diff --git a/docs/articles/rCNV.html b/docs/articles/rCNV.html index 728576a..6f33830 100644 --- a/docs/articles/rCNV.html +++ b/docs/articles/rCNV.html @@ -79,7 +79,7 @@

Piyal Karunarathne

-

Last updated: 29 April, +

Last updated: 26 July, 2024

Source: vignettes/rCNV.Rmd @@ -111,7 +111,12 @@

starting with raw (unfiltered) VCF as in the number 1 of the workflow chart. However, if one believes that they have filtered VCFs for the parameters we highlight (see Fig.1 and sub-sections 1.2 and 1.3), they -can start from the number 2 in the workflow shown above.

+can start from the number 2 in the workflow shown above.
NOTE: In the latest iteration of the rCNV package, the +functions sig.hets() and dupGet() use use a +sample based inbreeding coefficient (Fis) to improve the +accuracy of the deviant detection. This Fis is calculated using +the h.zygosity() function; see below for more +information.

 # Start by installing the package if you haven't already done so.  
 # To install the CRAN version
@@ -703,7 +708,7 @@ 

2.2 Deviants detection
 # Run this code for a demonstration of the detection
-dvs<-dupGet(alleleINF,test = c("z.05","chi.05"))
+dvs<-dupGet(alleleINF,test = c("z.05","chi.05"),Fis=0.11)
 # z score and chi-square values given p=0.05 is used here because the data is RADseq generated and probe-biase is neglegible
 
 head(dvs)

@@ -730,7 +735,11 @@

2.2 Deviants detectionhttps://doi.org/10.1101/2022.10.14.512217 for more details on probe bias.
-deviants<-dupGet(alleleINF,test = c("z.all","chi.all"),plot=TRUE,verbose = TRUE)
+# in the new version of the package dupGet function requires Fis value for a more accurate detection of the deviants
+# this is obtained by using the h.zygosity() function as below
+hz<-h.zygosity(parrot,verbose = FALSE) #parrot is the filtered vcf file
+Fis<-mean(hz$Fis,na.rm = TRUE)
+deviants<-dupGet(alleleINF,Fis=Fis,test = c("z.all","chi.all"),plot=TRUE,verbose = TRUE)
 head(deviants)
#>       CHROM    POS     ID NHet    propHet  medRatio NHomRef NHomAlt propHomAlt
 #> 7452     un 705339  67808    9 0.08653846 0.5000000      95       0 0.00000000
diff --git a/docs/exVcf.vcf.gz b/docs/exVcf.vcf.gz
new file mode 100644
index 0000000..75f5f56
Binary files /dev/null and b/docs/exVcf.vcf.gz differ
diff --git a/docs/news/index.html b/docs/news/index.html
index af926b4..a3bc60c 100644
--- a/docs/news/index.html
+++ b/docs/news/index.html
@@ -49,7 +49,10 @@
 
     

rCNV 1.3.0 (third update)

-
  • vstPermutation function added
  • +
    • parallelization enabled
    • +
    • dupValidate function revised
    • +
    • per site Fis added to deviant detection
    • +
    • vstPermutation function added
    • maf modified to remove multi-allelic sites
    • FIT correction added
diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index 4c6ba03..ecafb35 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -3,5 +3,5 @@ pkgdown: 2.0.7 pkgdown_sha: ~ articles: rCNV: rCNV.html -last_built: 2024-04-29T12:37Z +last_built: 2024-07-26T08:56Z diff --git a/docs/reference/ad.correct.html b/docs/reference/ad.correct.html index 892b3b1..06084d8 100644 --- a/docs/reference/ad.correct.html +++ b/docs/reference/ad.correct.html @@ -69,7 +69,13 @@

Usage

-
ad.correct(het.table, gt.table = NULL, odd.correct = TRUE, verbose = TRUE)
+
ad.correct(
+  het.table,
+  gt.table = NULL,
+  odd.correct = TRUE,
+  verbose = TRUE,
+  parallel = FALSE
+)
@@ -91,6 +97,10 @@

Arguments

Value

diff --git a/docs/reference/allele.freq.html b/docs/reference/allele.freq.html index cae1f77..cf4a460 100644 --- a/docs/reference/allele.freq.html +++ b/docs/reference/allele.freq.html @@ -96,10 +96,10 @@

