-
Notifications
You must be signed in to change notification settings - Fork 15
/
topics.py
365 lines (290 loc) · 10.4 KB
/
topics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import glob
import os
import logging
import re
import numpy as np
import matplotlib.pyplot as plt
from collections import defaultdict
from gensim import corpora, models, similarities
__author__ = "DARIAH-DE"
__authors__ = "Steffen Pielstroem"
__email__ = "pielstroem@biozentrum.uni-wuerzburg.de"
__license__ = ""
__version__ = "0.1"
__date__ = "2016-06-13"
########################################################################
# Prearrangements
########################################################################
# Enable gensim logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',
level=logging.INFO)
def testing():
"""
Check whether required packages (numpy, matplotlib, gensim) are
correctly installed or not.
Args:
None
Todo:
* replace pkg_resources by another, more lightweighted module?
Author:
DARIAH-DE
"""
try:
import pkg_resources as pkg
print(pkg.get_distribution("numpy").version, "\n",
pkg.get_distribution("matplotlib").version, "\n",
pkg.get_distribution("gensim").version)
except ImportError:
print("ERROR: Make sure all required packages are installed.")
########################################################################
# Corpus ingestion
########################################################################
def readCorpus(path):
"""
Read corpus into a list of lists.
Args:
path (str): Path/glob pattern of the text files to process.
Author:
DARIAH-DE
"""
files = glob.glob(path)
documents = []
for file in files:
with open(file, 'r', encoding='utf-8') as document:
document = document.read()
documents.append(document)
return documents
def docLabels(path):
"""
Create a list of names (of the files) using paths and return a
list.
Args:
path (str): Path/glob pattern of the text files to process.
Author:
DARIAH-DE
"""
labels = [os.path.basename(x) for x in glob.glob(path)]
labels = [x.split('.')[0] for x in labels]
return labels
########################################################################
# Preprocessing
########################################################################
def tokenize(documents):
"""
Tokenize (means breaking a stream of text up into words) text and
return in a list of lists.
Args:
documents (List[str]): List of lists containing text.
Todo:
* Using version from gensim tutorial without regex?
`texts = [[word for word in document.lower().split()]
for document in documents]`
Author:
DARIAH-DE
"""
# define regular expression for tokenization
myRegEx = re.compile('\w+') # compile regex for fast repetition
texts = []
for document in documents:
text = myRegEx.findall(document.lower())
texts.append(text)
return texts
def removeHapaxLeg(texts):
"""
Remove hapax legomena (words that occurs only once within a
context) and return text.
Args:
texts (List[str]): List of lists containing tokens.
Author:
DARIAH-DE
"""
frequency = defaultdict(int)
for text in texts:
for token in text:
frequency[token] += 1
texts = [[token for token in text if frequency[token] > 1]
for text in texts]
return texts
def removeStopWords(texts, stoplist):
"""
Remove stopwords (usually refer to the most common words) according
to selected stopword list and return text.
Args:
texts (List[str]): List of lists containing tokens.
stoplist (str): Corpus language?
``de``
German
``en``
English
``es``
Spanish
``fr``
French
Todo:
* Replace `.helpful_stuff/stopwords/`
Author:
DARIAH-DE
"""
if isinstance(stoplist, str):
file = open('./helpful_stuff/stopwords/' + stoplist)
stoplist = file.read()
stoplist = [word for word in stoplist.split()]
stoplist = set(stoplist)
texts = [[word for word in text if word not in stoplist]
for text in texts]
return texts
########################################################################
# Gensim model creation
########################################################################
def gensimModel(texts,
topics=10,
ldaSource='gensim',
mallet_path='~/Software/mallet/bin/mallet'
):
"""
Create model with gensim or mallet and return the model,
dictionary, corpus and topics.
Args:
texts (List[str]): List of tokenized texts.
topics (Optional[int]): Number of topics. Defaults to 10.
ldaSource (Optional[str]): Which software? Defaults to gensim.
``gensim``
For more information: http://radimrehurek.com/gensim/
``mallet``
For more information: http://mallet.cs.umass.edu
mallet_path (Optional[str]): Path to mallet.
Defaults to `~/Software/mallet/bin/mallet`
Todo:
* Not sure yet if wrapping function is the optimal solution.
* Future default `mallet_path = 'UNKNOWN'` or docker solution.
