@@ -84,8 +84,8 @@ reportCrossVariables <- function(gdx, output = NULL, regionSubsetList = NULL,
84
84
85
85
86
86
tmp <- mbind(tmp ,setNames(
87
- output [r ,," Energy Investments (billion US$2005 /yr)" ]
88
- - output [r ,," Energy Investments|Electricity (billion US$2005 /yr)" ]," Energy Investments|Non-Electricity (billion US$2005 /yr)" ))
87
+ output [r ,," Energy Investments (billion US$2017 /yr)" ]
88
+ - output [r ,," Energy Investments|Electricity (billion US$2017 /yr)" ]," Energy Investments|Non-Electricity (billion US$2017 /yr)" ))
89
89
# gas capacity factor
90
90
tmp <- mbind(tmp ,setNames(
91
91
output [r ,," SE|Electricity|Gas (EJ/yr)" ] / output [r ,," Cap|Electricity|Gas (GW)" ] / TWa_2_EJ * 1000 * 100 ,
@@ -143,18 +143,18 @@ reportCrossVariables <- function(gdx, output = NULL, regionSubsetList = NULL,
143
143
144
144
setNames(
145
145
output [,," FE (EJ/yr)" ] * 1000
146
- / output [,," GDP|MER (billion US$2005 /yr)" ],
147
- " Intensity|GDP|Final Energy (MJ/US$2005 )" ),
146
+ / output [,," GDP|MER (billion US$2017 /yr)" ],
147
+ " Intensity|GDP|Final Energy (MJ/US$2017 )" ),
148
148
149
149
setNames(
150
- output [,," GDP|MER (billion US$2005 /yr)" ]
150
+ output [,," GDP|MER (billion US$2017 /yr)" ]
151
151
/ output [,," FE (EJ/yr)" ],
152
- " Productivity|GDP|MER|Final Energy (US$2005 /GJ)" ),
152
+ " Productivity|GDP|MER|Final Energy (US$2017 /GJ)" ),
153
153
154
154
setNames(
155
- output [,," GDP|PPP (billion US$2005 /yr)" ]
155
+ output [,," GDP|PPP (billion US$2017 /yr)" ]
156
156
/ output [,," FE (EJ/yr)" ],
157
- " Productivity|GDP|PPP|Final Energy (US$2005 /GJ)" ),
157
+ " Productivity|GDP|PPP|Final Energy (US$2017 /GJ)" ),
158
158
159
159
setNames(
160
160
output [,," Emi|CO2|Energy and Industrial Processes (Mt CO2/yr)" ]
@@ -168,18 +168,18 @@ reportCrossVariables <- function(gdx, output = NULL, regionSubsetList = NULL,
168
168
169
169
setNames(
170
170
output [,," Emi|GHG (Mt CO2eq/yr)" ]
171
- / output [,," GDP|MER (billion US$2005 /yr)" ],
172
- " Intensity|GDP|GHG (Mt CO2-equiv/US$2005 )" ),
171
+ / output [,," GDP|MER (billion US$2017 /yr)" ],
172
+ " Intensity|GDP|GHG (Mt CO2-equiv/US$2017 )" ),
173
173
174
174
setNames(
175
- output [,," GDP|MER (billion US$2005 /yr)" ]
175
+ output [,," GDP|MER (billion US$2017 /yr)" ]
176
176
/ output [,," Population (million)" ],
177
- " GDP|per capita|MER (kUS$2005 /per capita)" ),
177
+ " GDP|per capita|MER (kUS$2017 /per capita)" ),
178
178
179
179
setNames(
180
- output [,," GDP|PPP (billion US$2005 /yr)" ]
180
+ output [,," GDP|PPP (billion US$2017 /yr)" ]
181
181
/ output [,," Population (million)" ],
182
- " GDP|per capita|PPP (kUS$2005 /per capita)" ),
182
+ " GDP|per capita|PPP (kUS$2017 /per capita)" ),
183
183
184
184
setNames(
185
185
output [,," Welfare|Real and undiscounted|Yearly (arbitrary unit/yr)" ]
@@ -232,10 +232,10 @@ reportCrossVariables <- function(gdx, output = NULL, regionSubsetList = NULL,
232
232
233
233
# Energy expenditures
234
234
tmp <- mbind(tmp ,setNames(
235
- output [,," FE|Transport|Liquids (EJ/yr)" ] * output [,," Price|Final Energy|Transport|Liquids (US$2005 /GJ)" ] +
236
- output [,," FE|Transport|Hydrogen (EJ/yr)" ] * output [,," Price|Final Energy|Transport|Hydrogen (US$2005 /GJ)" ] +
237
- output [,," FE|Transport|Electricity (EJ/yr)" ] * output [,," Price|Final Energy|Transport|Electricity (US$2005 /GJ)" ],
238
- " Expenditure|Transport|Fuel (billion US$2005 /yr)" ))
235
+ output [,," FE|Transport|Liquids (EJ/yr)" ] * output [,," Price|Final Energy|Transport|Liquids (US$2017 /GJ)" ] +
236
+ output [,," FE|Transport|Hydrogen (EJ/yr)" ] * output [,," Price|Final Energy|Transport|Hydrogen (US$2017 /GJ)" ] +
237
+ output [,," FE|Transport|Electricity (EJ/yr)" ] * output [,," Price|Final Energy|Transport|Electricity (US$2017 /GJ)" ],