Examplesvcf <- readVCF(vcf.file.path=vcf.file.path) het.table<-hetTgen(vcf,"GT") #> generating table -#> | | | 0% | |===== | 10% | | | 0% | |========== | 20% | | | 0% | |=============== | 30% | | | 0% | |==================== | 40% | | | 0% | |========================= | 50% | | | 0% | |============================== | 60% | | | 0% | |=================================== | 70% | | | 0% | |======================================== | 80% | | | 0% | |============================================= | 90% | | | 0% | |==================================================| 100% +#> | | | 0% | |===== | 10% | |========== | 20% | |=============== | 30% | |==================== | 40% | |========================= | 50% | |============================== | 60% | |=================================== | 70% | |======================================== | 80% | |============================================= | 90% | |==================================================| 100% ad.table<-hetTgen(vcf,"AD") #> generating table -#> | | | 0% | |===== | 10% | | | 0% | |========== | 20% | | | 0% | |=============== | 30% | | | 0% | |==================== | 40% | | | 0% | |========================= | 50% | | | 0% | |============================== | 60% | | | 0% | |=================================== | 70% | | | 0% | |======================================== | 80% | | | 0% | |============================================= | 90% | | | 0% | |==================================================| 100% +#> | | | 0% | |===== | 10% | |========== | 20% | |=============== | 30% | |==================== | 40% | |========================= | 50% | |============================== | 60% | |=================================== | 70% | |======================================== | 80% | |============================================= | 90% | |==================================================| 100% # for individual based AF frQ<-allele.freq(het.table,f.typ="ind") diff --git a/docs/reference/allele.info.html b/docs/reference/allele.info.html index 2eb63e4..bae7ca4 100644 --- a/docs/reference/allele.info.html +++ b/docs/reference/allele.info.html @@ -63,6 +63,7 @@

Usage
allele.info(
   X,
   x.norm = NULL,
+  Fis,
   method = c("MedR", "QN", "pca", "TMM", "TMMex"),
   logratioTrim = 0.3,
   sumTrim = 0.05,
@@ -70,6 +71,7 @@ 

Usage Acutoff = -1e+10, plot.allele.cov = TRUE, verbose = TRUE, + parallel = FALSE, ... )

@@ -86,6 +88,10 @@

Argumentsh.zygosity() function

+ +
method

character. method to be used for normalization (see cpm.normal details). Default TMM

