-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning_env.py
169 lines (125 loc) · 5.83 KB
/
learning_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import math
import torch.optim as optim
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import datasets, transforms
import modules
class Environment(object):
def __init__(self, args, dynet, libr):
self.dynet = dynet
self.libr = libr
self.num_actions = len(dynet.library) + 1
self.embedding_size = libr.embedding_size
self.zero_state = Variable(torch.zeros(1, args.lstm_size))
self.truncate_train_batches = args.truncate_train_batches
self.truncate_valid_batches = args.truncate_valid_batches
self.epoch = 0
self.args = args
self.prep_data()
self.last_valid_accuracy = 0
self.module_seq = []
self.optimizer = optim.SGD(self.dynet.parameters(), lr=args.lr, momentum=args.momentum)
def reset(self):
self.module_seq = []
return self.zero_state
def step(self, action):
if (action < self.num_actions - 1) and (action >= 0):
self.module_seq.append(action)
state = self.libr(action)
reward = 0
done = False
return state, reward, done, None
elif action == self.num_actions - 1:
reward = self.train_fixed_model()
state = self.libr(action)
done = True
return state, reward, done, None
else:
raise Exception("Action out of range")
def train_fixed_model(self):
self.dynet.set_structure(self.module_seq)
self.dynet.train()
n_batches = len(self.train_loader)
train_batches = n_batches * (1 - self.args.valid_fraction)
valid_accuracies = []
test_loss = 0
correct = 0
valid_size = 0
for batch_idx, (data, target) in enumerate(self.train_loader):
if batch_idx <= train_batches:
if batch_idx > self.truncate_train_batches:
continue
self.dynet.train()
data, target = Variable(data), Variable(target)
if self.args.cuda:
data, target = data.cuda(), target.cuda()
self.optimizer.zero_grad()
output = self.dynet(data)
loss = F.nll_loss(output, target)
loss.backward()
self.optimizer.step()
if batch_idx % self.args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
self.epoch, batch_idx * len(data) * train_batches / n_batches,
len(self.train_loader.dataset) * train_batches / n_batches,
100. * batch_idx / train_batches, loss.data[0]))
else:
if batch_idx - train_batches > self.truncate_valid_batches:
continue
self.dynet.eval()
data, target = Variable(data, volatile=True), Variable(target)
if self.args.cuda:
data, target = data.cuda(), target.cuda()
output = self.dynet(data)
test_loss += F.nll_loss(output, target).data[0]
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
len_valid = min(n_batches - train_batches, self.truncate_valid_batches)
test_loss = test_loss / len_valid
accuracy = correct / (len_valid * self.args.batch_size)
print('\Validation set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len_valid,
100. * correct / len_valid))
if (self.epoch % self.args.test_epochs) == 0:
self.test_model()
return accuracy
def test_model(self):
self.dynet.eval()
test_loss = 0
correct = 0
for data, target in self.test_loader:
if self.args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = self.dynet(data)
test_loss += F.nll_loss(output, target).data[0]
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
test_loss = test_loss
test_loss /= len(self.test_loader) # loss function already averages over batch size
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(self.test_loader.dataset),
100. * correct / len(self.test_loader.dataset)))
def prep_data(self):
# The output of torchvision datasets are PILImage images of range [0, 1].
# We transform them to Tensors of normalized range [-1, 1]
if self.args.dataset == 'MNIST':
kwargs = {'num_workers': 1, 'pin_memory': True} if self.args.cuda else {}
self.train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=self.args.batch_size, shuffle=True, **kwargs)
self.test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=self.args.batch_size, shuffle=True, **kwargs)
else:
raise Exception("Must specify a supported dataset")