqfZpcW3EWTP5qCJz8Q+Lisjfjx1azYN3jmWdSFGtH2szpSrBAndFisZvK
h5FakICSNAteD6BHFlSe3i8WEpaRZUGl8jFna5LS61PqauH1LHAI6w+wovLn
7l8lNyHHApW0nCYtKq/hdUt0qpVZsDO88k8mlXeR2/F6xSossKtH+Wf7SHzb
Td7wgSoLuis9Wrb1Un4QMrC6sYMFl/Sn1G5T8+IlLYJJ12KBu9mj20I/SXx0
qzT7qDYLyo7put/5TuKP84+D0X4WPJeRvivTRuKejOZIeV0W8Jb/1Rb8QuLF
HJGs0SMs8K7v2RPdSvkT383pMWKBtfF3jfYWEovG7ij6YswCxhLZlM3N1Lzf
Y15VYcqCzQ+V7ia+JjG6eLvtGp0FIjLOcVtrSBy4ep2wnBsLeH7KXeksIHFz
wTJr5MGCr8sbm67kkXidycR927MsiPPdqrKJmtf4SpPWbSbFc/V7DmRT9Uz7
nxb0Z8EBj/f/iVHz/mrbl4rJCBZURJSLrKD2x1ffWoFVN1iw7ARnrxy1XxTF
806o32SBwtfqy2rU/nljdGXQI44FtWV3o3cEkliwYtfqziSqvvNLwpq8SByb
FuPZmMOCYN9H6TRqv3XvCyodyGVBfXJuQBe1/3Z9dV3MX8AC+ZXPrzlT+/GT
CCRACQvOKf3UNTIgsWQot7akggXRms76BXup+eFiJJ3ewoKTDF/vr9T+fajE
98b7NwvW8/7QS/rExe9lDsydHWPBsV+dd2yoff5XOEjlzDgLlH26XVY1c7HJ
5HgUfZoFG0dW2HvVcfF4Tc+J/TzeUCxYNvumkIvBtu7nUhFvcMgpfSdFvSe+
RoWNJm73hkVffKdlERcvDsVy8erekKtBSpKaXLzVZ+7EjZ3eMHea9aFsFxcH
27Cehuzxhlb6c2kNZS7erOgc4IK8oSmPJft1FRd7VevyqR7zhhT+WsHnAxzM
P75IqvqcNzR2iO/kj+Tg6fyEqB6GN/y9kaHrfomDh89u5xVgeYOlkc7nl0Ec
3NpvS5qc9wZ+T+0YZwYHJ34vffkjxBtozV7XNS04WLX2LDEd7Q0XDNYcN5Xl
YMvYb43bi7xhdxbDZP+DEfxArSA4dcobIlwylodnDONzq0dnSme8Iep7zjb+
xGG8a1bN592cN2jaiD8OjBnGVbX5Hrw8PrDjhmel2YVh/NUyn+Yu4ANRtUIR
9+yGsUBQ3g4NKR9gif15923NMHZ9/aSvWcsHkrIG2Y/ChrDSyUcm80EU+yle
PWswiL8feVZoMecDs8Fbvpbm9eH39/y3oTBfEJPcfzAzqBtPF5lqyy0+DxLM
mJkh9Q78r4wouRJ8HtJ2KkroMr9R+T+kH8jHhj0ZEeeMAt7hV3bb3TzC2JCl
uGpq7HotFnN2fZ5ymQ15wisFDAxqsb3r3ZWtV9kwwTgD/y2qxZOEeOGu62yI
d20K2OBbgzeHT83Ox7NhvWjE2XH7anyhEF+PzmLDS+PUq0ccKrHW0uP5Ja/Z
8FDhbej5pBJ8RfDa4oFGNnyRu5Q2J1SC34nWmK9tYUOdjRvdL7QYu8rsmgl+
zwaD/RrHTroV4dvqkrqHv7MhNc12hKtRgMdtOj60jbChx7UzUC3jIQYnqS0r
STbwV4laxodn48jTZmw0yoZztCeVv889wHLMOpn7E2ywEHgdF78vE5teyT51
doENOmnszJiP6Tg5srM0jccPxE4X3Lvik4YHotcuf7/YD05U7SE6DqTgC0nX
czWW+oHUThMZ/7YE3JT+ksdtmR+0OVQZP8+6hSWyFsySVvjByksv0ieIeHzy
8Z7M5pV+sP6wZpUSisW5+Yypf8J+MLBjuxVtRTT+H8OjnGw=
"]],
LineBox[CompressedData["
1:eJwVWHk8VN8bpiRFIilKC6WksqVS4rz2rRBCZR37OmOZQaEiRL6SVChLUiEt
llTCQZIUZYlE2Y1t5hLZ43d///B5PvfMve+zvO+954hTqCZOKzg4OIrIP///
v3za6AYPxzgytD8kyJS+qRob/6cxcnoCHV6m/RwPpSKRr7c3rmJNIm2Jftb9
0EtI4WRnMufPGSQ7z3VbJfQGctR2y5ovXEYiPDn2SiHpyCm10mq6cDX4nPv4
wzboBRqoZSlNFQqBW7ZR9HZ3jB79Xrl3slAc6rtN75gd/Irq1x1Zw2UtD5EX
8zl2OnehJoMNSQ3B8pDKnZGfntqFfkSz9yTfl4e4xfOcHN+7UP+qJ5oynfLA
+Fbx7aV4N1r8t/my5XkFeLoqx//0jW4kzZ6bzjt7CFpCs4QCXHrQtYay/jPm
hyFDrdI2eW0fiuNL8dvJOAyi3t92y+7uQ4n6jBWjtw9D5lrtkXyVPpReI7Pz
8vfDUHVBVjCU1oeKy9PP55odAenAAn6Z731o4PmVpiWTo1DHX7qqLaUfqd/Q
qnhidAwm6BkDmZsG0WX9opwm72MwWWpQevjgICpftevWv/+OQXveGo9CjUF0
PJjD2fTLMUjgXJ73pg2iQ27veJd1j8PcHN/N/tpBtFtD3sJcXRlmhQ4rv6Yz
EfeMGJvrsAocTVrJ7Vk+hDQLrrfJmqnAbhu/bvmmIRTmNV9xzk8FjFvF13UP
DKGlvrZbL/NVoNBYacNfvmE08y3hmJWMKizaKLxfPjuMhnJ5Igr3Ingv0FUX
RQwjJ9n5dfL/AVyxb7zBXD2KTnZEPRJJA8hP6qz8JzqKFKOEVTheALitLI76
u38UcXXJeX79BnB5RCc02mgUZca51HltVINfsckjcHsUdbFaInPvqcECe+3X
zi1jqCaZsj0hTw2snXcIr9w/hp5rjb8KKlODk5+jStcoj6HQVN4B3S41aDIO
Y74+N4bETqlrMCXU4bP7AXw7aQydzXuxvCtXHTJFb/jp8rMQWKrc5X2nDsrp
jOeeYiwkxfVZZvKzOoBYoTJNmoVmzw9aV7HUQWClA7+wNgvd4d1WaievAeP3
FAeaL7JQs3tMYOobDajKbjYX7WGhkk0iAhGfNODg9f3Z+1kslFn16InnT/J6
61V7sTkW8t1S2aq8qAGUI9WtSQJsJFA3o/gTaYKkeqD1ogobndrnNLHpoyb0
S4QMURLYaP46/d2vVk3YH4i68u6xUTY7IiJrUBPKzowP/chiI66ix6IK3Fpw
T8RKsK2YjUpUh9ROaWkBRfhilXs7G7k+mOXdeEYLHL24rKp72EiYa03rT0ct
sMmZer88zEa0T/vcXa9qgUXC399b59loj5lHQvh7Lfizw9FlSIRALcUXrfSb
tWC7mFqy0U4CXRGN3SPYpwVV12yskvYSqPN3XknaCm3geLwQ1HCYQLfc2L1v
1bTBuyXX5IsxgTgu+Rwax9qQVG7UwXOFQM97rvwr/qoNd48weSMjCXReM+Fj
SJc23Kj86tZ/nUDFawrP8y5rwyO1wiTNOwTyTJwK36OqA7c3Kx1NyCHQlhku
Q9YpHSi5NKcl8pxAH88KixRZ68DLkPPnLxUQSGLHkTy1EB14lM28Nl5CoPac
gBarUh1I8FofalNHoEi+a2m7vugA02TcaKyeQIrUJNeRDh1wPmO65nwjgeIV
3y4GLOhAQ/RpyY42Aqne/VSjyqsL9UU3r4z9JNDoXHv8qq26cPZv6pvfvwik
jed33zquC6rXC5869RFoSpyXOKuvC8r0M5T5AQI9uLr17c5zumD2cGqIOkSg
Rb0Tp54H6cI9w6dW/8YIlJt3cjM9WhfCjY20hAkCWay37lFO1oUzWWv+rpsg
UEFLCP3TG114tFo688EUgbIjHCm9n3RhO398svU0gdKOGBgt/NSFY9cMfk3N
ECiRKX9i45guWDRc83CZI1BMksi+g/90oc02Tf3VPIEu6y0La/PrwUw/n/3v
BQIx5gdW2O7Qg5tylz70LpJ6P/1CBMjpwQO1Ou+qfwRysCrsjFfTg1RN1vmQ
JQKdW5fyKcdED+4lCsYKLRPIuPxycZWDHuiUxixdJbE21eVhh78ePGO0FjSS
+MROw/ipCD349OJ+9hyJFRoVQ9bd1YPxqy+6FkksFbbVfU+2HqzQ4rXsIPH2
Qyss0Fs98KW1Ct4m8cb+IQ3LOj0Qfmu/TprEa29/lfPp0IPPnFIGKWQ9HNrF
22LG9GDUuuHzAFnv9PT9tQ//6cF1gd3xfCQeexI+845fH25el0jmJ/n1Wrr3
t+zQhwRvFnOU1OPHmtONLDl9iIpoCski9WooOVrOra4Puh/1rJRmCfTBY/vT
Hab60G/69+oTUu9SsVVJSo76UOL7YG6C9KOgfvTqabo+eMVrlm6eJP0JbfJx
j9SH9BPLDSKkf2myb23C7+pD+F4xxb9s0p/udIP72fqgskOAnUf6H3MzUunV
W33gWXdhGY2QfkyabmB26IPYwL9Ds/2kH1nHl5fH9MFpnZT1tl4CUc6Ij4ks
6UNDxtDwti4CGb5mf9DfaQCv+cVO5P8gkKbr9wIHeQO4FEDwaH4n0HHR0vRg
dRLbbtEtIPO992J00HNHA7BIWyUjTvbD9gM05490AzhykvFLvIbU+5e5aXek
AVhvSxdYqiT1RbsPbsgxgKXv2sJ6b0m9VuBuOssAVPjM90o/JvUqfFQft2QA
G+o/ha1+QKBqx9iSJ+tPwvbg+NiKewTKrzmb2C5/Et4xQt5/iCf5xkzpqDBO
gt5Upe+2IDKPyh2K5lEnYUH49uQPX5L/WKU4NekktNVWWdA8Sb6GNxYySk6C
9o8apoItgZQ3SL/gWj4Jrm+fL63WIJ/Pee5T/fpTYFgRrFOjTCC7iei+OztP
QWPP6yV7RQJd/Ta8eZ/6KTBYf6ZdXpJcH5dz+VTEKaj4kXlQcRW5nnefyR1e
Q8ibV9D4XM5Gf+YtPW3FDCHEd+Ce4ys2ujpyLVLqoCFslayY6XjKRjmfhkpK
DA1Brlm3zzGJXB+VvavrpiF4dZuXdFPJ9VxSf/eKGIHTxjDXGBE22jRlsX5C
yghS2R+PrllHzu++qH0lx4zAJvV6tTMnG9VXMa1PnjeC1wqH9MuHWWjTlSc1
tDQjmAhKDuh+w0ItoUJfrDYYQ+YPDdt/xizkspCQ+ijJGEzlJAkOtzGUaDj2
PijDGHKtrry9RL7vKh5ojZzKNoZn9I7DfQZjSER39sj0a2Og644FW8qModpE
62/abcYQNsNu+TcxivbJSK0cEj4NG2p0I8B/FI3alblK3zoNpauPTQg6jSCR
ok03llJOQwLH7kOapiNIczXtVVMmuT5FaKu12gi6/0xixcWC0zBpsF5CY9sI
Ojkfde9z42kY/S7zt6d5GD27ZdLgKWACJpKlmhdODCNqDfPQi/9MICtHjOfu
AhNVQJ7HgTsmkOv4QHWpn4kE3tEe5qSZgNjzB876DUz08sXchqwXJnCOsvrP
zQwm+pPE+yep0QQ06S/quzWYiOEh+zJM2BRaLDRfJUYMomCBgAPmqaYQo5gs
s3G6H8Wc45b8l2cGLnpKitU3e5DDx4vO8tnmUPBmdX/McAuqXC162iPZEhrv