@@ -119,6 +125,10 @@

ArgumentsExamples#> calculating chi-square significance #> | | | 0% | | | 1% | |= | 1% | |= | 2% | |= | 3% | |== | 3% | |== | 4% | |== | 5% | |=== | 5% | |=== | 6% | |=== | 7% | |==== | 7% | |==== | 8% | |==== | 9% | |===== | 9% | |===== | 10% | |===== | 11% | |====== | 11% | |====== | 12% | |====== | 13% | |======= | 13% | |======= | 14% | |======= | 15% | |======== | 15% | |======== | 16% | |======== | 17% | |========= | 17% | |========= | 18% | |========= | 19% | |========== | 19% | |========== | 20% | |========== | 21% | |=========== | 21% | |=========== | 22% | |=========== | 23% | |============ | 23% | |============ | 24% | |============ | 25% | |============= | 25% | |============= | 26% | |============= | 27% | |============== | 27% | |============== | 28% | |============== | 29% | |=============== | 29% | |=============== | 30% | |=============== | 31% | |================ | 31% | |================ | 32% | |================ | 33% | |================= | 33% | |================= | 34% | |================= | 35% | |================== | 35% | |================== | 36% | |================== | 37% | |=================== | 37% | |=================== | 38% | |=================== | 39% | |==================== | 39% | |==================== | 40% | |==================== | 41% | |===================== | 41% | |===================== | 42% | |===================== | 43% | |====================== | 43% | |====================== | 44% | |====================== | 45% | |======================= | 45% | |======================= | 46% | |======================= | 47% | |======================== | 47% | |======================== | 48% | |======================== | 49% | |========================= | 49% | |========================= | 50% | |========================= | 51% | |========================== | 51% | |========================== | 52% | |========================== | 53% | |=========================== | 53% | |=========================== | 54% | |=========================== | 55% | |============================ | 55% | |============================ | 56% | |============================ | 57% | |============================= | 57% | |============================= | 58% | |============================= | 59% | |============================== | 59% | |============================== | 60% | |============================== | 61% | |=============================== | 61% | |=============================== | 62% | |=============================== | 63% | |================================ | 63% | |================================ | 64% | |================================ | 65% | |================================= | 65% | |================================= | 66% | |================================= | 67% | |================================== | 67% | |================================== | 68% | |================================== | 69% | |=================================== | 69% | |=================================== | 70% | |=================================== | 71% | |==================================== | 71% | |==================================== | 72% | |==================================== | 73% | |===================================== | 73% | |===================================== | 74% | |===================================== | 75% | |====================================== | 75% | |====================================== | 76% | |====================================== | 77% | |======================================= | 77% | |======================================= | 78% | |======================================= | 79% | |======================================== | 79% | |======================================== | 80% | |======================================== | 81% | |========================================= | 81% | |========================================= | 82% | |========================================= | 83% | |========================================== | 83% | |========================================== | 84% | |========================================== | 85% | |=========================================== | 85% | |=========================================== | 86% | |=========================================== | 87% | |============================================ | 87% | |============================================ | 88% | |============================================ | 89% | |============================================= | 89% | |============================================= | 90% | |============================================= | 91% | |============================================== | 91% | |============================================== | 92% | |============================================== | 93% | |=============================================== | 93% | |=============================================== | 94% | |=============================================== | 95% | |================================================ | 95% | |================================================ | 96% | |================================================ | 97% | |================================================= | 97% | |================================================= | 98% | |================================================= | 99% | |==================================================| 99% | |==================================================| 100% #> assessing excess of heterozygotes +#> Error in allele.info(ADtable, x.norm = ADnorm): argument "Fis" is missing, with no default -#> | | | 0% | | | 1% | |= | 1% | |= | 2% | |= | 3% | |== | 3% | |== | 4% | |== | 5% | |=== | 5% | |=== | 6% | |=== | 7% | |==== | 7% | |==== | 8% | |==== | 9% | |===== | 9% | |===== | 10% | |===== | 11% | |====== | 11% | |====== | 12% | |====== | 13% | |======= | 13% | |======= | 14% | |======= | 15% | |======== | 15% | |======== | 16% | |======== | 17% | |========= | 17% | |========= | 18% | |========= | 19% | |========== | 19% | |========== | 20% | |========== | 21% | |=========== | 21% | |=========== | 22% | |=========== | 23% | |============ | 23% | |============ | 24% | |============ | 25% | |============= | 25% | |============= | 26% | |============= | 27% | |============== | 27% | |============== | 28% | |============== | 29% | |=============== | 29% | |=============== | 30% | |=============== | 31% | |================ | 31% | |================ | 32% | |================ | 33% | |================= | 33% | |================= | 34% | |================= | 35% | |================== | 35% | |================== | 36% | |================== | 37% | |=================== | 37% | |=================== | 38% | |=================== | 39% | |==================== | 39% | |==================== | 40% | |==================== | 41% | |===================== | 41% | |===================== | 42% | |===================== | 43% | |====================== | 43% | |====================== | 44% | |====================== | 45% | |======================= | 45% | |======================= | 46% | |======================= | 47% | |======================== | 47% | |======================== | 48% | |======================== | 49% | |========================= | 49% | |========================= | 50% | |========================= | 51% | |========================== | 51% | |========================== | 52% | |========================== | 53% | |=========================== | 53% | |=========================== | 54% | |=========================== | 55% | |============================ | 55% | |============================ | 56% | |============================ | 57% | |============================= | 57% | |============================= | 58% | |============================= | 59% | |============================== | 59% | |============================== | 60% | |============================== | 61% | |=============================== | 61% | |=============================== | 62% | |=============================== | 63% | |================================ | 63% | |================================ | 64% | |================================ | 65% | |================================= | 65% | |================================= | 66% | |================================= | 67% | |================================== | 67% | |================================== | 68% | |================================== | 69% | |=================================== | 69% | |=================================== | 70% | |=================================== | 71% | |==================================== | 71% | |==================================== | 72% | |==================================== | 73% | |===================================== | 73% | |===================================== | 74% | |===================================== | 75% | |====================================== | 75% | |====================================== | 76% | |====================================== | 77% | |======================================= | 77% | |======================================= | 78% | |======================================= | 79% | |======================================== | 79% | |======================================== | 80% | |======================================== | 81% | |========================================= | 81% | |========================================= | 82% | |========================================= | 83% | |========================================== | 83% | |========================================== | 84% | |========================================== | 85% | |=========================================== | 85% | |=========================================== | 86% | |=========================================== | 87% | |============================================ | 87% | |============================================ | 88% | |============================================ | 89% | |============================================= | 89% | |============================================= | 90% | |============================================= | 91% | |============================================== | 91% | |============================================== | 92% | |============================================== | 93% | |=============================================== | 93% | |=============================================== | 94% | |=============================================== | 95% | |================================================ | 95% | |================================================ | 96% | |================================================ | 97% | |================================================= | 97% | |================================================= | 98% | |================================================= | 99% | |==================================================| 99% | |==================================================| 100%

diff --git a/docs/reference/cnv.html b/docs/reference/cnv.html index 92bfd8f..c8961a8 100644 --- a/docs/reference/cnv.html +++ b/docs/reference/cnv.html @@ -87,11 +87,7 @@

ArgumentsDetails +

WGS is a test parameter to include or exclude coefficient of variance +(cv) in kmeans. For data sets with more homogeneous depth distribution, +excluding cv improves CNV detection. If you're not certain about this, use +TRUE which is the default.

Author

-

Piyal Karunarathne

+

Piyal Karunarathne Qiujie Zhou

diff --git a/docs/reference/dup.validate.html b/docs/reference/dup.validate.html index a24b574..e92d26d 100644 --- a/docs/reference/dup.validate.html +++ b/docs/reference/dup.validate.html @@ -1,6 +1,6 @@ -Validate detected duplicates — dup.validate • rCNVValidate detected deviants/cnvs — dup.validate • rCNV