-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssd_utils.py
629 lines (517 loc) · 23.4 KB
/
ssd_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
"""Some utils for SSD."""
import numpy as np
import matplotlib.pyplot as plt
import cv2
from tqdm import tqdm
from utils.bboxes import iou
# from utils.model import load_weights, calc_memory_usage, count_parameters, plot_parameter_statistic, calc_receptive_field
from utils.vis import to_rec
from utils.mergeOverlappingBoxes import MergeOverlappingBoxes
def non_maximum_suppression_slow(boxes, confs, iou_threshold, top_k):
"""Does None-Maximum Suppresion on detection results.
Intuitive but slow as hell!!!
# Agruments
boxes: Array of bounding boxes (boxes, xmin + ymin + xmax + ymax).
confs: Array of corresponding confidenc values.
iou_threshold: Intersection over union threshold used for comparing
overlapping boxes.
top_k: Maximum number of returned indices.
# Return
List of remaining indices.
"""
idxs = np.argsort(-confs)
selected = []
for idx in idxs:
if np.any(iou(boxes[idx], boxes[selected]) >= iou_threshold):
continue
selected.append(idx)
if len(selected) >= top_k:
break
return selected
def non_maximum_suppression(boxes, confs, overlap_threshold, top_k):
"""Does None-Maximum Suppresion on detection results.
# Agruments
boxes: Array of bounding boxes (boxes, xmin + ymin + xmax + ymax).
confs: Array of corresponding confidenc values.
overlap_threshold:
top_k: Maximum number of returned indices.
# Return
List of remaining indices.
# References
- Girshick, R. B. and Felzenszwalb, P. F. and McAllester, D.
[Discriminatively Trained Deformable Part Models, Release 5](http://people.cs.uchicago.edu/~rbg/latent-release5/)
"""
eps = 1e-15
boxes = boxes.astype(np.float64)
pick = []
x1, y1, x2, y2 = boxes.T
idxs = np.argsort(confs)
area = (x2 - x1) * (y2 - y1)
while len(idxs) > 0:
i = idxs[-1]
pick.append(i)
if len(pick) >= top_k:
break
idxs = idxs[:-1]
xx1 = np.maximum(x1[i], x1[idxs])
yy1 = np.maximum(y1[i], y1[idxs])
xx2 = np.minimum(x2[i], x2[idxs])
yy2 = np.minimum(y2[i], y2[idxs])
w = np.maximum(0, xx2 - xx1)
h = np.maximum(0, yy2 - yy1)
I = w * h
overlap = I / (area[idxs] + eps)
# as in Girshick et. al.
#U = area[idxs] + area[i] - I
#overlap = I / (U + eps)
idxs = idxs[overlap <= overlap_threshold]
return pick
class PriorMap(object):
"""Handles prior boxes for a given feature map.
# Arguments / Attributes
source_layer_name
image_size: Tuple with spatial size of model input.
map_size
variances
aspect_ratios: List of aspect ratios for the prior boxes at each
location.
shift: List of tuples for the displacement of the prior boxes
relative to ther location. Each tuple contains an value between
-1.0 and 1.0 for x and y direction.
clip: Boolean, whether the boxes should be cropped to do not exceed
the borders of the input image.
step
minmax_size: List of tuples with s_min and s_max values (see paper).
special_ssd_box: Boolean, wether or not the extra box for aspect
ratio 1 is used.
# Notes
The compute_priors methode has to be called to get usable prior boxes.