r0+R6ihG8oKX7wwXnYMAvwu3L6nVYLtJlQOGeVbwcF9imvv+n3jdBo5vLUVW
cC/y8XiN209cIlfld77MCupC4javyv6JN3prv3NtsILKMw8/Su7uwLVDhvrh
41agcG3kz/iWTiz329b1jaI1vJfNX6St+I05Pl3Jkiizhq9+A0RyRzd+xtTQ
zflgDam6x9gPZrvxOW7uMdkGazi7/lDMHeEeXKQRc0ilyxqiU/o3aRn1YNfy
hCoLThugbS4bKazswd8KH3bHatnAr21nVpZm9uIHaR/EZupt4J48U/CuWT++
b3Wg7UyrDSgsJKEg736ctOXWzaLfNgCaDwnNa/047o4dty9hA55iWk5J7/rx
hbgFYkzAFs54fbt5QHwAm4TKv+81tYUZYvDeBHMAc9mkujW020LYOy8ZeQcm
Xt7Ktftgry0UH6y+zX+Biefb3X9fH7GFP2X6kk3xTDx+RslUb8EWXm76ZMlb
zsTsx27bKfx28K717zmNzUP4ZxoXzy9ZO0iwSWAUVQ/hwrjjHU2+dlATKuU3
vXYEU+7xryph2MG1Lxu+b902gjdk98o8uGAHEzpXj0jJjmBaZUwYNcwO+PdN
F/w1GcEHpn7u40uwg/IJ6SL75BGcdfZioFa+HTipSCpRxUdx4u5S4TeEHezm
7TQf3zaGNeTjUfqkHTyyzeBpPTCG/6g4ukXO2MHSz5yKDOUxbGzBV2a2TNar
wME7YDmG+WKsHCf47aFSKCFsb8IYvkosFkjL2EPVlxzxa8tj2L9ExTjV0x52
yf/Os/nAwq/OfVzRTrMHX9P+zspGFp6eN361kW4PSi7SASt/s3CQsuOW2BB7
iFxyLBSfZuHQ0pj+C3H2MHnQpbF2NxtHlbcFWr60B8eYsxbFF9m41sZ+f2KR
PWQHyXLPR7Dx2uWRX1/f2MO3LQZmW+PZOBYtqetU2oO7QFvG9EM2jq/Yve5I
kz0QLMsP/HVsnFLl80Boyh6eBqbyla4ncAdlwdRo1h7OjX9/2rKZwGIrI7iv
L9pD22l+7bodBE7TSPJYsYoC+7LrdE7KEvhhdfnhCWEKRNzedyP3JIH7HXWH
DmyhQAFj1cZcUwLvWdWU4rqdAgrxIcaR5wicrTWw3LWHAmd2hTW2uBA4r4a3
ruEoBWj9RpKfLhOY5Xw7eO0JCqx+5n73WSSBZVbvkNUGCvzmfBblHUvgfB2F
xDJdCuwidzcRdwn8h/lOe+4kBTKWz6/rvE9gxWtac4qnKZBAWy7mzyRwca2l
Td5ZCjg9j5JYk0fgGddegSFrCmwKkW3/9pLASms83++iUCDKJvq3/ysCl+hd
krrnTgExp1sVp8sJjOse/Ym+SIFDUXFnbRoIXCDyzSfkEgVG+A0e1DUSOMt5
fpwWTj5/weLl5u8EjllhRFhcp4D4dOxmsw4CBxsHeRvcoMDWtDtuGr8JTE17
yFK9RYGAgUKGUA+BzY7Pjkreo0DRhMrrM4ME1rkm4SGaToG691cGPg4R+Hjr
yRG+hxQoM4uq3jJK4AO7A9w4nlDg1yS3iSGLwDt8HwxN5lLA+GnbdQpB4A0V
n12YzymwX52gWkwQmIt/evBnAQWCVCmLByYJPJKjP1BZQoFrWtqrL0wTuHPG
3/FVOXl974WwiRkCf9VK78uuooD3zhvpenMErrr1iXK/hgLC1w9Zh80TuKhn
sudGHQVSYhRL7i0Q+InsdvvwBgo08Ya+ur1I4JQQ3W5GEwX0arYY0v4ROPaz
r617K+m/imL4/iUCXxJN/W39kwKqFRvMPpLY1+Wj9enfFND33FahsUxgx1cT
nZq9FJjf/7Mmg8QWK8WslAYpIPOG5fKbxPqntTv2j1DAJmnrQ/L7EZ9Ip53b
waZAo4R24AKJZVkp7Rv+UKAi2Jv5k8QSyh8suadJfVKKxlNIvDGaaJubo4C/
qkWiMom520QtWP/IvM4XNpWS9czt1mzt5nSAKhmdvO0kHvP1PtOyygG28OSJ
25N8flcktXxc4wCnr9w/dJXk28j/3vTdOgdwt5/ojSL1qLZiNT0XdABO5Uw5
T1Kv4tzNJpnCDmDu8WGbPKlnzqxa421RBzghGv+0ldT7vrancfQ2Bxg5ZN5h
RfoRl3jna7C4A7z0iXn+forAV3orDGmSDhBhWL6Hl/TPX2603mGfA4SvzdQ6
RPrrHCp8yuKgA6hmc607Qfp/9gv6oi/vAAsjzaGSZD5UXRPr5I85wM3da9xT
yDzJF5frSao4QLNpP1OSzNturuFaETUHiErcJJrQR+A1GSofl3UdoC+1NJ2P
zOsiy0V78qQDFBrem99C5pmtnPBh0NgBJjoeC639QeCWtsH39ZYOcKjeIzaG
7IcaSUGNSisHEPCP+LOV7Je3fspVRXYO8JkRuyuujpwf6+Mr7rk6gDOH/9TG
9wR20zlW5hboAF98WkryCsj7S4l+yA92gPyH8kcGnpH5WDv3Ze6yA3hH+ivM
ZZP9VP+mMzraAcLaw6sL0wgcb6q0mJPiAP3lfTN+1wgsfFiE608a+bwZikR0
GJnHTbO8xx86wHDHu+WgYHJetb/eWvfUAaz8BQg2lfTH9qjySKkDWM8se+05
Q2Bltc0aCpUOsPte74KoIYErJGb0L3xwgOijq4OGtQn8aaD43NoGB7jtZE8R
UyL7x+PIBekuB1jvE9TXJELgFYGH37pzOkJpc8/rmGZyXp8VrixY5QitVy0Z
auS85VP+Wzu/xhGCZKbftVSwsfBS0Y+YDY5Q/EKF5+YzNpa6qjibu8sRtBFv
lz05z43iDx0d1XKEmpN6Hd4ybNziI4QO6TuCp+a64EkJNrY0ndS+aOgIgcvF
jmc2szFlU6E5r4Uj5K7x0shfZmHGfQXGfldHEEz4W1zXwML3s+VfecQ4wvWI
Y//inVm4tt2hNj3OESyjW6LlzrLw1No7Hc0JjqDBJ3rphQELG3jNc5645wiG
VeVdBnIsPC//3pAvzxHsKtT2cMyO4bPvzIby6h3J983oQ8crY3hTQ8BWtoAT
OGgMh90KHsXqyzkyEsJOMHVTYAB5jGJvuU41c1En+Jjk1FJ/dhTXJIBrubgT
vMhWyo47MorpFmtexSk4wd0mFYPH7BHc0p1iKGvmBI9LRCXQ2RF8c7LsCu2u
Ezh73x3KFRnG3k3x9lb3nOCL7/yeLauG8cl8BzXddCdor1h51GdiCHNT13Du
fOIEM/riIm2fhnDwiNnlr8VOIHJcazY8aAg794yGyrQ6kfvD63p+LUx84qto
8NhGZwjhKEg+HDSIB3PpDNcEZzg1Yr8wH9aHzbct/c6+4wyXbiwfYLr04Q83
InWGU5yhN+i+SdnJPpzlf1fE/aEzVI9b/927qQ9TVN+WeBQ5w4y37PLck178
u3FxybvVGcaL7R/lfezB32fDo+hbXOBbmMmBc+NduFo7ISks0wX+hXB0fNP7
gTmNfvbeyHCF+1qqWZWjlZhDrZgzI9kNVla+v/7LuwRd2zxzqumJO1hekHhc
y92GEmtr+6qeuoN+8n7dN2ptKD0oJajwhTv4ds4euxnchoo7VB4lvnaHXUyT
vUsTbWgg/eqi+Ud3cHm2hVnW8QOpS2142jHoDrl2S0cf5v5Ei0oHeQYkPWD4
9eyGYMXfiHbOoWrmoQfkqEo2KTN6EX/6SPeJbA9oWJ/DeyChF+X1+SxfyfMA
TyuJf9zPexHT8/IJvlceICFhey14oBfZXEot3lnjAUM7DGoppn3oZFZbrt6Q
B+zOeRrGsb8fSbENbt074AlXN33qyK0dQDUKzfndcp5g0gDSxT0DyDHg3DfJ
w57QqujjlD0/gNI53Na9VPEEvbdYVu3AINokFBlVbegJX6uq5yFuEHEpVVxk
0TwhP9edw/4UE/VcUXRErzxBvNQsx+n1ENqziT+O9tYTDBXLoejLEHLPZb5+
UOYJHVcE/Zk9Q2iqKYWXq8YTntaNGC/wDiOe3ZyFta2eUF2ldb7VZhjJ1NRz
msx6wo+xsFat5WF0Ya1LuqOyF1hFS/71kR5FOA0+3UZesPtRzqp9J0YR16Et
kzUaXrAtLoSz6tQo+u98vfa+k15grRzglUwbRRl5h9gsKy9wFshf6igaRR8N
OVQCQr0g+djDovSjY2jjreSf0ZVesPfS2t5Hkiy09rtQo+8HL1hu1tCPUWAh
js1xH89/8oJsQecsE8RCrJSwooONXiC80vZfnCUL1WR6xDV2e4FLWs94UTQL
BRaoqItyeINR+9lnTwdZyHvqtdIKLm94y5n+7NMECzkeUZAdXe0NoLNmqG6R
hU6X7BErW+8NST/Eehgb2Ei6av203Q5vKAlbqvI7wUa/GntyslW9ofXr8p3Z
GDZqEbLKuKnuDcocEVe0Etmo7kzrnQva3jDyl38tPZWNitvrwk8aesOns8uN
F1+wUXxPofW4tTck/pQ8tbeJjSJ3yZi123tDzIOuI9d+slGwU7Z+lZM3ZCht
vfi5l43chu8fTfTyhj/mvpOzf9hIfSJCUCnEG27ZWH5hCxJI6RAHj/gVb+C8
IFhgL0ogGfqFpTUR3nCeOvSqeCeBts55j3bEekO55e8FblkCTXFYfrh03xsI
0ZIqpE+gxwLSQR/feYP5d/Mcvovk7wfPznJVeIOQ6HsX4SsEev0uOkC92hvU
T/jFzkcSqNZ5mF72xRsaRsTZZxMINFKa7Vv4yxt2hItRPJ8QyDfhx8R4D8mf
PZFhkUegBRceH5lBb+jfvE94Rz6B+IRcqTlsb2ia1b+mXkKgg257PdOXvaFx
QIyvo45AxaoWo50rqfBI9pHLkwYCqW6Mct/CQ4Uv5p8ajZoIZIgHXW8LUOGb
XESlYjuBWhM3DTVtpIJCoAny6SSQrbu2i4AoFUob9pRGdxGIJvzY6bo4FRRV
1z8yHCDQ7Mj3/lpJKpQ7pa1dYBLoSsUqR25pKnBXSlPCRwi09s7hPg0ZKrx/
2pbNHCNQgocT5YoCeV1jomMvQaAtard7yo9Qwdh1bFZjgkAPN32wWzxOBbdq
53/KkwQqqtxtG6BB1v9maxGeJtCJu2a/i3SoIJ1mTTH4/3mb51XrPwZUqDh7
cLxgjuSjXtQpa0yFgNSp89PzJJ/N/ee9zKiwc1wrS3iRQDYsoY5cSyoMP+/8
KPCPQINVGueGrEj+/KkfmCT2TvJrl7SnQve2xPv/Py+c8Xpo6eBEBc3qGYN9
ywS6rNHcluFGhf0f9jTfIjGP6EqL315UuIKz5cnvRxTPVmjd6ksFfxkZl/+f
V4pUU86cZVDhq1u83zyJM5ITWu5coMLex43mLSTeR60ybQmlQuuUmGAMiQs0
/zQJhlPhs0ZN5lYSH98iYWIURQUZa32+aLKeKuJ0Y+x1KtQPGho2kfUafLhi
XHeDCq72mW4zJL+WlPyvqxOpULn3hO3sAoGsaD2GWklUiPU6Ifed1KNfS7Ah
7D6ph+rYr/9Ivby2qp2qyKAC78UyNwlSz+lx2pd/WVTw/Kn/PYHUO7Qmw0A5
hwqSAxYSXVME4r7/rS7wGRU6p76ZrCb9ueHDoV+cT+ZJ/rMrL+lfhpidrnwJ
