-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpolicy.py
242 lines (192 loc) · 7.04 KB
/
policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from __future__ import division
from rl.util import *
class Policy(object):
def __init__(self):
self.mask = None
self.qlogger = None
self.eps_forB = 0
self.eps_forC = 0
def _set_agent(self, agent):
self.agent = agent
def set_mask(self, mask):
self.mask = mask
@property
def metrics_names(self):
return []
@property
def metrics(self):
return []
def select_action(self, **kwargs):
raise NotImplementedError()
def get_config(self):
return {}
def log_qvalue(self, q_values):
if self.qlogger is not None:
if self.mask is not None:
q_values = q_values - self.mask * 1e20
self.qlogger.pre_maxq = self.qlogger.cur_maxq
self.qlogger.cur_maxq = np.max(q_values)
if self.qlogger.maxq < self.qlogger.cur_maxq:
self.qlogger.maxq = self.qlogger.cur_maxq
self.qlogger.mean_maxq.append(self.qlogger.cur_maxq)
class RandomPolicy(Policy):
def select_action(self, q_values):
#self.log_qvalue(q_values)
assert q_values.ndim == 1
nb_actions = q_values.shape[0]
action = np.random.random_integers(0, nb_actions - 1)
return action
class BoltzmannQPolicy(Policy):
def __init__(self, tau=1.):
super(BoltzmannQPolicy, self).__init__()
self.tau = tau
def select_action(self, q_values):
#self.log_qvalue(q_values)
assert q_values.ndim == 1
nb_actions = q_values.shape[0]
q_values = q_values.astype('float64')
q_values /= self.tau
q_values -= np.max(q_values)
exp_values = np.exp(q_values)
sum_exp = np.sum(exp_values)
assert sum_exp >= 1.0
probs = exp_values / sum_exp
action = np.random.choice(range(nb_actions), p=probs)
return action
def get_config(self):
config = super(BoltzmannQPolicy, self).get_config()
return config
class GreedyQPolicy(Policy):
def select_action(self, q_values):
#self.log_qvalue(q_values)
assert q_values.ndim == 1
action = np.argmax(q_values)
return action
class MaskedRandomPolicy(Policy):
def __init__(self):
super(MaskedRandomPolicy, self).__init__()
self.mask = None
def select_action(self, q_values):
#self.log_qvalue(q_values)
assert q_values.ndim == 1
nb_actions = q_values.shape[0]
probs = np.ones(nb_actions)
if self.mask is not None:
probs -= self.mask
sum_probs = np.sum(probs)
assert sum_probs >= 1.0
probs /= sum_probs
action = np.random.choice(range(nb_actions), p=probs)
return action
def get_config(self):
config = super(MaskedRandomPolicy, self).get_config()
return config
class MaskedBoltzmannQPolicy(Policy):
def __init__(self, tau=1.):
super(MaskedBoltzmannQPolicy, self).__init__()
self.minq = 1e20
self.maxq = -1e20
self.tau = tau
self.mask = None
def select_action(self, q_values):
#self.log_qvalue(q_values)
assert q_values.ndim == 1
nb_actions = q_values.shape[0]
q_values = q_values.astype('float64')
if self.mask is not None:
q_values -= self.mask * 1e20
q_values /= self.tau
q_values -= np.max(q_values)
exp_values = np.exp(q_values)
sum_exp = np.sum(exp_values)
assert sum_exp >= 1.0
probs = exp_values / sum_exp
action = np.random.choice(range(nb_actions), p=probs)
return action
def get_config(self):
config = super(MaskedBoltzmannQPolicy, self).get_config()
return config
class MaskedGreedyQPolicy(Policy):
def __init__(self):
super(MaskedGreedyQPolicy, self).__init__()
self.mask = None
def select_action(self, q_values):
#self.log_qvalue(q_values)
assert q_values.ndim == 1
if self.mask is not None:
q_values -= self.mask * 1e20
action = np.argmax(q_values)
return action
class EpsABPolicy(Policy):
def __init__(self, policyA, policyB, eps_forB, half_eps_step=0, eps_min=0):
super(EpsABPolicy, self).__init__()
self.policyA = policyA
self.policyB = policyB
self.eps_forB = eps_forB
self.eps_min=eps_min
if half_eps_step==0:
self.eps_decay_rate_each_step = 1.0
else:
self.eps_decay_rate_each_step = np.power(0.5, 1.0/half_eps_step)
def select_action(self, q_values):
#self.log_qvalue(q_values)
assert q_values.ndim == 1
if np.random.uniform() < self.eps_forB:
action = self.policyB.select_action(q_values)
else:
action = self.policyA.select_action(q_values)
self.eps_forB *= self.eps_decay_rate_each_step
self.eps_forB = max(self.eps_min, self.eps_forB)
return action
def get_config(self):
config = super(EpsABPolicy, self).get_config()
config['policyA'] = self.policyA
config['policyB'] = self.policyB
config['eps_forB'] = self.eps_forB
config['eps_decay_rate_each_step'] = self.eps_decay_rate_each_step
return config
def set_mask(self, mask):
self.mask = mask
self.policyA.set_mask(self.mask)
self.policyB.set_mask(self.mask)
class EpsABCPolicy(Policy):
def __init__(self, policyA, policyB, policyC, eps_forB, eps_forC, half_eps_step=0, eps_min=0):
super(EpsABCPolicy, self).__init__()
self.policyA = policyA
self.policyB = policyB
self.policyC = policyC
self.eps_forB = eps_forB
self.eps_forC = eps_forC
self.eps_min = eps_min
if half_eps_step == 0:
self.eps_decay_rate_each_step = 1.0
else:
self.eps_decay_rate_each_step = np.power(0.5, 1.0 / half_eps_step)
def select_action(self, q_values):
#self.log_qvalue(q_values)
assert q_values.ndim == 1
rand = np.random.uniform()
if rand < self.eps_forC:
action = self.policyC.select_action(q_values)
elif rand < self.eps_forC + self.eps_forB:
action = self.policyB.select_action(q_values)
else:
action = self.policyA.select_action(q_values)
self.eps_forB *= self.eps_decay_rate_each_step
self.eps_forC *= self.eps_decay_rate_each_step
self.eps_forB = max(self.eps_min, self.eps_forB)
self.eps_forC = max(self.eps_min, self.eps_forC)
return action
def get_config(self):
config = super(EpsABCPolicy, self).get_config()
config['policyA'] = self.policyA
config['policyB'] = self.policyB
config['policyC'] = self.policyC
config['eps_forB'] = self.eps_forB
config['eps_decay_rate_each_step'] = self.eps_decay_rate_each_step
return config
def set_mask(self, mask):
self.mask = mask
self.policyA.set_mask(self.mask)
self.policyB.set_mask(self.mask)
self.policyC.set_mask(self.mask)