"""
def __init__(self, source_layer_name, image_size, map_size,
minmax_size=None, variances=[0.1, 0.1, 0.2, 0.2],
aspect_ratios=[1], shift=None,
clip=False, step=None, special_ssd_box=False):
self.__dict__.update(locals())
#self.compute_priors()
def __str__(self):
s = ''
for a in ['source_layer_name',
'map_size',
'aspect_ratios',
'shift',
'clip',
'minmax_size',
'special_ssd_box',
'num_locations',
'num_boxes',
'num_boxes_per_location',
]:
s += '%-24s %s\n' % (a, getattr(self, a))
return s
@property
def num_boxes_per_location(self):
return len(self.box_wh)
@property
def num_locations(self):
return len(self.box_xy)
@property
def num_boxes(self):
return len(self.box_xy) * len(self.box_wh) # len(self.priors)
def compute_priors(self):
image_h, image_w = image_size = self.image_size
map_h, map_w = map_size = self.map_size
min_size, max_size = self.minmax_size
# define centers of prior boxes
if self.step is None:
step_x = image_w / map_w
step_y = image_h / map_h
assert step_x % 1 == 0 and step_y % 1 == 0, 'map size %s not constiten with input size %s' % (map_size, image_size)
else:
step_x = step_y = self.step
linx = np.array([(0.5 + i) for i in range(map_w)]) * step_x
liny = np.array([(0.5 + i) for i in range(map_h)]) * step_y
box_xy = np.array(np.meshgrid(linx, liny)).reshape(2,-1).T
if self.shift is None:
shift = [(0.0,0.0)] * len(self.aspect_ratios)
else:
shift = self.shift
box_wh = []
box_shift = []
for i in range(len(self.aspect_ratios)):
ar = self.aspect_ratios[i]
box_wh.append([min_size * np.sqrt(ar), min_size / np.sqrt(ar)])
box_shift.append(shift[i])
if ar == 1 and self.special_ssd_box: # special SSD box
box_wh.append([np.sqrt(min_size * max_size), np.sqrt(min_size * max_size)])
box_shift.append((0.0,0.0))
box_wh = np.asarray(box_wh)
box_shift = np.asarray(box_shift)
box_shift = np.clip(box_shift, -1.0, 1.0)
box_shift = box_shift * np.array([step_x, step_y]) # percent to pixels
# values for individual prior boxes
priors_shift = np.tile(box_shift, (len(box_xy),1))
priors_xy = np.repeat(box_xy, len(box_wh), axis=0) + priors_shift
priors_wh = np.tile(box_wh, (len(box_xy),1))
priors_min_xy = priors_xy - priors_wh / 2.
priors_max_xy = priors_xy + priors_wh / 2.
if self.clip:
priors_min_xy[:,0] = np.clip(priors_min_xy[:,0], 0, image_w)
priors_min_xy[:,1] = np.clip(priors_min_xy[:,1], 0, image_h)
priors_max_xy[:,0] = np.clip(priors_max_xy[:,0], 0, image_w)
priors_max_xy[:,1] = np.clip(priors_max_xy[:,1], 0, image_h)
priors_variances = np.tile(self.variances, (len(priors_xy),1))
self.box_xy = box_xy
self.box_wh = box_wh
self.box_shfit = box_shift
self.priors_xy = priors_xy
self.priors_wh = priors_wh
self.priors_min_xy = priors_min_xy
self.priors_max_xy = priors_max_xy
self.priors_variances = priors_variances
self.priors = np.concatenate([priors_min_xy, priors_max_xy, priors_variances], axis=1)
def plot_locations(self, color='r'):
xy = self.box_xy
plt.plot(xy[:,0], xy[:,1], '.', color=color, markersize=6)
def plot_boxes(self, location_idxs=[]):
colors = 'rgbcmy'
ax = plt.gca()
n = self.num_boxes_per_location
for i in location_idxs:
for j in range(n):
idx = i*n+j
if idx >= self.num_boxes:
break
x1, y1, x2, y2 = self.priors[idx, :4]
ax.add_patch(plt.Rectangle((x1, y1), x2-x1, y2-y1,
fill=False, edgecolor=colors[j%len(colors)], linewidth=2))
ax.autoscale_view()
class PriorUtil(object):
"""Utility for SSD prior boxes.
"""
def __init__(self, model, aspect_ratios=None, shifts=None,
minmax_sizes=None, steps=None, scale=None, clips=None,
special_ssd_boxes=None, ssd_assignment=None, isQuads=None, isRbb=None, is_merge_box=True):
source_layers_names = [l.name.split('/')[0] for l in model.source_layers]
self.source_layers_names = source_layers_names
self.model = model
self.image_size = model.input_shape[1:3]
self.is_merge_box = is_merge_box
# if 2 detected-boxes overlap that much => merge them
self.iou_merge_thres = 0.9
# if any of the 2 detected-boxes has that much overlap with their overlapping area => merge those 2 boxes
self.overlapping_thres = 0.8
self.mergeOverlappingBoxes = MergeOverlappingBoxes(self.overlapping_thres, self.image_size)
num_maps = len(source_layers_names)
# take parameters from model definition if they exist there
if isQuads is None:
if hasattr(model, 'isQuads'):
isQuads = model.isQuads
else:
isQuads = True
self.isQuads = isQuads
if isRbb is None:
if hasattr(model, 'isRbb'):
isRbb = model.isRbb
else:
isRbb = True
self.isRbb = isRbb
if aspect_ratios is None:
if hasattr(model, 'aspect_ratios'):
aspect_ratios = model.aspect_ratios
else:
aspect_ratios = [[1]] * num_maps
if shifts is None:
if hasattr(model, 'shifts'):
shifts = model.shifts
else:
shifts = [None] * num_maps
if minmax_sizes is None:
if hasattr(model, 'minmax_sizes'):
minmax_sizes = model.minmax_sizes
else:
# as in equation (4)
min_dim = np.min(self.image_size)
min_ratio = 10 # 15
max_ratio = 100 # 90
s = np.linspace(min_ratio, max_ratio, num_maps+1) * min_dim / 100.