FaYaHAyfkH5L/bnx0bucChG+sxL/P698+RFr51X939/5wQIyL5W+O7T2fqbC
hnN/dWV6CTT/l4gX+0oFa81LaW5k3hSDKjoFm6kgGhl0M4LMY/Yle//Fn1TY
8QvO27YSqHeFQsXEb7K+DWJK25oJJBa5go/ZS/L7EV7+7ivpR+zDh40jVGjs
dP2eUkuguvX+RA2bCttFRj07qgnEdUtTufQPFR60rixdrCBQYPJA0+N58ve1
Z+J73hBIrlmIU3UVDWgaleGKZD/Wb1x8rLSaBpFpTnoXMwnkbt5/8tAaGkTP
Bg1lphIoq70oSWodDV4O76lJvEX6331GTkiYBiNShbErQwm0PHbXdmg3Da6p
TAhtOEWg+zKXV/XtocFxQ55xV21y/tBcn/6SosHrdcc4HiCy/yeVZpoO0GDB
8V1bkTyZ17n2uDJFGnCeeSbpuZFADdxi5QmaNCg9/KBwRwsbeehyOf6nTQNt
4+eK/31mI56YsTXXdGlwK+ErpbOKnHfrys6EnKRBcMiToR355DwVsmG5mNFg
qi/95olYNkrbmSGm4kgDLrWXPi3kfOaPka896EyDCp4xzjsKbHRpsspvuysN
nvGULR2XYiO7moG6ZQ8axKh7OskKsZGE5/6gKj8aHG3g4njPZKHHr4u/64ST
+rTYxqRdZ6FN4rpXlCJowOubW3zvEgtFxbQf2BdFg7gR5mywHwu5Wi+Gr71O
A6kTR1ij51hIeqW6Qn0CDUoiyjuDpVjouWF9nEkmDYbFbdzp5WNo+xub4xpZ
NCj7fPXG25dj6Ib4+MChxzRI3eMY15s5hmhTG1SEc2nk99GnU32RY0ghxXK0
LZ8Gmb9kdR+cGkPFA3061pU0iJ8d3rO1dRSVBc9zuHaT9b2IivNoHkHTLwbH
w3ppsOsRXelPxQiS62vqTu2ngQG3stD55yMoS+9pRfMQDUwHdJ43XxtBMZus
LqMJGjCHImsoJ0aQ+cuy5U0rfKB105gBb9owIvouL33Y5QN2VzKzJE4OIXGD
1Yu7XHygWsay6rXlAFL8rtG0xc0HelfsGlVQG0DatpezBT18oMrXgJG8bwC5
+82ZLXv7wBNfy/X75vtR0b3RZz8ZPmAuItdkltKPtMe+2t6M9IGwSus1k619
yP2/pPdLj3wg1u/jnQm1XlT0dd/19n4fcAo2Wt1e+wvF1izJ7fTyhWKrbkne
xM/olt+wu92YL7n/fH7G1yMDBwtvXy/h5gd7UuZu0QMacc6+VXX+436g8MHj
/pbQbtwkprbg9ccP3C4FViomd+PF9SEHXKb8wGyd5WPVom5sOD0Vd3bWD0zl
SrXER7rxVFW/qSqHPzzLb53bfqYHg1X1r9UC/jD/Qt5hYG8v/hEXPpEi6w/v
2Y4io7gPrwjDEony/rAx6Lv85x99eD99wfS/Q/5w+Su78+5EHw4971d86ag/
ODoKRE1L9OPdUg4XHZE/0EP/RNVc7cfUSvVVMkb+cNHDwOG+5gDmnuIUrfT2
B+4y69bgokE8+zIprp/mD2tid15P/TKIR71kuXj8/EFqL2VNVv8g/sa0IgwD
/OHclRVT9huZOKXj9YfOS/6QnlgVnubLxDLvvXxn4/3B6XjCipXSQ9g8of2z
bKE/WA6Hp70PH8a6RjQ101f+8O3yrbPuScNYmW/1a8Zrf0D5Uk8m84bxzkjF
zLJ3/sBcuHXv2fdhPBJ0I9Cg2h/Kb+dblUqO4FB7LUmX7/6gkDauL18xgp/I
5YemzfjDmwe6Vt2/yP2R8MTc6zl/uCNFkbZjj2LFeTl644I/PIj046pcGsUV
7196cHHQ4cUO7kTJHWP4h/lLS3ceOpi3yRwMtBnDPCEvFI6I0sHmzn9bFdvG
cIM98cxoKx0a1//wLR0Yw4nasvvcttHhzbX597unxvBOgRc77ovTYW/Iuo23
BVhY6eFzvhXSdOjL2Pnqjw4Lu356Nlh/nA5r9VF54ksWlnnOsmeeoMOgkHmE
cBm5X0w4+IsD0WGBSLOgf2Lhy1bPmg9p0OGulCCzsYeFk4i8imQDOuyihx//
J8DGtcJ5KU5WdPBTavQXdGPjuPlR4Us2dBDb29sY7MfGZl37bybZ0WFPBCet
JoSNu7OfRn12pMOmkmm1qZtsPKv81F/eiw7Vw6Xcb9+w8T5KruG/EJLvtVNd
v5bJ+6cef/nnElmfZXx9ymoCO7fXCQ5docOho3Ffj60ncJbxaEtTBB2qTHwn
tm0n8E504Hz2f3RQD5AfDDlOYHyhtDT1Bh3uWPzI1VcjsE3xye23btJBf2+y
wZwOge8d9OoJuU0HIyW8etGMwJvEnruYptJhin227I4XgV9ZqH7STafDqbrK
Ih8/ApvdapBWfUCHJyGDFjJBBL65lmBJPaJDwjPK9ZNXCcw3J+u/lEeHFeL+
QmLJBH6qWPF98jkdEgU0W1amEVifZnx0+CUdwmnvN9dnEjiKSZtvLqJD1/OA
jVx5BF7Rmn85p5QO6V/fuK8sI/ADQfXetHI6aB05VjNdQWA41aSRWEGHT8df
hX2uJnBI9R/uS9Uk34fT60W/EFiMI9zVv4b0d19++82vBC5RFqpzq6XD5run
p0ebCDxbcOg/sy90eIb9tmq2E/gu+z1br4EOhhpt29Q7CXxE2swYfaODsU6/
s3gXgf0e+AtJt9Dh9lGuqvB+Am/4xUXf0UqHB38GGriZBH4pcrt14w+y3m/8
Ih7DBGbfeJW83EEH1XZR8zYWgf/7rLUw9YsONKk32l0EgQ+sbrUa6aJDO1PY
o3aCwHXqzuVdPXS46nS+MmGSwG6h0zu+99HBIKtBR/UvgXlKIq/UDdDhknXz
Yt00gR//JTfhTDqErBj9rTRLYC35J5qvhkl+5UVjUXME7vc8+jh3lA5jdNbu
N/MEDs/+uDqDRdb7mRr5aYHAEv0WbrcJOkxvUxQoXSRw5Y6hupgJOtRHG1fe
+Edgu/OBBy5P0mHl6GyS5hKBl+/wxNH/0uH4r9A7P0mc1pREuM/Q4XLp6ben
/39eyb/vtN0cyefREkcuiTv03hacWaBDQYCcVx+J1Y2yLOn/yPpGxxqXSJxr
dmMpcZnUW+gL+y+JN5y7kFXEyYDGlT/e15L4gq2TfstKBjj+0TgdQOJeR+Px
yVUM6DjieZfz/+el7sp3hHgY8FK/9Y4LWU8Bdc+JQ2sZ4FkrZ5xD1r+FLthr
wseAPnfT6hqSX9iFxShffgYo86EpTPIfucQ8mCDAgIasbT2JpD4mEU3N+RsY
0KKnHqtF6vc2piyocSMDBvfvm2mcIfspPnvHxCYGGNwO2HWc1P/a7VsfBEQZ
sGNoYUPoFIEtM9wEjbcxQELlmUbyOIErHpm9pu5gwCkXzWgam8BST5H1DXGy
/g8DKbvGyPy9Es5pkGSAM1fXgW1kfuzecRix95J83YYLHMh81VaMTq2TZoA5
t4NAZA+Zz8+VcEqGxP8+29h0EHjpW96gpxwDhJtemW/8Qc6D1ruxsQoMOPpl
peLjFjK/PV4/Ph9hgOm18OfW9QRunRal6SMGPGpcvUWM7CfVRa5N7moMeNw8
XJD/hswT5/i7aA0GRNM+mO0qIjCDr2b1Jx0GvG1Urk3JJbCwhG+6jjEDRl0a
eDpuEzh4r7WWiwkDutp4wk/Hk3k7oDsaacaAnpqVilkxBC46uv1ojSUD4KaE
2e9Qcl6cqmvQtGfA81JFg8dOBC41eeXv6MCA81+ilJZtCLzbMmPLVSeyvqLI
REVLAk9RGM7v3RiwDYW8VtQn8K1AiSU1X9Kvoa8x1w8QuOnhhYMonAE/f36f
Thlh4w0cxW+PRzAg7MlXhnkvG5taTWgdiWKA1dcKn8l2Nm7Z6Gpz8DoDDvA1
zDXWsnFbxJkbW28xoCKaV13iERt3ushNzGSSz9NQuLnZko3Fqj1CJrNI/bhb
+9mn2Nh655M1xGMGBNqIaGdrsPHvH9skBnMZ8Cdb8VylDDnP9XhNWwoY0Ovn
MPbfSjYe2D9Y9LKKAaWJVYdTnrDwnmviannVDPBeUnK+e4+Fnfut6p/UMGA+
P8Ys4AYLD91vHkirY4BDYl1KF4OFR9ZVbvqviQFrwsx2m2qyMJu4F+jWy4C4
ZYpqY/sYni08fUJiRQD8LMv9G0WMYj6lIw1CXAFw9O9il2b3KN5ZusVuFXcA
sPPrjZnfRrFudV/40JoAoPE5cPzKH8XJLfTPzwUDYCdV/Mh/vqP4+N/kc8ri
AfDCOU2DnxjBwUd6A80gAKIGLkivIN/38SU1a7XVA6Dj9TBPXNUwzlJ9ev+o
ZgBcFTShcb4cxl+0/Su26AbAl+XUnekxw3ibBTdPj1EAbBbbPP9adRiXB0jf
9bINAIb0KT9q5hBefuP7KjI0APJfasoFWTJxJ3fB9czLAcAxfAx01Zi4xGzC
vjwsAFbtbzT+t4+J/cep/NORAVBpv79TdGEQD+31cnG6EQCcjOqLO+4P4qY7
LqKaGeT9ddNV/NsH8CN/qxDOqgAIPZjnz6Xejw3ktLWCVwWCKPPj3y2N3fij
taybR3ggSLSaGh8zacYbHFzfpUYEgteEbPc8fzO2cX2w7ltUIDxN/XX60ecm
PO0rVKAYGwi1mSHixZpNePe1mfl/iYHQKhXg8u1wI75cgGPjHwfCTZVmcVup
Bnx8tfHLV58CYWh9Z0xJ1AccyRe9YuhzIIRr5NkWL1bjRsEqsy0NgVD1wxUn
+VRjVzHFudCmQJAdq6wSOv8e35UXUdftCITGmk1n/h6oxFPnu5t/jgWClYdI
1d/ktxjsRfesIwIBSRb6W195g687mwSiiUBocCzzeuL6Gkv4VItl/SWvy2pG
MI+8wqcjs528lgJBN0ojXqXpJb5/ved1OkcQGMZOM976vMBD8VvWNq0IgsOK
23MaVZ/hy/dinx9ZHQQyh6cNUn5k4y8ZHzjc1gTBw7nyDcaPHuPNj5dM7vEG
wbSeu/2ITxamPD36qH5dEDzbZdPnoZqJn7+kzSyvDwKtO9s129Zm4P8B5tFO
ug==
"]], LineBox[CompressedData["
1:eJwVWnk8lN8XxlckVEKlaFERSWSpVO6xhIgKZS1kX8Yyw4y0qhAhrSplKRVS
WUuiawtJkmRP9n3mUkjW3/v7az7P5857z3Oe85x73zOf2XjKx9SZh4uL69J/
XFz//1w4evj6Yq5RdEvky33rovuakTG/v4VOjqG523a/diSw0Oqvd8QWsf+g
oG2SSV3xYWjnobb73C1/UXWwyIhDfCxy0nNPns5eQL2O7gfePXyOnB8V205m
8wOOlHXVvfsW9Vayd49ni0KL4LaFG2cr0NP2/2T/ZG8Ep+lonTMrG9G9C5lB
glMbwZ7ZlNQb0IgiN9jVbNonDR9EfQZEfzQi/1P5AeZl0nDlM9su72YT0u3z
Lcut3wT+qN6fT7AFdbF/OgRObIENQeX7ezltaMPc24dz6vIQSv9snaTZicTi
