forked from udacity/CarND-Behavioral-Cloning-P3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
69 lines (54 loc) · 2.09 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import cv2
import numpy as np
from model import preprocess_image
from model import translate_image
from model import bright_augment_image
from model import random_shadow
from model import load_data
from model import filter_dataset
from model import crop_image
def show_images(data_frame):
for index, row in data_frame[:1].iterrows():
img = row.iloc[0]
print('img-->', img)
image = cv2.imread('data/'+img)
cv2.imshow("original image", image)
#cv2.waitKey(0)
cv2.imwrite('org_image.png', image)
cropped_image = crop_image(image)
cv2.imshow("cropped image", cropped_image)
#cv2.waitKey(0)
cv2.imwrite('cropped_image.png', cropped_image)
flip_image = cv2.flip(image, 1)
cv2.imshow("flipped image", flip_image)
#cv2.waitKey(0)
cv2.imwrite('flip_image.png', flip_image)
org_image = image
for i in range(5):
image, steering = show_translated_images(org_image)
cv2.imshow("translated image-" + str(i), image)
#cv2.waitKey(0)
cv2.imwrite('transated_image-' + str(i)+'.png', image)
org_image = image
for i in range(5):
image = show_augmented_brightness_images(org_image)
cv2.imshow("augmented brightness image-" + str(i), image)
#cv2.waitKey(0)
cv2.imwrite('bright_image-' + str(i)+'.png', image)
org_image = image
for i in range(5):
image = random_shadow(org_image)
cv2.imshow("random shadow image-" + str(i), image)
#cv2.waitKey(0)
cv2.imwrite('shadow_image-' + str(i)+'.png', image)
def show_translated_images(image):
return translate_image(image, np.random.uniform(low=-1.0, high=1.0))
def show_augmented_brightness_images(image):
return bright_augment_image(image)
def show_random_shadow_images(image):
return random_shadow(image)
def proprocessed_image(image):
return preprocess_image(image)
data_frame = load_data()
train, valid, data_frame = filter_dataset(data_frame)
show_images(data_frame)