minmax_sizes = [(round(s[i]), round(s[i+1])) for i in range(len(s)-1)]
if scale is None:
if hasattr(model, 'scale'):
scale = model.scale
else:
scale = 1.0
minmax_sizes = np.array(minmax_sizes) * scale
if steps is None:
if hasattr(model, 'steps'):
steps = model.steps
else:
steps = [None] * num_maps
if clips is None:
if hasattr(model, 'clips'):
clips = model.clips
else:
clips = False
if type(clips) == bool:
clips = [clips] * num_maps
if special_ssd_boxes is None:
if hasattr(model, 'special_ssd_boxes'):
special_ssd_boxes = model.special_ssd_boxes
else:
special_ssd_boxes = False
if type(special_ssd_boxes) == bool:
special_ssd_boxes = [special_ssd_boxes] * num_maps
if ssd_assignment is None:
if hasattr(model, 'ssd_assignment'):
ssd_assignment = model.ssd_assignment
else:
ssd_assignment = True
self.ssd_assignment = ssd_assignment
self.prior_maps = []
for i in range(num_maps):
layer = model.get_layer(source_layers_names[i])
map_h, map_w = map_size = layer.output_shape[1:3]
m = PriorMap(source_layer_name=source_layers_names[i],
image_size=self.image_size,
map_size=map_size,
minmax_size=minmax_sizes[i],
variances=[0.1, 0.1, 0.2, 0.2],
aspect_ratios=aspect_ratios[i],
shift=shifts[i],
step=steps[i],
special_ssd_box=special_ssd_boxes[i],
clip=clips[i])
self.prior_maps.append(m)
self.update_priors()
self.nms_top_k = 400
self.nms_thresh = 0.45
@property
def num_maps(self):
return len(self.prior_maps)
def update_priors(self):
priors_xy = []
priors_wh = []
priors_min_xy = []
priors_max_xy = []
priors_variances = []
priors = []
map_offsets = [0]
for i in range(len(self.prior_maps)):
m = self.prior_maps[i]
# compute prior boxes
m.compute_priors()
# collect prior data
priors_xy.append(m.priors_xy)
priors_wh.append(m.priors_wh)
priors_min_xy.append(m.priors_min_xy)
priors_max_xy.append(m.priors_max_xy)
priors_variances.append(m.priors_variances)
priors.append(m.priors)
map_offsets.append(map_offsets[-1]+len(m.priors))
self.priors_xy = np.concatenate(priors_xy, axis=0)
self.priors_wh = np.concatenate(priors_wh, axis=0)
self.priors_min_xy = np.concatenate(priors_min_xy, axis=0)
self.priors_max_xy = np.concatenate(priors_max_xy, axis=0)
self.priors_variances = np.concatenate(priors_variances, axis=0)
self.priors = np.concatenate(priors, axis=0)
self.map_offsets = map_offsets
# normalized prior boxes
image_wh = self.image_size[::-1]
self.priors_xy_norm = self.priors_xy / image_wh
self.priors_wh_norm = self.priors_wh / image_wh
self.priors_min_xy_norm = self.priors_min_xy / image_wh
self.priors_max_xy_norm = self.priors_max_xy / image_wh
self.priors_norm = np.concatenate([self.priors_min_xy_norm, self.priors_max_xy_norm, self.priors_variances], axis=1)
def encode(self, gt_data, overlap_threshold=0.45, debug=False):
# calculation is done with normalized sizes
# TODO: empty ground truth
if gt_data.shape[0] == 0:
print('gt_data', type(gt_data), gt_data.shape)
num_classes = self.model.num_classes
num_priors = self.priors.shape[0]
gt_boxes = self.gt_boxes = np.copy(gt_data[:,:4]) # normalized xmin, ymin, xmax, ymax
gt_class_idx = np.asarray(gt_data[:,-1]+0.5, dtype=np.int)
gt_one_hot = np.zeros([len(gt_class_idx),num_classes])
gt_one_hot[range(len(gt_one_hot)),gt_class_idx] = 1 # one_hot classes including background
gt_min_xy = gt_boxes[:,0:2]
gt_max_xy = gt_boxes[:,2:4]
gt_xy = (gt_boxes[:,2:4] + gt_boxes[:,0:2]) / 2.