nUfFz8iDfPdjxmv3TrQYieoqYnk4uNHzd8ztTkQueg+f1N8GEiMDHtWDnegD
7xaNIgsF2OZVYy9xswudELrZeClQEWLtjma/bO5GX4TVBXhPKMN4onHQiFYf
qjNaca/mrDIE2lijHU59qCmcI3P/oTIUuB36D0L7UM+i57qKbcpwiY/XsupT
H5qdW3XR0mYnpMX5zZ826UfynH+T6VYqIP7Rmm+RyQBSUmgIYZ1WAR7nVYKL
aANI3SNLTPu+CoxE3rtcc20Aafd57GxsUoEMM7vCgsoBZNXeSuO2VIVWa1n2
PBpEV2sKe44dV4PzeSmJHZuGULTQA8YGphqkNau9tURD6LYhk2f4jhq0Ldmo
dNd6CCWUK264+EMNrJlw3D5mCL35kGCTZq4OK35Vjsj/G0K9r4Lr5k13gWve
tRIXPIyGRk44fKLvgqnCvfESjcNoVF5j9NbNXRD/LNM4mjOMZp/9Fpar2wXj
3/4cL5AcQWIJjgfNju6GOfqVoC3MEaR9/UDR88N7YHX7/RXcUmx00TAntc57
D/T8KHO1UGKjD4s23ZqL2gNyv/+K++iwkcZZLhez6j1g92t5S6cbG6m4vxdc
MNCAAmbDs9oMNqJvlp+Qc9MAKyt7l+0lbJTx6167eZgGDPMOHzD8zkYKx5mZ
aR81oGoovq50nI026yhbHNfeC1kmfShLlYNOzSdAsMNe4BddJyGky0GJ75bK
p1/cC/let2c2m3GQpNLILDfeC6uvydnc8uUgcannj1/u3QcF3UKSdikcZN4k
HtlkvQ+iHC7VvczloJu3rgT8F7QPVKdM4vNLOGjpklMGVnn7wLLOh29pGwfx
/ZXk8Krth0wR7233BQnSzbrWuMN8P0juORH3YyVBl2jTRdaM/dBzXeLI140E
zXc33srI3A+eb4zlp9UJ+lt7c4+toiakqlkrbztJkHok96YwY014n3HB7LAr
Qf76vkJZXppg2J8rrORL0Gih8S/+F5ogtC99XiaYoIG0xSHZsghsNNo7BhII
knFhebfrIaB5ZH8hzwhy2thnIeCCoI6XvyrrJUEdsaXydskILl9/+dYrn6B1
ZjvFIkoRaIS/jnIsIsh2adJcTheC9xrR+1aWE+SljdxClgM4a1wdf1VLkGDi
ZNuaDQByP3r6bv8gKG3u5dGMHQDvxxKvqLcQdNDGufwAAhDO+Vx6q53ilye5
t9UE4AQXf1x6F0FhK+tf+54EOHw9jDu4j+Lrf20znzfAVy5xsnyIoPJv2vfj
zgHksgVsbdkEOe+YFlaOAtg+ZablOErQodawp6vjAZ7G3jx88g9BqmHi+7le
A0iRJS8WTxIkqfKkvh8DBEZxG5+aIoj3l5LX11qAhp7QHZ7TBI1EfPjvbSfA
DSuW8aZZgr6rH4qL/w2gfvjM44g5gvK7mneG/qcFF1T4tyXNE/Q42rWKJqYF
emE2PS4LBEVoTDgc26IFgb1Xqlsp7Nd36d8+dS1Y4LftWqCw5c3lNzbra8Hr
qpAt3ykMmvFbhSy1YKsC4+4xCm8d2lb0x00LCg85qIdR+y+/+86i9bQWmHla
8btR8ae09ElJhBbs6lASmpoh6Be7PjQtTgtmxcMNdlH8y++fWnczXQtMLn4t
2kLl9+rAaO7pQi0ojtkfVDpB0N2xc8YONVqQmNoUtJzS5/wjwV6DX1qQv5T+
SYjSz+Xg/bNKoxSf+me0vBGCjCdkxFZza4Po518+ooOUfsbaOv3S2tBUPJPd
2EHp9+9rS42KNkgdSlui1UbQcPIJ+htdbdg+8GfAqpHSazYwKcRFG0j3C+8H
1ZReKXx7aCxt2JeHlEso/0SY3641v6oN/7TfZd6n/GWV/nphU5o2yOy022aZ
TeljuT9W8L02eKTz6aF0Sh/ez4p/PmuDak64Q0MypYdN34kStjZUW1b2id2h
/MvvP5E6rw25jocDCyIJqsjmjrqxTAeaGQbWYleo/AWlCuyVdcDxR43rDz8q
/7dpZgbaOiD21K9Y043yk+Pu4R1mOrCLJ7PCkuo31fdmaxb8deAx+4tmwkHK
Dx4RgY/ydKCnObssUJLKb+Xq5SGfdGDu55iHx3Iqv5Knz71adKA7JClOmJcg
+prihr2zOsDS417jPsRBy6v+qrYgXTA0T90SmM1BxnLOYysrdEF5GatefBcH
TV8LeP+zQRfIb+cgM1kOSuGEhCT36cJrwYEqk1UcxJvzTGIn3wG4qLzt3/lJ
NsrXHNAyPnAAHCQkwz9lspGMuefNy6UHYOxFtI6cJBvVvzlja/j9AIzohJmZ
LWajYIlIGZHuA7DM1Sdk//gIamtPz4/n0YNXLhZcZp9H0C13Ttc7LT2om1tp
GEad31wX/FRGsR4sEd6RoVk8jF51Bs+9+aoHhnemyi6mDiMb3ZsV537pQaKC
/0LIjWH0RiDbRnBBD86lLn7XYj+MvG6PX5bR1AdVZe/N2bNDqDmVVW9boA9r
td+9OyI3hLLqzwV8yjOANU/Pr++wGEApIU6nuj4ZADxr4DupPoDi1Y0Oz7QY
QNiiHrtHYgMo4t5que1zBpCeEFPmUNuPHG2z22K0DgJnzwEBwQP9SKxnQMey
6iBMXC4V3LGpDzH/mK3obzWE/jR9U8vcbrR3hfxr3oVDIHmr73by9TZUw239
6csyY3h47eHT9WptyH4svPvuBmNYn9/DMm9pRVdqB1fJaRuDkLjmEGdTK6qJ
Tr1oHGIM5ju7hhaym5G9oJzpXUET6NUMfWBT2YCu8G6dkF19GD5uzjx0qrIW
uc7cfPT03hE47P398pR7JvIp71d5HWUKWReXjz4YqMNFkO6pcNcUAosrxtcY
fsfL3/s+SY03hV7aqXr3F99xxut/K5Jfm0LekPgBX1o9/n1P8Pe9b6bwUCeP
w0t+YKbnjoxL4mbwz/jdHlZ/Ez67nKVw/JEZ/Mf3q5T9rB1XR+x1+v7UDL7q
SX5hcP3CUou4Hh55ZQYpL+Rb0qx+4Q//rgoaYTNwNUnbc3tRB+bqfjCEOs1g
6JrA2c25Hfhy7ocUuS3moH/jvY2iUBeOsObbMpduDv0pGr7jd3uwppLQ5GCO
OagHHlh58n0PHlu0oqKhwBxORz7Pvv+rB1tmSrlnVJvDnvbFt0Jke/GWxWov
HUfMQSBUWFk2txcX5TqqVW07BjqOr18YV/Rh/2vufG9VjkHf8tbJzIE+LOvg
0/hk7zEIfNbq2C3Qj6OFzpw+Z3QMavbOnU036sc2jjcLlTyPgdlx+byv1f14
cnnxgdi0Y/BfdOVOyY8DOK2vfOWVrGOQ/qROULl7AJ8oqO73zT8GZUeFHy/l
HsRlrk3hhlXHwCHVeE563yC+8YF8mRs8BkfWPD6U+noQK3itO+4kdxxOL5No
Gr82hB0rzrgopxyHiLQJ+75VI9hpn4zJ5OvjcMM2SktecQS7ZNaqvX97HFIK
Hy4o645gt7gtiw5UHIfcf7GWkT4j2Nvn6xPLvuMQOMs47Vo6goNWbeq8sNkC
4peNzsXYsfHZyC+VugoWMPGVVM75sfE57sAMAVULiLZy+LDtChtfHK6+cEvH
Atbr/4mqes7GoZi57vkpCyiJKny8bISNb7pW2dQkWkDp7yjWPTcOvt3mr3Mr
xQLA4GEXH4uD7xxdv80ywwL+2ytmpBrCwff2+k93YgtoP1oZ9zmRg+OXrbs/
0W4BBofclw3Wc3DilcqL+X0WcHvZJrVDnRyc9I/udoFjAWYyFwNobA5O7q7Y
JTBvAQMxsr8GeQlOe+vXICllCeevSiZXKBGcriD5oXOzJViKCQ6u3kvwy6Ty
p88ULOHLk9mrsgcIzri2NkBpnyXsGYi/ctaS4CyuctsJHUsQ/770bYkDwdkB
vrr5RpZgHcL1+6MHwW/sPorq2liChPcStf/OEpxX7zOz2NESHgpard5/heB3
B9d0f/Ggno+6m68SSXCBik+WRZAlPEr3nzoeR3BhisQDyUuW8LWqgnH5McEf
pMqCO8MtQW2FD80rleBifomjnvct4fIXkyTGG4L7nigaNidR68ftikULCRYC
XR39NEsI510l41RKsGWgj9qm95ZQ/uPbefGvBJ8XC1G8UWoJEdoBx5j1BCdn
PJBd+GwJ3llc6mHNBJOBjxKtbZZg05zRlddFsFhI64qDvZaQVl0Q29xHsMbG
McG3bAoHXNiaNkSwfSHfoi2TlvAn2vGaPIfgUCvJ+ZvzlsCPHr21HqP0nVD+
y8VvBS6K8k81xgmuu6E/6r3MCtLjvh2qmiR4avuJwbZVVvCOtjlF4B/BUlX0
LsMNVvBD51zm1DTB2i5XW/O2WkHfZS6n2FmC3Xji62WUrSDR5eH73jmCo+Oz
v9zeYwUF3AK53fME52h8KufRtoJ9RyqNbywQ3NLQjn0NrSBlt8wVDoW5GON5
7aZWYHVjt8UMhWWWLck6ZGMFH6V/lb+lsNGL9S/yHa3g6/PS75so7KuvlrzV
ywrWVFtdQNT+d7sNH931twKPrb8+L6HiF1ywv8t7zgrm9tkUhMwQ3LWWeZ0e
YgV/3BPMM6h8Fuddu9oRZQUZvXr3I/4SrGieFGxy1wrMM99cF5sg2Hz0TVBB
vBVsuSalafKb4NOR1Qz551Yg+IvxYhchOH5rl9e91xTOPfOrdpjgsrK/znx5
VvD5UVGXxADBQ/bCdv5FViD1KPbDih6Cl89JW3ZVWkHEivXn3v8iWP3+7qNH
vllBb4KmnFgrwbZqJoYfmq2ALfy8RrKB4Oe00/seDFmBEebZrfmZ4GqB62qL
/1gBU1d3lcVHgn8/TVZkzliB5aCHzAZMsGb71w2mQtbw4N5j0dJMgp2CeiWK
xKyhovWA6KM0giNWzqxQlLKGMZvfIbJPCP5hIrNoiaI1qC5ILze5RfD00N55
ljr1faHAw0MRBG8IO/q3V9MaoJJ1dNclgr3w2cHiw9YQr54y0e1D8H9K37+c
9rMGPtW7ZhH6BG+tHijvP20N+3Pu7nq9j2ATt3l87JI1/KusfByiTPCDRLks
5VvW0LQ584L+GoKVRS7eHcyxhp216+5ID3Bw/uLGrRUF1nA3dr9kYSsHa3Mp
vk8us4aGmI1bxL5ysDlp/WVXbw0xA9HbpnI4mPlll1zDH2s48DJMPe4cBy+U
Rb/PnrGGh4eN/0j6cPDVgl7jG//ZwMt22npbew6+/+IW/ZCoDTx67Kgvqs3B
BeHkfclOG3B+ejzYjYeDDwTrmSRq2ICp8Tb75jE2rgl81HFO2wZkS82LFney
8S9Xo0V7TG1AYevRe08+sDGP3nOT1342kPX869cvTDY24LHrjMuwAdXD1v6r
Wkfwt3+5jNN5NmAtu6btUvkIth4T4rMosgF74x6z15kj2LMjX35FrQ30rjgm
fyhsBEd/WOl/ldjACrXK6w92jOD6oBq+AEVbyCir6srxH8b2f/YrmKTbgt7R
GIkjdYNYeAVXbX0OhQ2btnRlD+J8pRKGTaEtcL6c2bzzziAW89Z771ZjC7Y8
f1SFLQZx5YCJ4eVRWzCr2OOV1ziAldrt3PJUT4D6FonEbV/6Mden4GTpwhOg