* Mallet: find a function that opens a selection window
* Store more info about model specifications
Author:
DARIAH-DE
"""
# create dictionary and vectorize
dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]
# create a gensim type topic model
if ldaSource == 'gensim':
model = models.LdaModel(corpus,
id2word=dictionary,
num_topics=topics,
passes=10)
else:
if mallet_path == 'UNKNOWN':
mallet_path = '~/Software/mallet/bin/mallet'
model = models.wrappers.LdaMallet(
mallet_path, # Path to local mallet binary
corpus, # Vectorized copus object
id2word=dictionary,
num_topics=topics, # Number of topics
iterations=100 # Number of iterations in Gibbs sampling
)
# return results
return [model, dictionary, corpus, topics]
def topicLabels(model, no_of_topics):
"""
Generate topic labels from model.
Args:
model: Model created by :func:`gensimModel`.
no_of_topics (Optional[int]): Number of topics. Defaults to 10.
Todo:
* Extract no_of_topics from corpus
Author:
DARIAH-DE
"""
labels = []
for i in range(no_of_topics):
terms = [x[0] for x in model.show_topic(i, topn=3)]
labels.append(" ".join(terms))
return labels
def saveGensimModel(model,
corpus,
dictionary,
no_of_topics,
doc_labels,
foldername='corpus'
):
"""
Save all the gensim output in folder "out" (will be created if it
doesn't exist yet).
Args:
model: Model created by :func:`gensimModel`.
corpus: Corpus created by :func:`gensimModel`.
dictionary: Dictionary created by :func:`gensimModel`.
no_of_topics (Optional[int]): Number of topics. Defaults by 10.
doc_labels (List[str]): Labels created by :func:`docLabels`.
foldername (Optional[str]): Name of corpus folder.
Defaults by corpus.
Todo:
* Extract no_of_topics from corpus
Author:
DARIAH-DE
"""
print("saving ...\n")
topics = model.show_topics(num_topics=no_of_topics)
if not os.path.exists("out"):
os.makedirs("out")
with open("out/" + foldername + "_doclabels.txt", "w") as f:
for item in doc_labels:
f.write(item + "\n")
with open("out/" + foldername + "_topics.txt", "w") as f:
for item, i in zip(topics, enumerate(topics)):
f.write("topic #" + str(i[0]) + ": " + str(item) + "\n")
dictionary.save("out/" + foldername + ".dict")
corpora.MmCorpus.serialize("out/" + foldername + ".mm", corpus)
model.save("out/" + foldername + ".lda")
########################################################################
# Doc-Topic matrix
########################################################################
def gensim_to_dtm(model, corpus, no_of_topics):
"""
Create a doc-topic matrix from gensim output.
Args:
model: Model created by :func:`gensimModel`.
corpus: Corpus created by :func:`gensimModel`.
dictionary: Dictionary created by :func:`gensimModel`.
no_of_topics (Optional[int]): Number of topics. Defaults by 10.
Author:
DARIAH-DE
"""
no_of_docs = len(corpus)
doc_topic = np.zeros((no_of_docs, no_of_topics))
for doc, i in zip(corpus, range(no_of_docs)):
# to get topic distribution from model
topic_dist = model.__getitem__(doc)
# topic_dist is a list of tuples (topic_id, topic_prob)
for topic in topic_dist:
doc_topic[i][topic[0]] = topic[1] # save topic probability
return doc_topic
########################################################################
# Topic visualization
########################################################################
def docTopHeatmap(doc_topic, doc_labels, topic_labels):
"""
Create doc-topic heatmap (graph).
Args:
doc_topic: Doc-topic matrix created by :func:`gensim_to_dtm`.
doc_labels: Labels created by :func:`docLabels`.
topic_labels: Labels created by :func:`topicLabels`.
Todo:
* LDAvis not convinient on MS Windows, pip installation on
Ubuntu failed too
* http://nlp.stanford.edu/events/illvi2014/papers/sievert-illvi2014.pdf
Author:
DARIAH-DE
"""
no_of_topics = len(doc_labels)
no_of_topics = len(doc_labels)
if no_of_topics > 20 or no_of_topics > 20:
plt.figure(figsize=(20, 20)) # if many items, enlarge figure
plt.pcolor(doc_topic, norm=None, cmap='Reds')
plt.yticks(np.arange(doc_topic.shape[0])+1.0, doc_labels)
plt.xticks(np.arange(doc_topic.shape[1])+0.5, topic_labels, rotation='90')
plt.gca().invert_yaxis()
plt.colorbar(cmap='Reds')
plt.tight_layout()
plt.show()