gt_wh = gt_boxes[:,2:4] - gt_boxes[:,0:2]
gt_iou = np.array([iou(b, self.priors_norm) for b in gt_boxes]).T
max_idxs = np.argmax(gt_iou, axis=1)
priors_xy = self.priors_xy_norm
priors_wh = self.priors_wh_norm
# assign ground truth to priors
if self.ssd_assignment:
# original ssd assignment rule
max_idxs = np.argmax(gt_iou, axis=1)
max_val = gt_iou[np.arange(num_priors), max_idxs]
prior_mask = max_val > overlap_threshold
match_indices = max_idxs[prior_mask]
else:
prior_area = np.product(priors_wh, axis=-1)[:,None]
gt_area = np.product(gt_wh, axis=-1)[:,None]
priors_ar = priors_wh[:,0] / priors_wh[:,1]
gt_ar = gt_wh[:,0] / gt_wh[:,1]
match_mask = np.array([np.concatenate([
priors_xy >= gt_min_xy[i],
priors_xy <= gt_max_xy[i],
#priors_wh >= 0.5 * gt_wh[i],
#priors_wh <= 2.0 * gt_wh[i],
#prior_area >= 0.25 * gt_area[i],
#prior_area <= 4.0 * gt_area[i],
prior_area >= 0.0625 * gt_area[i],
prior_area <= 1.0 * gt_area[i],
#((priors_ar < 1.0) == (gt_ar[i] < 1.0))[:,None],
(np.abs(priors_ar - gt_ar[i]) < 0.5)[:,None],
max_idxs[:,None] == i
], axis=-1) for i in range(len(gt_boxes))])
self.match_mask = match_mask
match_mask = np.array([np.all(m, axis=-1) for m in match_mask]).T
prior_mask = np.any(match_mask, axis=-1)
match_indices = np.argmax(match_mask[prior_mask,:], axis=-1)
self.match_indices = dict(zip(list(np.ix_(prior_mask)[0]), list(match_indices)))
# prior labels
confidence = np.zeros((num_priors, num_classes))
confidence[:,0] = 1
confidence[prior_mask] = gt_one_hot[match_indices]
# compute local offsets from ground truth boxes
gt_xy = gt_xy[match_indices]
gt_wh = gt_wh[match_indices]
priors_xy = priors_xy[prior_mask]
priors_wh = priors_wh[prior_mask]
priors_variances = self.priors_variances[prior_mask,:]
offsets = np.zeros((num_priors, 4))
offsets[prior_mask,0:2] = (gt_xy - priors_xy) / priors_wh
offsets[prior_mask,2:4] = np.log(gt_wh / priors_wh)
offsets[prior_mask,0:4] /= priors_variances
return np.concatenate([offsets, confidence], axis=1)
def decode(self, model_output, confidence_threshold=0.01, keep_top_k=200, fast_nms=True, sparse=True):
# calculation is done with normalized sizes
prior_mask = model_output[:,4:] > confidence_threshold
image_wh = self.image_size[::-1]
if sparse:
# compute boxes only if the confidence is high enough and the class is not background
mask = np.any(prior_mask[:,1:], axis=1)
prior_mask = prior_mask[mask]
mask = np.ix_(mask)[0]
model_output = model_output[mask]
priors_xy = self.priors_xy[mask] / image_wh
priors_wh = self.priors_wh[mask] / image_wh
priors_variances = self.priors_variances[mask,:]
else:
priors_xy = self.priors_xy / image_wh
priors_wh = self.priors_wh / image_wh
priors_variances = self.priors_variances
offsets = model_output[:,:4]
confidence = model_output[:,4:]
num_priors = offsets.shape[0]
num_classes = confidence.shape[1]
# compute bounding boxes from local offsets
boxes = np.empty((num_priors, 4))
offsets = offsets * priors_variances
boxes_xy = priors_xy + offsets[:,0:2] * priors_wh
boxes_wh = priors_wh * np.exp(offsets[:,2:4])
boxes[:,0:2] = boxes_xy - boxes_wh / 2. # xmin, ymin
boxes[:,2:4] = boxes_xy + boxes_wh / 2. # xmax, ymax
boxes = np.clip(boxes, 0.0, 1.0)
# do non maximum suppression
results = []
for c in range(1, num_classes):
mask = prior_mask[:,c]
boxes_to_process = boxes[mask]
if len(boxes_to_process) > 0:
confs_to_process = confidence[mask, c]
if fast_nms:
idx = non_maximum_suppression(
boxes_to_process, confs_to_process,
self.nms_thresh, self.nms_top_k)
else:
idx = non_maximum_suppression_slow(
boxes_to_process, confs_to_process,
self.nms_thresh, self.nms_top_k)
good_boxes = boxes_to_process[idx]
good_confs = confs_to_process[idx][:, None]
labels = np.ones((len(idx),1)) * c
c_pred = np.concatenate((good_boxes, good_confs, labels), axis=1)
results.extend(c_pred)
if len(results) > 0:
results = np.array(results)
order = np.argsort(-results[:, 4])
results = results[order]
results = results[:keep_top_k]
else:
results = np.empty((0,6))
self.results = results
return results
def compute_class_weights(self, gt_util, num_samples=np.inf):
"""Computes weighting factors for the classification loss by considering
the inverse frequency of class instance in local ground truth.
