-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path65_handle_missing_time_data.py
72 lines (54 loc) · 1.52 KB
/
65_handle_missing_time_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Remove missing sequence data
from random import random
from numpy import array
from pandas import concat
from pandas import DataFrame
# generate a sequence of random data
def generate_sequence(n_timesteps):
return [random() for _ in range(n_timesteps)]
# generate data for lstm
def generate_data(n_timesteps):
# generate the sequence
sequence = generate_sequence(n_timesteps)
sequence = array(sequence)
# create lag
df = DataFrame(sequence)
df = concat([df.shift(1),df], axis=1)
# remove rows with missing values
df.dropna(inplace=True)
values = df.values
X, Y = values, values[:,0]
return X,Y
n_timesteps = 10
X,Y = generate_data(n_timesteps)
# print sequence
for i in range(len(X)):
print(X[i], '=>', Y[i])
# Replace missing values
from random import random
from numpy import array
from pandas import concat
from pandas import DataFrame
# generate a sequence of random values
def generate_sequence(n_timesteps):
return [random() for _ in range(n_timesteps)]
# generate data for the lstm
def generate_data(n_timesteps):
# generate sequence
sequence = generate_sequence(n_timesteps)
sequence = array(sequence)
# create lag
df = DataFrame(sequence)
df = concat([df.shift(1), df], axis=1)
# replace missing values with -1
df.fillna(-1, inplace=True)
values = df.values
# specify input and output data
X, Y = values, values[:, 1]
return X, Y
# generate sequence
n_timesteps = 10
X, Y = generate_data(n_timesteps)
# print sequence
for i in range(len(X)):
print(X[i], '=>', Y[i])