generated from pitmonticone/LeanProject
-
Notifications
You must be signed in to change notification settings - Fork 1
/
S01_Sets.lean
227 lines (173 loc) · 4.74 KB
/
S01_Sets.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import Mathlib.Data.Set.Lattice
import Mathlib.Data.Nat.Prime.Basic
import LeanInVienna.Common
section
variable {α : Type*}
variable (s t u : Set α)
open Set
example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u := by
rw [subset_def, inter_def, inter_def]
rw [subset_def] at h
simp only [mem_setOf]
rintro x ⟨xs, xu⟩
exact ⟨h _ xs, xu⟩
example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u := by
simp only [subset_def, mem_inter_iff] at *
rintro x ⟨xs, xu⟩
exact ⟨h _ xs, xu⟩
example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u := by
intro x xsu
exact ⟨h xsu.1, xsu.2⟩
example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
fun _ ⟨xs, xu⟩ ↦ ⟨h xs, xu⟩
example : s ∩ (t ∪ u) ⊆ s ∩ t ∪ s ∩ u := by
intro x hx
have xs : x ∈ s := hx.1
have xtu : x ∈ t ∪ u := hx.2
rcases xtu with xt | xu
· left
show x ∈ s ∩ t
exact ⟨xs, xt⟩
· right
show x ∈ s ∩ u
exact ⟨xs, xu⟩
example : s ∩ (t ∪ u) ⊆ s ∩ t ∪ s ∩ u := by
rintro x ⟨xs, xt | xu⟩
· left; exact ⟨xs, xt⟩
· right; exact ⟨xs, xu⟩
example : s ∩ t ∪ s ∩ u ⊆ s ∩ (t ∪ u) := by
sorry
example : (s \ t) \ u ⊆ s \ (t ∪ u) := by
intro x xstu
have xs : x ∈ s := xstu.1.1
have xnt : x ∉ t := xstu.1.2
have xnu : x ∉ u := xstu.2
constructor
· exact xs
intro xtu
-- x ∈ t ∨ x ∈ u
rcases xtu with xt | xu
· show False; exact xnt xt
· show False; exact xnu xu
example : (s \ t) \ u ⊆ s \ (t ∪ u) := by
rintro x ⟨⟨xs, xnt⟩, xnu⟩
use xs
rintro (xt | xu) <;> contradiction
example : s \ (t ∪ u) ⊆ (s \ t) \ u := by
sorry
example : s ∩ t = t ∩ s := by
ext x
simp only [mem_inter_iff]
constructor
· rintro ⟨xs, xt⟩; exact ⟨xt, xs⟩
· rintro ⟨xt, xs⟩; exact ⟨xs, xt⟩
example : s ∩ t = t ∩ s :=
Set.ext fun _ ↦ ⟨fun ⟨xs, xt⟩ ↦ ⟨xt, xs⟩, fun ⟨xt, xs⟩ ↦ ⟨xs, xt⟩⟩
example : s ∩ t = t ∩ s := by ext x; simp [and_comm]
example : s ∩ t = t ∩ s := by
apply Subset.antisymm
· rintro x ⟨xs, xt⟩; exact ⟨xt, xs⟩
· rintro x ⟨xt, xs⟩; exact ⟨xs, xt⟩
example : s ∩ t = t ∩ s :=
Subset.antisymm sorry sorry
example : s ∩ (s ∪ t) = s := by
sorry
example : s ∪ s ∩ t = s := by
sorry
example : s \ t ∪ t = s ∪ t := by
sorry
example : s \ t ∪ t \ s = (s ∪ t) \ (s ∩ t) := by
sorry
def evens : Set ℕ :=
{ n | Even n }
def odds : Set ℕ :=
{ n | ¬Even n }
example : evens ∪ odds = univ := by
rw [evens, odds]
ext n
simp
exact Nat.even_or_odd n
example (x : ℕ) (h : x ∈ (∅ : Set ℕ)) : False :=
h
example (x : ℕ) : x ∈ (univ : Set ℕ) :=
trivial
#check Nat.Prime.eq_two_or_odd'
example : { n | Nat.Prime n } ∩ { n | n > 2 } ⊆ { n | ¬Even n } := by
sorry
end
section
variable (s t : Set ℕ)
example (h₀ : ∀ x ∈ s, ¬Even x) (h₁ : ∀ x ∈ s, Prime x) : ∀ x ∈ s, ¬Even x ∧ Prime x := by
intro x xs
constructor
· apply h₀ x xs
apply h₁ x xs
example (h : ∃ x ∈ s, ¬Even x ∧ Prime x) : ∃ x ∈ s, Prime x := by
rcases h with ⟨x, xs, _, prime_x⟩
use x, xs
section
variable (ssubt : s ⊆ t)
example (h₀ : ∀ x ∈ t, ¬Even x) (h₁ : ∀ x ∈ t, Prime x) : ∀ x ∈ s, ¬Even x ∧ Prime x := by
sorry
example (h : ∃ x ∈ s, ¬Even x ∧ Prime x) : ∃ x ∈ t, Prime x := by
sorry
end
end
section
variable {α I : Type*}
variable (A B : I → Set α)
variable (s : Set α)
open Set
example : (s ∩ ⋃ i, A i) = ⋃ i, A i ∩ s := by
ext x
simp only [mem_inter_iff, mem_iUnion]
constructor
· rintro ⟨xs, ⟨i, xAi⟩⟩
exact ⟨i, xAi, xs⟩
rintro ⟨i, xAi, xs⟩
exact ⟨xs, ⟨i, xAi⟩⟩
example : (⋂ i, A i ∩ B i) = (⋂ i, A i) ∩ ⋂ i, B i := by
ext x
simp only [mem_inter_iff, mem_iInter]
constructor
· intro h
constructor
· intro i
exact (h i).1
intro i
exact (h i).2
rintro ⟨h1, h2⟩ i
constructor
· exact h1 i
exact h2 i
def primes : Set ℕ :=
{ x | Nat.Prime x }
example : (⋃ p ∈ primes, { x | p ^ 2 ∣ x }) = { x | ∃ p ∈ primes, p ^ 2 ∣ x } :=by
ext
rw [mem_iUnion₂]
simp
example : (⋃ p ∈ primes, { x | p ^ 2 ∣ x }) = { x | ∃ p ∈ primes, p ^ 2 ∣ x } := by
ext
simp
example : (⋂ p ∈ primes, { x | ¬p ∣ x }) ⊆ { x | x = 1 } := by
intro x
contrapose!
simp
apply Nat.exists_prime_and_dvd
#check Nat.exists_infinite_primes
#check eq_univ_of_forall
example : (⋃ p ∈ primes, { x | x ≤ p }) = univ := by
sorry
end
section
open Set
variable {α : Type*} (s : Set (Set α))
example : ⋃₀ s = ⋃ t ∈ s, t := by
ext x
rw [mem_iUnion₂]
simp
example : ⋂₀ s = ⋂ t ∈ s, t := by
ext x
rw [mem_iInter₂]
rfl
end