"""
s = np.zeros(gt_util.num_classes)
for i in tqdm(range(min(gt_util.num_samples, num_samples))):
egt = self.encode(gt_util.data[i])
s += np.sum(egt[:,-gt_util.num_classes:], axis=0)
si = 1/s
return si/np.sum(si) * len(s)
def show_image(self, img):
"""Resizes an image to the network input size and shows it in the current figure.
"""
image_wh = self.image_size[::-1]
img = cv2.resize(img, image_wh, cv2.INTER_LINEAR)
img = img[:, :, (2,1,0)] # BGR to RGB
img = img / 256.
plt.imshow(img)
def plot_assignment(self, map_idx):
ax = plt.gca()
im = plt.gci()
image_h, image_w = image_size = im.get_size()
# ground truth
boxes = self.gt_boxes
boxes_x = (boxes[:,0] + boxes[:,2]) / 2. * image_w
boxes_y = (boxes[:,1] + boxes[:,3]) / 2. * image_h
for box in boxes:
xy_rec = to_rec(box[:4], image_size)
ax.add_patch(plt.Polygon(xy_rec, fill=False, edgecolor='b', linewidth=2))
plt.plot(boxes_x, boxes_y, 'bo', markersize=6)
# prior boxes
for idx, box_idx in self.match_indices.items():
if idx >= self.map_offsets[map_idx] and idx < self.map_offsets[map_idx+1]:
x, y = self.priors_xy[idx]
w, h = self.priors_wh[idx]
plt.plot(x, y, 'ro', markersize=4)
plt.plot([x, boxes_x[box_idx]], [y, boxes_y[box_idx]], '-r', linewidth=1)
ax.add_patch(plt.Rectangle((x-w/2, y-h/2), w+1, h+1,
fill=False, edgecolor='y', linewidth=2))
def plot_results(self, results=None, classes=None, show_labels=True, gt_data=None, gt_data_decoded=None, confidence_threshold=None):
if results is None:
results = self.results
if confidence_threshold is not None:
mask = results[:, 4] > confidence_threshold
results = results[mask]
if classes is not None:
colors = plt.cm.hsv(np.linspace(0, 1, len(classes)+1)).tolist()
ax = plt.gca()
im = plt.gci()
image_size = im.get_size()
# draw ground truth
if gt_data is not None:
for box in gt_data:
label = np.nonzero(box[4:])[0][0]+1
color = 'g' if classes == None else colors[label]
xy_rec = to_rec(box[:4], image_size)
ax.add_patch(plt.Polygon(xy_rec, fill=True, color=color, linewidth=1, alpha=0.3))
# draw prediction
for r in results:
label = int(r[5])
confidence = r[4]
color = 'r' if classes == None else colors[label]
xy_rec = to_rec(r[:4], image_size)
ax.add_patch(plt.Polygon(xy_rec, fill=False, edgecolor=color, linewidth=2))
if show_labels:
label_name = label if classes == None else classes[label]
xmin, ymin = xy_rec[0]
display_txt = '%0.2f, %s' % (confidence, label_name)
ax.text(xmin, ymin, display_txt, bbox={'facecolor':color, 'alpha':0.5})
def print_gt_stats(self):
# TODO
pass