-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathdriver.py
executable file
·70 lines (55 loc) · 2.14 KB
/
driver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/env python
import numpy as np, os, sys
from get_sepsis_score import load_sepsis_model, get_sepsis_score
def load_challenge_data(file):
with open(file, 'r') as f:
header = f.readline().strip()
column_names = header.split('|')
data = np.loadtxt(f, delimiter='|')
# Ignore SepsisLabel column if present.
if column_names[-1] == 'SepsisLabel':
column_names = column_names[:-1]
data = data[:, :-1]
return data
def save_challenge_predictions(file, scores, labels):
with open(file, 'w') as f:
f.write('PredictedProbability|PredictedLabel\n')
for (s, l) in zip(scores, labels):
f.write('%g|%d\n' % (s, l))
if __name__ == '__main__':
# Parse arguments.
if len(sys.argv) != 3:
raise Exception('Include the input and output directories as arguments, e.g., python driver.py input output.')
input_directory = sys.argv[1]
output_directory = sys.argv[2]
# Find files.
files = []
for f in os.listdir(input_directory):
if os.path.isfile(os.path.join(input_directory, f)) and not f.lower().startswith('.') and f.lower().endswith('psv'):
files.append(f)
if not os.path.isdir(output_directory):
os.mkdir(output_directory)
# Load model.
print('Loading sepsis model...')
model = load_sepsis_model()
# Iterate over files.
print('Predicting sepsis labels...')
num_files = len(files)
for i, f in enumerate(files):
print(' {}/{}...'.format(i+1, num_files))
# Load data.
input_file = os.path.join(input_directory, f)
data = load_challenge_data(input_file)
# Make predictions.
num_rows = len(data)
scores = np.zeros(num_rows)
labels = np.zeros(num_rows)
for t in range(num_rows):
current_data = data[:t+1]
current_score, current_label = get_sepsis_score(current_data, model)
scores[t] = current_score
labels[t] = current_label
# Save results.
output_file = os.path.join(output_directory, f)
save_challenge_predictions(output_file, scores, labels)
print('Done.')