n65kMxjRi1/26xikfjwBOLHoe7tTL7bm4xvZUXMCAneYHH2k2YtzdCJU9v86
AUPlO3qZYz3Y7cPNEgvuk0ATkDF7bt6Da7OfdEQeOAn+Mqrrj4t046T4j5J/
v5wEViOjqtqlAz+0VWg81nASyl3ungra24Hvrbl1I6f9JAwqXStfWNaBo+/a
89HJSfhvYa22rN8vHBQ9Q0aW20HisjMLDcvasel55dIuMzs4Mua7JRC1Yt6T
j9xrmu3g5pZVI/20Hzg7WqO1jm4PjtL5F3cElGD//P1HHnk5gKd6bN4y9WqU
a13B0+zrAPLVXDvTZ6vR5PSRXLEAByhrOa++UPIFnd7rtCbynAMk/ZLhLzb5
is4XRPQERVPY7eoFTeVvKOxDY6BlhgO07Ju1u7GvHj0o8UsSHXcA775FzJ/y
Laj11IzZ4SkHYDTHSLwJa0GS/4XwXZt1gOWGSy8Z9bSgeJ17njyLTsGJAdGp
lIet6EnZB7Ux8VMQZPzvn9iSnyi9XLCqZtcpiH7C866/4RfCVU9/h585BXEH
60rl7nehrNW1fucunAJhm9sHy3EXSnaZHvW9fAr+HW3y2NPXhSJ4DhOLa6dg
YtVbhcc7u5G5xtTwlrhTEIAaz/h/6kZDqYa9xfmn4FvdstHvnB4kFk4a//07
BY97+lsPr+xHfI0SFuy5U2AuL/dWelc/+rdZt6GD2xHOFr09WmLRj9qL7tVX
CDiC4MpVT13u9aPUKa1vdyQcQTTJhmvfqgGk6Xa7SnmPI6zqe9DVtmQQuevv
KXQPdITpyLYC+cohxNkq8THzrCPwG4ad1egZQvQl/6r/XXQEh/eWYbxcw+js
l7y28HBHoA3z2JWrD6MYs92zqQ8cwSDQ9NS/RGpesNu1d6jAEbwnvvl3uo6g
vVqrdHYWO4J+fXFOwIURVCT91zDooyMwfnSIF90dQZ9631gvqXGE39uIIbOM
ml881YPkfzlCBstA/BQ17/AEqr3z4HaC4lWKR/k+sFGYlXhx1iInqIsrWeis
ZSOhvROV0wJOsLq7w8m3m43E53OaIlY4AadX8lYyPwdtvaI6lbbJCUTyDb2d
D3HQS2cxrj+yTjAj4J3/zZaDduqP8+9VcII2BTtT4sVB+5bkrPqs6gSB/07i
/ZEcdDhGZdfwASewsI9R3FTBQfV+okjF0AkMQw75i//gIEuzP3pnTJzgW+Tq
mrddHHRqZfZxQQsnkP1zVFlojoOYD3cyt7k5wdGMdsHR7QTNnFtxnuHlBEOn
+bTt9hB00e53yHtfJ6jYYXD1nC5B4dJZd4xOOwEqeVJXbkXQwxTlXM8IJ9j6
96pn+EWCKpsdKxOincCp+JzvgXCCxpfcbf1+0wkymJGpWTcIMqJNc++Lc4KD
kVecEpMIYsYriPsmOMEjo6QPG1Kpefbrya3JT5wgdBWaO5pB0LRyqYlQuhO4
XersKC8kSMZxwgEynMA9T89pSRlBprdlA/xznEDwHOfq/Cdqvv5odTUlzwk+
35lCT74SlDZ5La6twAmq9hudmaonqEH2w6vlxU6w6OCt7fPNBPFYjRbrfnSC
xAO6hjntBFm9Nx9I/+IE51Nu3FbuJ+jKSOhMxzcnONz+N31qiKAMqXdLxRuc
4GGz9SJfDkFtJsMbD7ZQ+weJ3IkdI2jxRSm1c+1O4Dqzx9xnnJrnMw8bZHY5
QTN3/t6/kwTZdwXb9PY5gUS25oEd/wiKFM3xlhh2grCSfZ6rZgjK0+0LNiZO
UHRhNOX1LEE9AavvBP9xgpCuE9N/5wha/twwJfevE2TfPmI7Ok/Qvqaz7wdn
nACmbarvLRDkKvC6RorLGY7uajUYo/BNjc7Oo7zOYKQ6VvuPwh88RSdCFjvD
osSrTlkUHnp4YHG+kDNMEzPetRReWcNay1nuDFdPfslUofbXXkhVlBZ3Bp1+
dZ9Zio+3UpvWcQlqf60HKIDi+8Bh6bEIKWf42lgpE0/lU34T3D5sdAbDIhs5
1l+CfpfSz/ze4gxar7MPcU0QtG4iOVpG3hlyh6bu7vlNkKFMY5K1ojNUaKxd
tokQFGAhkBu90xmcm74VFAwTlHh1b2WJujPMWMWl8A0QVP2O1jqpQfGJL2zl
6iFoaiiBI4+cQTz3gP2LXwRtlqzjttOh4pfza/G1EnTEmFf8lr4zZEzGh4s0
EHT2vPrWCiNn4DOi6X2pJai+44HJDnNnSF8pYXr8I0FcK744OFo6w6rGuMJN
mCAFnQX/WFtnWMaX2JCUR9Dlp45xC07O4OYza5qRRtCrhjuvVNydgeqiZnhC
UAt/ZbErzRlMt4ebXoojaKeHwsDXAGeY3T7rtfoaQSfjTs78F+QMkcfFdtEu
ERRRHbN093lqPdRej3GaoC7FCdXEUGcoFV5+/ZYLQTf+FAb7xjrDGFlFk91P
6V8X42Ab5wzb1z3zqtpJ0KFMRy2DBGcITGbelttKEJ+PAPeG584wENvzTnIF
le+Q+cWvb5yhzuYQfzPV/1afZO3f5ztDw4G9o3YNHKSeMo2ef3CGegPHqief
OGjMOXHhfDlVj9zc4lOvOcilc/i8YoMzJG+90V/E4iDdog8n17Q4Q7MmK3in
OwdtTLihydfuDDmruaYdrDmozXbX/M9eZxAYcV48s5eDjjZdOhc14QxXOqp0
JGbZaN9XibMjYi5gMLfXdIsvG0m8GrFpWu0Cb0UEtoacYKPJSLy3TNIFNh6I
kn5qyEaZhs4zcZtdICCWIS+zmY1kyjOCjFRdoOLq7Gbl+hEkUqh/Os3MBTJF
ki7e2DqC+tICmG43XcDNWtvgy5MhdFxqvj3lrgvwMiYaTcOG0MfrofqDD1zA
qedx7G2PIZTsH7va44kLbIDzX4yVhtApzXf5njkukGf7SS8hbxC1f5ud925w
gfNumrt5CgfQj6nLYQFrXOHjjaurF8f2IV1PodHcda7QYHLx6St6H8r5edty
UtoV8J/S2rUmfehmyVM51jZXeM31JtCItw8diaz4HLjPFbiDnngu8e5F1esF
l5896Qr54rn3bXb1oDK9m/cuPXYF5gGFT0LJnajX5f2XoGeusPvyaOi6s52I
L6yHh5HmCklFZ00EzDuRQYU6zTHLFQKOXbX3/K8TVeu3aumWuMI29SMenvYd
6LvB5uFFXa5Qt/Jy3zHZdtRl+GZ/+EY3iPlqdIVW2oS4D7d0XU90AxWVMR7L
j1WIS+sNd+J9d1idpDP6o6IUW+v2VzU9cge/9RYtl2LKcI7+6tsij93hab0I
mbH8iN1MgmQup7nDzZTv2YaD5fibjaaRy3t3qHZMvbqJvwo/ZpbfVvjpDhIz
0ymL1tZi3fQG2XcbPGBaTv9ZjFwDjn/NPza22QPce08WlV9twFNZu/Pl5TzA
d92apWX9DTj93YNDD5U9IPuzddjyp41YvOKk3wVtDwiaOtPbINmM+zr78g84
eYC1/8sxQ642fHXVX+O65x5Q162xDCo78O3Kyu6SFx7w4ev5K9dGO3DC6Qen
s197wGf6dFXm6k78pnX/09tvPWCPjatnlFsn7k24Mnu8wgNylo14sPi6sPbW
FS9a+zxgwKrxv88a3Xh29/bFvVs8gV7wVHjr5V68eGj+0Q85TxBW942Se9aL
ReNqVcq3e0KemsTVmcpeLD/HsHuu5gntAW8Kli3tw1bF+W/cD3iC+lK+ztE7
ffjNQQNnjpMnPDp52eXYw37sa+1Y8veJJzxeiKjMCx7ESxOGOvaleEJ8nPDe
hMRBnN7ttxCc7gnL48rv6+BB3O91cZ9QrieU1F7oKJsZxCcvPHqzodwTZpu2
SiT5DeFDyY1pBwc8oTTVP/n8kWE8NHDyU/SIJzVv+Btv8BzGV7f39X8f9YQW
Bkv3TMgwLn0zvvnkP08YV/IWtn03jDU+iSTQl3iBft/NT8VSI3grx+hWnIIX
NS+1ob6mEVy+83tmh5IXBJldujzPGcFOLOvaLWpekMKU2F7Ny8YJXO7CGfu9
YM557lvoDjZeKRoaVmbiBRl+67wYwWycYyH8TMDMCw7J3uhWusPGpg9vl5lY
eMEvJV+xxylsHLXlCXeznRf08+e0xNewMe/uojNsXy+IDD/2anYlBz8+q/9g
ZwC1v3xtoulWDobimjzWaYrPaetv1ns4+IzhzwnuS15Ak/qwP9iag3/bTvus
vOUFpODl8433OTgmKTjaJtYLrKwlBnlTOFixb/HLxDgv8I43X3//DQd7+Kwa
kk/2Au1FafXf6zi4M1jVCeV6gVFIfGA0P8EyK5dG+77zApde050FogR7pPW/
TSr0gq+mGpkP1xM8XvdAkLfcCzI/m4YHqBO8x9VfTa3KC2Q6ClJpWgSfnzG2
c6nxAu6kaqnVhwhevJk7u7LBC0of34u9bE+wcV5L278Wit/Kux66HgTfPJTD
t+2XF+RLFGx7yyB4bYCrdVS/FyykWK7NCiFYsfwLt+kUpYfdfpOZpwQzrJ9v
uzzrBd/n4rYdfElwHufisRwuGnQN3j1ikEOw1irV1JUCNHhQfk/Bupjg0BfC
3/WFaXBieHOpVwXBVah/NlCEBrtWWdorfSHY3O3BkVYJGrx7u41Z1Ujw/VlG
kNA6Gki7MOoT2whujzFO3i9Ng6e1GbxbOwmW3iJb4y1DAxndJzN2vQS7vuOa
SpCnwX1OzSuDQYLTjVs2flOkwaJ/Z8W6Rgge7cw24lGhQU7C+00KowSrMaMC
VHbRwNXgZL3MH4KDlrgmOO2lQcrduXV1EwTjePh0B9FA8fzf2e1TBPOqrPlT
rkMDOzMfN41pgg0q/khO6dOgudnY9u8MwVE2X/TkDtFg3VGteqc5guvIM1/r
IzQ4cqGw+tI8wSuvXHxwzZwG8+9mtI8uEGyz2rqswJIGy9nTqrUUTkxX4bBt
aVCQcCFpgcK9ILx6vQOVz1/Rq78oLP+jT+uIMw0q3vEP+lDYx73IM9idBhsM
fT9m/P/3rLn7d7JoNLiRsnX9Yyr+vxsM3O1HgwCvb1M6swRryhgPijFpIPah
9thdiv+lfBlRvSAaKJiYatyn8qsw4drPOk+Du0b6Lw5NEizU3eyScokGc8dd
XmVQ+hxhZcc0h9Lgpf82w4+UfncEo/KXXKOB32xjSASb4JYEl56912lwK4zu
zjVE8HpVWEq7RfmhrXxOpo9gp0qJ3fGxNGhtcT40T9WPM1p9jSuRiqeUqI2b
CFYJeZarnEyD7W1q3KnfCQ6UuPjrVApVv4QlKTo1BHNrq6h8zKDwQlPPtRKC
9RqETkzmUPxNx2L3FBAc4dEXKvuOBiodIbR7uQSL3brfEl5M1eO/mhL35wQv
+SH6jf6RBiY/BUbtEwnmWhVdYfOJBi61KoWi9wlmP7iUs/0bDYLRElZ6OMHl
jz2jv3XQ4GiNiH66K8EFPb1X8nuoeor+Z3LpJMFZMvZnngzQYHG94WWxYwQn
pJm7BYzS4KfldNX/+y8wa7+2BJc3bAtP3D65kmDv8be7eXi94Tm3AE+GIKWH