238
+ " Expenditure|Transport|Fuel (billion US$2017 /yr)" ))
239
239
240
240
# calculate intensities growth
241
241
int_gr <- new.magpie(getRegions(tmp ),getYears(tmp ),c(" Intensity Growth|GDP|Final Energy (% pa)" ," Intensity Growth|GDP|Final Energy to 2005 (% pa)" ,
@@ -246,14 +246,14 @@ reportCrossVariables <- function(gdx, output = NULL, regionSubsetList = NULL,
246
246
int_gr [,t ," Intensity Growth|GDP|Final Energy (% pa)" ] <-
247
247
(
248
248
(
249
- (tmp [,t ," Intensity|GDP|Final Energy (MJ/US$2005 )" ] / setYears(tmp [,(which(getYears(tmp )== t )- 1 )," Intensity|GDP|Final Energy (MJ/US$2005 )" ],t ))
249
+ (tmp [,t ," Intensity|GDP|Final Energy (MJ/US$2017 )" ] / setYears(tmp [,(which(getYears(tmp )== t )- 1 )," Intensity|GDP|Final Energy (MJ/US$2017 )" ],t ))
250
250
^ (1 / ( getYears(tmp [,t ,],as.integer = TRUE ) - getYears(tmp [,(which(getYears(tmp )== t )- 1 ),],as.integer = TRUE ) ) )
251
251
) - 1
252
252
) * 100
253
253
int_gr [,t ," Intensity Growth|GDP|Final Energy to 2005 (% pa)" ] <-
254
254
(
255
255
(
256
- (tmp [,t ," Intensity|GDP|Final Energy (MJ/US$2005 )" ] / setYears(tmp [,2005 ," Intensity|GDP|Final Energy (MJ/US$2005 )" ],t ))
256
+ (tmp [,t ," Intensity|GDP|Final Energy (MJ/US$2017 )" ] / setYears(tmp [,2005 ," Intensity|GDP|Final Energy (MJ/US$2017 )" ],t ))
257
257
^ (1 / ( getYears(tmp [,t ,],as.integer = TRUE ) - 2005 ) )
258
258
) - 1
259
259
) * 100
@@ -274,14 +274,14 @@ reportCrossVariables <- function(gdx, output = NULL, regionSubsetList = NULL,
274
274
int_gr [,t ," Intensity Growth|GDP|CO2-equiv (% pa)" ] <-
275
275
(
276
276
(
277
- (tmp [,t ," Intensity|GDP|GHG (Mt CO2-equiv/US$2005 )" ] / setYears(tmp [,(which(getYears(tmp )== t )- 1 )," Intensity|GDP|GHG (Mt CO2-equiv/US$2005 )" ],t ))
277
+ (tmp [,t ," Intensity|GDP|GHG (Mt CO2-equiv/US$2017 )" ] / setYears(tmp [,(which(getYears(tmp )== t )- 1 )," Intensity|GDP|GHG (Mt CO2-equiv/US$2017 )" ],t ))
278
278
^ (1 / ( getYears(tmp [,t ,],as.integer = TRUE ) - getYears(tmp [,(which(getYears(tmp )== t )- 1 ),],as.integer = TRUE ) ) )
279
279
) - 1
280
280
) * 100
281
281
int_gr [,t ," Intensity Growth|GDP|CO2-equiv to 2005 (% pa)" ] <-
282
282
(
283
283
(
284
- (tmp [,t ," Intensity|GDP|GHG (Mt CO2-equiv/US$2005 )" ] / setYears(tmp [,2005 ," Intensity|GDP|GHG (Mt CO2-equiv/US$2005 )" ],t ))
284
+ (tmp [,t ," Intensity|GDP|GHG (Mt CO2-equiv/US$2017 )" ] / setYears(tmp [,2005 ," Intensity|GDP|GHG (Mt CO2-equiv/US$2017 )" ],t ))
285
285
^ (1 / ( getYears(tmp [,t ,],as.integer = TRUE ) - 2005 ) )
286
286
) - 1
287
287
) * 100
@@ -335,7 +335,7 @@ reportCrossVariables <- function(gdx, output = NULL, regionSubsetList = NULL,
335
335
tribble(
336
336
~ unit , ~ new.unit , ~ factor ,
337
337
' Mt/yr' , ' t/yr' , 1 ,
338
- ' billion US$2005 /yr' , ' US$2005 /yr' , 1e-3 ),
338
+ ' billion US$2017 /yr' , ' US$2017 /yr' , 1e-3 ),
339
339
340
340
' unit'
341
341
) %> %
@@ -362,7 +362,7 @@ reportCrossVariables <- function(gdx, output = NULL, regionSubsetList = NULL,
362
362
select(- ' Cell' ) %> %
363
363
# join with population numbers
364
364
left_join(
365
- output [,,' GDP|PPP (billion US$2005 /yr)' ] %> %
365
+ output [,,' GDP|PPP (billion US$2017 /yr)' ] %> %
366
366
as.data.frame() %> %
367
367
as_tibble() %> %
368
368
select(' Region' , ' Year' , population = ' Value' ),
@@ -375,8 +375,8 @@ reportCrossVariables <- function(gdx, output = NULL, regionSubsetList = NULL,
375
375
tribble(
376
376
~ unit , ~ new.unit , ~ factor ,
377
377
# Mt/$bn * 1e6 t/Mt * 1e-3 $bn/$m = t/$m
378
- ' Mt/yr' , ' t/million US$2005 ' , 1e3 ,
379
- ' billion US$2005 /yr' , ' US$2005 /US$2005 ' , 1 # $bn/$bn = $/$
378
+ ' Mt/yr' , ' t/million US$2017 ' , 1e3 ,
379
+ ' billion US$2017 /yr' , ' US$2017 /US$2017 ' , 1 # $bn/$bn = $/$
380
380
),
381
381
382
382
' unit'
0 commit comments