+s4dw/ze0BLe8FaGi+Cj+TKShcu8YeehiW1GAxwsX7Js0n69N6hZ7BJj5HLw
z2+dqSma3vC7ri7dQoeD60VtE29oe0Oc1/fLIyocXHWs4W6QnjdEbctaCps5
+E1z1eVDJtT6OunKTbzUedSZfWL0hDdUrFFL6ixiY+2xEJHd57yB7LvlZ6HI
xrtVuBZvDPaGeYGaBwNr2FgxIGheIMQbNF3ojRr8bLz2n/dwa6Q3bDV5qbbp
1wge57L8eOGhN7B4z5osjhzBz5bLn6547w2zhUIco5Zh6ryzmuIt8ob+nX+1
BYqH8dv34SztMm945TrDd/H5MK50GQworPaG9ZV5HQ8Y1P1RkELP/ukNXv++
b4haPIy3u8t6JSx4w5iatU7iliGcU7zZjqXjA+F3GovCFAfwvljz9hx9H3Af
8hueExrAH72unPht5AOirfeI+nA/bljVY0Mz94Elmeltv5/147+0J5aOzj4Q
VOlTH7e2H2uskTY9HOYDh182n+Oa7sXF9PUHZD9TOK3ycXJUN56eIDGSX32g
4E1idItrN1Y9XdQm8t0HklktZ3q1unHKBQf/2RYfaJ5SfXFmogvHRD558m3I
B/I/WjzPsu7CSt9FuTUX+ULvkt7rd6U68cJIrN3AZl/49uVNsP6ynzh+Q6Lk
fidf0BltfRjEU4cLz05zuXX4QifnxHNRixw0+bpv9FKXL7CaAp35h3ORUndd
x6MeX1AaHlIqO/8WJR98UfR9wBeitSvXhz/NRxErbS+iMV8gpWX9A6widDyj
cGEljx80SYRpTL4rR6T74vzHTX7QNn40ND/sG9poxD+7ydUPkCH7RKDhT6T6
Q6dujbsffJ7ooLnF/0R6dhdTRDz9oP6Pfsuq3z+RB+Of+YK3H8xPsTiZ99pR
TtzwyxamH9zRllbEXb+Q3shXuxuhfvBediKxVrUTeUTdK51/SsV3eTHdHt+N
zq76cX/iuR/ke4y/3FjWjaKTRHxHUv1AREJNc89gN8rOjZBseUk9b6Kc1buz
B83+PBuQm+sHfzm8W7aV9aDrig6yXh/9oHR+/clN7b0o56vcteYeP7hgQ/a/
ZfejmE3FT6f7/MBJaYVEwrIB5MmyLFo76AfXrBs1DyoPIOn1YRMn2H6A5aJE
uhkD6Lp3j13XhB88Fw4J3zQ5gDyEE1SH+egQ+s7+6nXOINJzUD8sJECHE/fW
//UXGkIbc7+4bxekQ0bhpdhV8kOoyXY23mcZHcSP/dx/y2kIHUi3EhhfRYfS
y/ozNg1DaIORWPvsVjr8dPxtOJ4+jGbjX0xJbaNDb/uGzIjyYdT4W1sUbaeD
CFumtfnXMIp+4GcQrEyH9TFfWEkiI2hmsCZrkQYdPiaZ9Nf4jaCGq+FhS43o
sDk6PYFGzStZbRse7zCmQ0rQS0/GHjaKUsorOHKYDsmLdXUVTdhIt6lv7KYZ
HVxSD+qXMKl5R1bXdpUtHeLZT/6cKGOjyPJ5pQ00OtX/QbZ7jnIQ+PUpS/nQ
wfOl72NXew4aX1uzc40fHTqXvZw+6sNBtn6PVMUC6PBSb8sJ60gO2i65b/fi
c3TwuPLSXb2Ug7rKN+1ZdIEOcsIGhVq1HHTXT1CDJ5gOSqzFcot/ctB8ecve
2St0yKo63PhxgoNq/E6j0Ug6XP+15g73ZoIuSToAO5oONz9/e9GlSJB6hYHW
UAwd1ris4D+/h6B4ydU6Pbcp/QxHFLqNCTKtWNDpvEuHtsnBT+kW1HxK79dt
v0eH4iCNI0oOBPlUvNFrekjxv2xR5sSg5nd6vP6PeDqYgXe4+FmCmiRDDeoS
6bAu3qvvwhWCgH7MsDqZTvmJJRV8m6DlUuPGRel0qApNjVXJJKisotWk8BUd
cipu73j9lqBAeunh/Aw6DMOGlu5Cgjoqbh7NyaHyU1RVCvxE0G16kGnmGzoc
KGwsbqwhyEDqlNmrPDqI/T66c/Q7QZl05WMpBVS9vX9cMvpJkIuUxPGnH6h8
dX8bR3cStKaSy+JxER1ihIRrwnsJqqEPWCSU0OHB+P7p/YOUXlK1lg/L6OCV
tq8qbYTSq/Kt1f1yKl8fe/VaQtAQPcH6biUd7m9L3PXqN6WfVJjNrSo6vAm8
WaE7QelX6W0bU00H1Vxax62/lH6M4yeiaujwY+nic3H/CMqX0jwZUUuH7OjG
ezYzBHlXbrELq6OD46bfO+pnCZJmCNtfqafD21RhtGieoAapCfvgBjqsHr9Q
yqFwRGWbw/kmOpyr1Xwfs0CQJqPs1JkWOvwT6tg8TOHfUumOgW10GAi6vzBH
4WeVt5wC2unwehSMPlHYmnHGmd5B1cfw0GJjCi9d5+ji00X52fXbrnBq/5JK
Q1evHsqP8qGt5+YIYjJ2urn30WG3f9GEPMVPft0ad5cBOuyRYobHTBPUXsnt
4ThEB9mxfQ9eTRF0izHoYT9CB/zUUCFkktJbL8jPjEP51XKP6sZxgh6vFgzU
G6XDCr+iqMAxar/huPN7ftPhPOeu5jUOQVmFCiEK43QYd+A3thomSCOm8Nr6
STo0dBHc1U9Q8SmTmyumKH4LxfGyPQTV8vsmTM1Q9dtTVdTdSpBlC9ez4Tk6
bFcuE7dppPyTfiO9fYEOgWY7pqPqCCJHs9+V/ccAr0sqcTKVVH6bdYveLmLA
vt1y3pElBM1P1pen8TNgWuPg3MsCSp+Hk99jBBnwn9Lyy5szCLrrHdZyWZgB
a+6n3j6dSpCU1upO5jIGtPKY3ot4TJBC3x6OrSgDwpLnMztuEZSTVzV+WJwB
cCmsf0skQfuu2cxor2KAt9tWE1mqP4yUzi2WW8sAt8qFPyepfqrjWbpMUooB
K1sNLO54UPX6ES++bD0DaC01Klep/vMIKpKekGbAqsDxZ09MCLpa9t/+YnkG
HLTiz8/eQvVX7G2dHAUGcD1LkK1dQ1Cs+xbD54oM0NEaepe6jPLDUn2LqJ0M
+LLtv5e3pzjoo2WEn5UGA3rS71w/VMFBh7atDTy0jwFFZdKd5vkcVD/34jxl
MkjvKZFZ+5KDeh5/ubZFmwGxMhe4um5wEA97+bOxgwyoKH+lYGvJQRE4Kb3H
iAFf495aWRzkIJGbO7MbjRlQuz6DJqLBQRt2mRcVHmXA8zajmpI1HISCY1vC
rRgwIZW+bV0zG50VX7dM2p0BukR9sOEgG33JFLBGngz46T1aoKzGRutMJpJt
aQzYcMQhW3sDG+HQao1YPwbgyd62sIkRxDMV5CIUxAD7yJA1Tx+OoLCWxsLJ
CEqvb1tsT/wcRk3M0sViUQwodsjFqmXDaKvoazPl6wz4c3zj8Me0YVRlFDro
eYsB8cIhcStZw0ioUFW8M44Bpwur7gYKDaObCTe8Pqcz4N57sx9B1H3Vvffc
24FXlD4G6jZLhYeQapMbD18mA2TNwxfsyCD6sRzuQS4DDl93rtXMHkSrL3FK
cwsZcCfr2NjvXYMo3slobWINAyLh6+4gtQGUKreoyn+UAUlObmeN/+tDdZJa
M7TfDLDNaYgs6OhFs8vOKbiOM6DgWqrnTGEvMpkcj7aaYoDZM+mKQVYvGi/p
MdPk8odPjBbvG4M9CGzLfvIv94egH2LxR6n3g6boy2MPdviDgKd8TJ1VJ+Ib
55Yo9vaHhBq1uk87mtBzpczz8X/9wcvj+4pF1VFY7lSaydy5AJiPvrorIrAZ
Vz7SyPh9IQDG1W7EDtU0Y5fmKpGB4ADY/8BwasWWFpx8ZLi+LiQABHiv1ubV
tuANSMEmJSoATh8/d1V3SxteKfnK1exRAMzxWkq/L2nHPA2ZF1MLAiBa+O2k
ZG8nThLR7or/EACjXQcVpYS6MBjX6dwuCgA5adf9kzu78Lmy33wXygLAJJV2
Q/liF57KUokyrw4Afskqdunqbsy5nnt/oTUAiqZuXV6m3YNbD77LOjYTAKKf
g6+LM/qw9uFky4C5ALhSltPrFNuH08yvz99eCIDj76IeBL3vw0F2zob1/zHh
/aWYjL88/XhNgEiXqRATdq/jTlK83o8tE91Fjkgxoe/i7XXaDwdw0VPztz7r
mcDFPXLpS8EA3voCnbi+kQmnZuyrJX4O4Klc8dSaLUwIFcn5+EdyEMd+LgZj
RSYMjC1iJd8fxA2TEr6GiAkB76+syQkdwpqzvCs9tJjAp2J6f+uTIfyMe/R9
uA4TXnhHbbbCQ5gpVM7/SZ8Je0SPa7Enh7C4ND1B/wgTtDakdjafGsbmxlU1
ug5MiJD/QQvfPoILTHP9nRyp+N/rLsQfGMGbLRPXXHFmws6MYrrnCWreOMV0
KXVngvuVwwIK1LxxK1B6XovOhKuyuZe0+kZw3ZOg7egyEygmlpGRbLyC6807
jRAmqN+K+fc+no3NbMcOqIcxofBp5ofUDDauF3M7uf0aEzTYb1fi72zcGHLs
+tpbTJixb/pYvZKDV3fFrF11hwmpby8eGpThYEvN6ucrYpnQsuZeZYk6B7dM
ahcJxDHhikC2WPoxDm5zVRr7+5gJGeOv9cxjOFiyzPPcn2QmRD/48cE8noNP
bHguQJ4x4bprj7RIOge3N0lJ96UxIX7tNrXCcg7uOChoVp/FhFaLu0d+TXHw
hmd6v77mMGFvluTv97wEO/Bc8vz8hlpXaIszW07dMflTl0vymSBpHZqULUNw
77a+nIwSJnSfTfukcoRgmasbtdLLmHDw1chsrxXBLj22X56XM+GHg9AZU0eC
Bx5+742vYsK1I695rQMI3vpvKf1BNRPWbpUcGD9HsPsxw/k7NUz4JqpRfjCU
4CHh4pVRdUx4VSwot/EuwfIes4+v1jMhODY04skjgj3Ld+240sCElX8h8Vcy
wSPnX+mfaWFCVUFeypUsghVaB78z25jw6eb6c+w8gmm7ttjT25nwRlzi0zJM
MIfEBbp3MUFM/fuNi1UEKx5q5HXuYUJjw6aJmq8E+6SsuGHfx4QsR9lHDfUE
Z/CaSNkOMCGm/tX52GaCR+3DUy2GmPDx/NbrIu0EKxeWqZmNMCFNIbFMl7qT
6RJcJSYcJtxRweLKfQT/+cZsOfCbCX716QOqbIJVFbNctMaZcOZKl/WhUYL9
I9i/900y4URb1CfJPwTn9m29sHuKCT95aYrPJgie1HYSVJ2m9JRouzzwl2D1
hITYHbNMKFH/Udb9j2DWTMumbfNMmAgeHYmdITjPYmWGDBcLLNSdpnjnCJ7K
PrpPmocFTS94e+TnCRbarV4jyssCELo2s2iB4A0Fa+wX8VHrB79lP6SwKiyM
TfKz4I7pHUFCYYOy7ssDAiw4pyzLQ70/YVuDSvEWQRZsWu4eW/7//yNVpz//
LMyCTvWvn40ofOXIjT2FyygsaJ8YScW7Xx/w+ZUIC0aX56wMp/i8srQ+kSjK
ApGOCSWtWYJL2jTJDXEW/JLpGsuZJrjBflPw5VUsyEyssO2ZovzQwy8aIMGC
q8vCAr5OEjzvNpLsspYFVSq3gDlO8Ap2rbqlFAs+lIyWNI1RfvTLrTy4ngU1
Nuo8fzkEa0zct967kQVPzkbyfhsm2OT0+RGFTSwYZLysdRkg+NTcqfPrtrCA
z6yXltdDMDNYf/lyWRa4t4v0fOwgOGKRwmNuORbUnX2893obwfHhy1X/yLNg
95Z758SaCM4SnvjYo8CCeKOQ7GPfCW4V/zBYocQCv0aXzUKfKL/cf3zm3U4W
FDQeDwguJZh3XZjwC1UW/LBV68sqpPwqc0Q5ejcLdIzHrAwzCT6r3hVoDizw
CA5abHyH4Jj88iV62iwI3zb7PTmK4GTNFw936bIglD9k57sQgqv1/IvWGLAg
4iIZWUX1l5QF3+LOwyzIH/czf031587Woft1R1ngOBySydYjWM/u67YyMxbs
sSjcPbiPYG/Xe4efW7DAdNXHtau3EvyBJR9Ls2PBYv/nryxmOLhuZqmcnQML
eDac+B5MOLjvwp/8I44s2Om06Kd7NwcvvVrQruLKgsRbEvz+VRx88p6JzLQ3
C2ye30hn3OHghTx6buh5Fqg/9Mjfs546v/iyrj2+yILyexK+v4U5ON98zOHD
JRboHfsZaTfLxv6jPksnQ1mQVKr80qKJjQdkaa7O11kw9ME2qow6b+vuukro
JrJgs7/T8ff9I/h1zzNi95gF4m4Pv9V+G8GRO/s+nklmQXXPyq+P3o9g/Ron
enYKC55v6VGyi6bO/0WnPktnsmAg9F9jiNIIfupve467hAW3/gRrxboO40sl
cWZSZSyY/CEdC8bD2H55q9yechYEiDjD053DeE26VYNvFQvkxbc/SJodwtHd
x3d01LHg2UBfHy1qCAeaHu380M2CNPutYzcfD2IjJb0DZxcFwqujWRMbHvVj
rh8/uP35AyF/8ZP9Iuf68ZvTzh88BQLh+8se0RrbfixdemWXjXAgqIx7h75a
24+nj5XKaYgHAtM52mrF/+/nM7B0anMgDDal1Ty90osFKjQaGbqBIPFJymTF
/m5ccWKHu+flQDhbevZxn3sbXuHo9v5RSCAYbjTO5xFswyfdkoRrwwJBJGXA
oO5FK56ki2apRgbC2/VnW66PtODNV/9Oz90OhPUdnp5JHs34YhaOjHkWCKlf
SPIi6waswX8kI/dTIPTyrshXFq7FoULhPAOfAyG8bHjTFeOv+JtIifmamkD4
08NxOnyxBrtJqv47XxcIY8dLbTg91ThWebW2QSulR2v17Wtpn/C4Tcf3lhEq
v3ifSGW5UgwOEjLCJBDuLR98+J9lCb7mYhqIxgLBZaL14ZPQYiztVyaZPBEI
61Sbs9LLMT4amuJMmw+EramHKyPU3uGH1zrfJnCdBgHpgZXXYt7igZg1S+p4
TkOSkZ640XAuvhgX+Uqd/zTEfX+3WjIxC1cnfuRyFzgN+2WXrlWfzsCrns2b
xgmehp/Sa6/rpLzCp17sevpF+DQoXLLcV2HzAr/K8P27sOw0lK1P0uRaloL/
B1z7rwE=
"]], LineBox[CompressedData["
1:eJwUmnk4VN8fx5GkkkRooWQpJCFbls4HKSWyFdll3w3DkDUtJEnyjZSUlCVF
QgodEUVCIkVkX2fmkq2sv/v7a573c8797Ofe+7rP7Dnva+LMxsLCIs3OwvL/
31Xj0zc5WSZRof2hLSPSj47EJ/75enVuCglZL6b2RUSibc3/bV3LmEaLG+rH
7CJuIoVTv+6yds6j/1jD4k6EZyCnY+5ZC69Wkds8r4dbSAFyTn9vPfdqHczd
K/8s6oHR0CeG6swrPviuJPHs7IFmFJt6p/62/FZ4GTirXc7TgmTckOWhgq1w
zfjLVHxcC/JfdyvUP48fOmpHFH3Cv6IVXcV3kw8F4XriP2LG7hvaVnNBh3Fj
J9gUP60JFehAT3rW7Jt+tQea0yx3zWr0oNTIlxc2/t0Dgtuu/N5U0oPiReya
xDRE4XiYWmOazG9EPf820OyDKGiqPDBj39SLjg77fShpE4PyLcyapble1M/o
dgielYCCH2ueyVX0o+8J10sSD++FV3sdSxym+1HDwcPrc8P3wl/WE1QN6QFU
REku/Ll2HwixbZaeuDOALs6eXFUTkIQd3ipXeb0Gkcjy6/vLytJgLZLQWco+
jLY+cJ7kD5WGwyVs97YoDyNOxHdUFktDMtqtss51GBFRPhO2x/eDLVjG4o/D
6B27hFqVuQw8ME7JOHV5BNlwJXVEB8tC585HRrvHRpHRc7T/XoUsMEf6bGr4
xtBRQ0bEK5aDoPa06fCs5hiSSdTbOxh7ED6zS9qtJo6hlWuRbzNPyUERM6Q7
VX4cfdmkvJ7dRh5yaq4F61hPoFZ93tSmMHkwdNkmtSt8Av24xtx79748NH33
e309fQINrs0+KvtLHlRzD3sJd0+gpWXBKAsrBZi4Mha/yZyO2DRmuMVCFeDj
YlkQhUpHnBda0hlpCnC52c3N6RYd8c3Flkd3KsDdQP+7s/V0JM38N5d/7hA4
ehhsfqPEQHIy36/QQg7BNsN166+dZiBlj6Kt2ncPwc1tzVmDbgykPeyh0PHj
EChseCqvmcZA53q6vFktFCFvYWmz+zwD2QqVLX2mKcKz8O3h1zcxkZNl8vU7
KYqwIWjkrrIYE/l9P5W7v0MRROfM4yUMmCi2qXLwzFklSBFZsbe5x0QJXGkB
IkFKcDvmgH7FcyZKPhnENvGfEmgEbnV/hJkoo05WJKpdCSzksMRyHxNlsW8s
ODmrBKI/d2gE/GGiPO0RTX5+ZWj/ZRfow0ag0ncZVnlmyrB95wezaRECVSyF
jlOpyoD03lwMO0igajWLEJSsDOF3dH9f0yRQUylPSts3ZXjCP2ooZ0Ggthm6
RMa0Mtjby81/ciJQp0J9sTufCow8Dlwa9CPQ0IuLrSsmKrDyNdXuaQyBxuk2
DvX+KsB6ZLejfhKBJqXVJm8nqcB5rlnugPsEWnr6Z5NUqwo0rNWsOlFAILah
pvvTUyqw7/Lghb+vCcQp9mz/uy2qEKJ4XE+qikBbMxxPmBqrwj97kXs8zQTa
0Y1+CFNUYSLRc6iunUAiO4VcRxNVQUtXqHGli0B7z/2dLSpUhVsB0cplfQTa
n9J2ObxFFXarD26aHiaQXHshn96kKmxHEZoFEwRS5ruRyctzGDj+XSqiEwTS
MHaX7z54GFzWiFg/myaQ9k3dquzThyHWmrp/Yo5AUSeLc1t9DgPbSbXgjH8E
erdW7PbyjcMQ9Tj2/c9FMr+qW2GSzw8Dr/bvlbvLBFILY3ExbTwMvqU3pXpX
CBSs4ns6YuIwhJyv1MhfJfvzp1s1d4Ma1F63UVoh9czzU6JtUmpw2FWF9zup
D7mXb1zVU4MS4cFvh0jtLy49K+WmBo31TWGCpL3C36k9ZjFqcNVHccvFJQIx
09Z9inyqBmojYil+CwSSORv0Mq9WDdxawgWG5wnksWUorX1QDQrdZ1L7ZgiU
02h6mYVdHb76bZR2nCLQcEy1934xdXg9K9jhwSCQuI68+VltdUjbBwV/Rwl0
fiUDLjqow6GdoTVcgwR6+IZbOj9KHVauJe7N7iFQDzWcryNDHRLitjE+/iCQ
kBx9iRWrwz+t0AO+rQSynLAclulRB8uEydX7nwmU+rS+2XxZHezzIiOMPxCI
Xzg787m6Bpws5J0yLCaQ2Q/++B+WGrDviKxo6jMCJd2+HLjmggZELNwKccsk
EPeG83rnyjTgP3MlqYwEAp2qbZG/3KEBXs9mG9deJlBcFNpZMKcBnwJWDswE
E4hjXojJrqQJeh1PW90cCHS06HrHQTNNOHBolx9hRqBo74UqywBNOCEbH7Fy
nEArAx23C19qQn9XWkmpDIHmW5IOW8segY19oo7/TTKRcjyrWIzBEdhwkHyw
9TIR9bgfV5HXEeBiOPviZiaarDT4ve7ZEWBjOajAR57n0TzOK6/2IXC5KKoB
55lorwvNp+cYAl2v8ww3Q/J+sWfYfL0LArVum3/CakzUm1IjbZeFYPOaZQtZ
Hiby0kZuV3gAPIW275wqZSDngwub5G8AfO7sttMn6OhUV8yTbQ8Aiouqqra2
0pFiDL8mSwGAli29zLqYjth/y3k1twBkNUvEeNDoKDPBtcF7qxZ8KnN7Hz8/
gX4z2q7m3dOCpyYukl6946ju7vldSfla8BDreZ4vH0cvdCdLQiq1APJNnvb+
N44i0jcO6f3WAoHCtBzaiXEkZKCtMyKqDX6vqhtFn42hc/kFq2J52sDiJPFu
47lRBBaaKRvLtcHYIG66TWYUSbJ/lp3+rA1nrffcl2cZRX+thm2qGdrw4Pcl
j5wnI+jORuEKe3kdeOAYYZs5MYy+ecQFp5fpwH9HDcuinIaQgZTzlMDHo1BY
v0F8I08/WrgeWN79/ShEJfvsetbVh3KYV65kDR+FQ/tKtNZm9yH24qfbFTh0
4cqxRPUJjT709sioloGuLlz/5FiT7NyL9pp5Jl2q0QW1QN4TB892I5ZIyqFJ
fAxY2PwMirZ/R0Vt4YH1ZXrwbtMpEQvGW5Rzxel8f70e6P1mHYr6XIYeKOuf
XuzUg+b/JutUcktRXOo2qQPL5DqT2EZzLEKO1q9+JWqdgAaP/sz0nMdo6+Co
jkXDCWgZv3J+I6TjoGlT3pGuk5CRN7JnvOQD9spSW12lnwSdJNELvh9q8fkz
e+jbVk7C7NGbHYmtddjwNbP2pIg+PHw6AcmMT3hf6LWQF076wC9hmyyw6wv+
wYZ7Axn6MJRr6uZZ1IrVeaUL2FdPQV+EDn1PcSduYrWs/7LZANpmGkOOy3Zh
+6lrA3dEDKBEX79oJrsLX24ZE5TSNoDD/xLLu+/+wk0JuVEGVwwgJ+P95wJa
D7bfKGVyZ6MhuH7mFPrA1Yf/LFh42QkZwiNjP89U3T58eTz2quQBQ+jf9VdH
JKIP59aPvn1raAiU+uc5x5jk/pgcsd+3DME764ryt4Z+fJldcnbfttPwMVmo
SJA6iAVmzDdPSZ4G6+eZp4uyB3HOQIzU28Onoe/+XOhU5yD+Uj1ic8rqNBzq
EJk/B0NY4GJ2nd+D0+DR4ctVzjGM2yL4Gq15jcBo/c3G1agRnB60/9z7HUZg
EWeYEvZiBLv46AxLiBlB2YePcYldI/ifTQALccgIFB4EN19QHMW7NL8pXjxj
BLegzVenbxS7LialP0k1As8bdFWWveM42ZBeE/LQCFTXWneznhzHVY90xw1y
jMCP9ZHmA+9xvE3vr/LcayOQvHOR+8mrcfwp2ablWIcRjJu9NP6lNoFnRkrn
dvw2Ar4VHeknVhNYRJ1HmBg2gsKS+w/ZwyZwcF+1e8qcEUis9wi8Uj6BpWQl
14zyG8Nvkf+iLirR8dmLF6UqhI3hQLbn8pQJHUe3dZ5OlDCG5/NedrO+dNx5
4cZ9VSVjeL82nv9VDh3HffyjdM3MGHh7pEJWtjLwhH2lm/RtYzhoO88X9oOB
txUL3FxJM4a8laK940wGPrrOr6Q10xjK819MDLIz8f3nomyhRcbAXxOiHnmQ
iU8txNz7/NUYcnruCx+JZOJgg773GT+NwbEwpI8ziYmzHqqNBvQZQ2PbkQGb
LCZeOsZQFJoyBje31pgnH5n4+W2TJi8eE1D+uLoxi5PAncPPZmCbCfw4keH+
RpDAHGprd/KLmMA6kwNs5nsJbNv72rXyoAk4oEJ2aW0Cxx3aknBLxQRGdtHW
2J0mcOlVj2JnZALX+VtddloTmPuAMCv3aROIUviZKkUlsFpU0L7+sybwrqVr
Q2gkgV2+NRuU2prAcKeIpGkcgd+FRKfZ+pjA79iD+M4DAo83dlUpBJlAtd/4
OGsOgQVElEY4IkzAJeSzxHQhgX3rRg4V3DCB3bRNWq7vCVwF+Z4yd0zg+Ynq
kKv1BOYp93uc+8AEumfay/i/EtheSalrb7YJhGzd+GvrDwIXFvzjzSowAeml
wppLPQRmkX53ck+ZCbAczzI5P0hg46zo6AdVJuBlddqncIzAmbuOv91ZbwK5
A3kr3kwC/0nd+Cf1qwkkqR1hpv0hsDZfi5RApwkMNO6WVpkj8O0byQ63+02g
12f2kfY/Ag+uO3eXZ4KM/+nM8cpFAitGC3+9MW0CTmP9PNnLBL681Me5cckE
ilv4Z1ZXCNwe9BRi2U3BGgVMfFwl8N4pj+C1m0xBMYIyTb6v4CDPg4XR/KYw
rC+48Qmp64amR1aFTcGmb/HQW/J6Qfuy3eF7TSF+/Jj/EdK+W2eY+YKsKTwO
KGyUJ/2XmWndpKmYQkpD1KnkvwTmbF77cQaZwq4zicvOswS2ONGwQtEzBQ6r
48ynUwTOqUlQJoxM4c+H9IPmDAL/0zT18TpnCtHNO9qDRgl8skzw6ZiDKfwu
aptZO0DgNIVf3S4epvDiiF82ezfZz/yH/IP+pkD1EOEM+E7Owz5nA4dQU3Dp
fKJo3EzO0yOpKz2XTCHTwtAg4yOBu3YyK6ziTaFPe4ZqgwkcxkOTOZtuClmz
1teknxO4MU7d6dsTUzj8341Phx8TWHgty32jF2Q+P/8rf5NKztO/2I362BQe
jE2Fc0WT80g10Pn00RRYHy6++h1IYDvmllDdFlPwWj3mKe5O9n8gbRz1mYJr
VcuxNYYENrKxE60cI6/fNDmUjgj8qEPMUu0PqV/wLOXJkf1uzK9XXGMG++2f
PRDeQuBLJe9ypCTM4IayYbXXZyZuO3ip9+kBM2iTYXI9LmNi8bzj28SVzWBQ
iilv+ISJPzxoidl13AzExLAnezgTc8T2u/C5m0EmW07jggQTn2XLfpBIMQPz
KrZ1/dxMnB3m+X3TBTO4qJQupDXPwHqUGV3O62Zg78sd61bHwHGWHBLL+WZg
FGH5zM2WgY/Icc2NFZsBf0JGDHGUgafW8n78XmEGFi3cnWz7GdjipbB7YaMZ
1BRdC2uZpWMJTqXnjnQzeNjYasF3lY6rShyVGvafAXEVKYW0WxOYet2d4/Wh
M/DwRhYSokzgfQ6+HY/Vz4CAwuo/eaMJnMAVGhKufwakqcUROzZNYCvHpEo5
zzPw+TbVhXlxHM/xvNdNyTsDeS+q/+20GMN5w3UCl4vOQFXWrNF2+TFsU9E4
4vf2DKQ/+az8av0Y/uD649rJhjOgkrkqjN+M4lvviC/LY2dAyrGgQo9/FMt4
7TrrJHUWktbESr96O4wdP4a6yOechU8TVu0vagawk8Zew7mCs5ARO1h/OWkA
u7xsUSp/fRbc3+hF8DgMYLd7Emt1P54FuHZA4NRyP/bxbX5sMXwWePYkfXZT
6McXBMX6IsXNIdpJka3/Zi9Ocm2wanpoDk4V8s9z1Drx+3XbjT3vWoDvTbPH
DTV1ePix7MmfjyygUtd+yPVNLeaCozrH8yzg6y8+0awXH7BFsK+SWLkF1Psm
SnOlVmNitHZ71y8LUP5bbqjWVIGFG/z7T4qcg4eOvD8pY9k4JL4xQDr7HJz5
9nCA+q0EyW+JujNWbAlLAuolpePt6C1nh+THCktQ9JhoEHb4jrRZZMuzPljC
09zxrgMd35EZ0fXbrs0STKrGP2hVd6CgLypS36ctwVch6RtH8k9UcY0or1aw
gq/eX4pDxbuRHptd371CK7hn1KYaN9eHvv4rCQgps4IW6tvCDOl+ZDnFxWFe
ZQXlZ4Ov+Nj2I8/et9K8LVYgxvFJRKm2HyW8E6DGElaQqadmZXRzALVdaOII
lLWGmg+Hw7byDyH7aU0Zw3xreLjv/i3cN4I28bK0tBVbw6NXP+5u3jyK3spV
B1hVWkOM5MHXU+qjaKvPsXK3JmuoFh5dcUseRZ9GDU9emrSGDM+DrZtgDMn1
2LmVKdrAsw1jL2MujqPupT1cSNMGJIZoFunZ4yhu52BBra4NLKBFlcNfxtGg
hdt861kbOBhYM8MiOIFSv/ldZQTbQILnA/F3WROIpf5ilmilDWTptj5zyqGj
5yM6erm1NiD62OtQUh0dWXJw0A822cC2x/Y6GoN0VKwTd0jztw2kPE7uXbOL
gdzeJVWbs9qCB5xpNbnOQPzdZi49622hljXW8OwTBqpeFNjgzGsL/cJm51rf
MZDQ4XvG/mK2wCjz1FeYZKCWV49743VtYeuV9xFXTjFReKvzZT5DW4AT6zW0
SF6RntonmXbWFprKmiT9aUx0WTbfN9vVFlp3b+RReMhE8gY+fLJ+tsD564xR
1Ssm6vGUe10cbAvPd9frV9cxkWpu8cr7a7Yw32C4U2SCiYY+BmXqJdmCW7D6
idAlJkoaVj3WnGYL9IOcw3qbCEQXq7zx65kt7KsvVVc7QKBHD2qF5r+Qeufz
W94uBLpvLdNx5rst/CiUOLo9gOTJHbdvFffYwqfvoWFqkQRKuGPP4U/YQn1S
1LNf/xHomtnHqpZ5WxC9fvWIzUMCXeaVDT3IYge8N3ckmuQR6ELCIkHnsYP2
O8z3aRUECjx1Pk9/ux2c2VBgzCD51G9DvVPeHjvQ/Ly68qqRQJ6fDu5eL20H
V9MfZzO/Ecjl6p2frgp2YNdQuz+9k0AOR5dv16nZgXn+gjfuJZA1m5OhhI4d
DMqB6ZlhAplXNXBe1rcDk9Mr1bYTBDKJkK/pN7WDTYHrsrsIAhlopIZrWduB
3kjqxOdpAuktrKg8dLKDxe1WkQdJntcpc/6z4kWuLzmYcpC8fySoMd8m0A72
qh2wMloi0GHFQ64V4XbgH5ATv2mFQIp/7u7ZedUOjNz292quEkiukOVXSIId
9O24YNRH6v0+rnd+3LEDw+EPnfOk3ivTZKSSYQcy13MiLpJadFxx451sO5CT
lz0SQdoTzrlXO1NgB6q2n4WZpL9tLmxRpmV28KTfQfwrGQ+fuLtaUZUd8Jcj
q31/SV7vb57hqbcDp5FdTZMzBFr/ULnA96sdbFaRuH5gikDstunuTT/toH/D
YGY3nUCrO9nFD/ST9eCykGQdJdDCT4+e6+N2cOnHqFxqP4FmU76mjv+xg8os
t7bMXwSaPKNqemLRDn628h3Y851Ac9eaOdpY7YE7MtGcr5lA06NsTms47OEW
K9M/5COBmE/dd53ntofp77fZM0vJeVubHnqL1x5k2dhrnZ4TaMyp5UeVgD0w
vR9vuP+YQIOiKrd377aH9aKSbW4JBOq/6DFpKGYPdEWXkpVoAv3uTTeI2GcP
7tGXvq+nEajzATtn90F7aHlk+jzKhkA/llWcuRTt4VVU0Df6aQK1W3tWq6va
w6baszuatQjUsqM1LA3sYZFyau28GIHq7mRMmRvbw4W24y+7+pjow2yrYcwZ
e8jOZh5gaWGi92Yc+aXn7EGkPWXlfiUTVfB6u/Cft4eOrl39kMJErxLUulr9
7SFi4dRu9aNMdP4e99q3Qfbwqxvs8g8yEW9Ov+yjC2R97N+y5+1gIr/3cdG+
0fZgJfWlRp9gIJmZTimuJHvoLMnVV7jNQF0sBabT/9nD5cHuwc2hDBS36VJ4
51170Dh/LCXsPAON7t3/NecRGf+Pn+/Z5Rgo61xosO5Le9jTxTHQWUtHpi6n
M2VK7KFg1xJTPY+O2ALEGvne2MObvwOHDibQkX385939VfYgUNIt2GRGR0J4
58eIFnswhgWff78mULJ4BX8ZYQ+cLL1tXj/HkY58IsqYtoe6zBcm+16Poz+a
Tu5X5+3hSFNVVGjyODIy56o0W7WHd/dM2aYNxhFXnLXTFLcDfEq/FHWgYgxd
JpaKpGUdoHjQMujU1VFEfatplO7lAC0BdoK27UOoxPIj208/B0h2DdG78ngI
zS0YlWwNdAC/t8HLJylDKETdaUd8uANwWC+El2wcQhEVcYMXEhzAfd/uNSIa
gyjmXUewRaEDzNT5NWyP70dp1ZRHfDMOwOX7jL+xpxvhhid/roWehxaRU2FB
85+R+/HDle7BjnDSGCmrOXzFTMnttS/DHIH/JYu9/tBX7L/hX+O/KEew7tzJ
u8G9FYd9Kft17ZojvDkemHzV9xtONFVdyk1zhFVWxU1qwe241E5FfbzCEThN
uXSign5itmClNx6sTvBro4SK4fVeHHOO/33RWicQMq8fn6ntxVzqs58W1jvB
bOKQiSFLH+ZfKf4Rx+sEjVPnufmpfVjysuLfPDEnyNx+WazdvB+fTjykMqHr
BJ/ggLzG5kF8P0e+xDPOCXbRLGS6lUfwp5+OnzISnKBTNWx0q/MIntlwp+tb
khPMjXq9GUwawfreC6wa95ygvzze+wRjBC/I1xhy5TvBvaOyRlvSR/G5crPR
/C9OIK7+uuDPyBi+TL+62PvVCbTFNFyNNo/jQuE33PzfnUC0VchGTXkcc0YJ
K4X3OIFISrxJYfQ4Ljs6fNGAcAJmnPTSFoEJLNBE28nkcYazEWbfdu+lY+3V
XFlRfmfgiJsZm9GlYx+5X1pntzvDQM+k+ylnOq5LArd3e5zhTLlhaFQmHQea
ry9JUHAGcbahQ0wBBn4Yq/6pWtkZ/rqGfv+owMCNb7y75tScYcE8uG63IQOL
C7Wy2uk4Q9ht3md6lxi4rTfN8KAZae9mYSNlhIFZeL84OFo4g8HLAh75VQaW
0Vmlplg7w49b2wU8BZj40hPHe6tOzmB3sbnBQIeJFTxkRpsDncHV0Fei5g4T
296zXVxzwRmS7PVfGOQxcVxjIrdqhDNI6EexGFUycb/srOLDq84waHP75ds+
Jr41XXnRL8UZ3DhfZuwWJ7BPa6KD9T0yfurhXbYKBD710lFLL8MZmO9C2MSB
5G/f9awi2c7wynpBUteS5EeDX70bnznDqJ4Kx0MXAr+XKaiaf+EMJfV7Iy/6
k3w0bhbVXOoM4eXqCR2xBD5Xv8++/K0z3Ohf16R/m8DKOQso+50zaFu0L+mm
E3jK+eFqRJ0zfOdjv/m5gMBNRwN+ezQ4g/SGz3lnywicL3YMn21yhuEPdntd
q0he75uIkP3uDP1T26oFSV47WvXOdkenMyRbBeS+bifwnoxbRzh6nIHHjDPy
VxeBV8Kddv3pc4byC4L7r/YR+Je1ykr3kDMIJlakFA8T+I36hp76MWdwbiAK
XScIfGdHd2UJwxm2iV11yiAITP1XkP5oyhkE0uUzraZJHv8RHX5j1hleXrpo
dZ/ka9nXZ2xC/jlDbGb/JQeSr7nuSGo6LzuDSFAGzzOSb8eoi0LGrC5w/Ezv