-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathspectral.py
164 lines (127 loc) · 4.41 KB
/
spectral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import matplotlib.pyplot as plt
import numpy as np
"""
Create Your Spectral Simulation (With Python)
Philip Mocz 2023, @PMocz
Simulate the compressible Navier-Stokes equations
Method based on:
https://levelup.gitconnected.com/create-your-own-navier-stokes-spectral-method-fluid-simulation-with-python-3f37405524f4
see link for details
"""
# fancy plot
mask = [[1, 0, 0, 0, 1, 1, 0, 0, 0, 1],
[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 0, 0, 1, 1, 1, 1],
[1, 1, 0, 0, 0, 0, 0, 0, 1, 1],
[1, 0, 0, 0, 1, 1, 0, 0, 0, 1],
[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 0, 0, 1, 1, 1, 1],
[1, 1, 0, 0, 0, 0, 0, 0, 1, 1]]
def grad(v, kx, ky):
""" return gradient of v """
v_hat = np.fft.fftn(v)
dvx = np.real(np.fft.ifftn( 1j*kx * v_hat))
dvy = np.real(np.fft.ifftn( 1j*ky * v_hat))
return dvx, dvy
def apply_dealias(f, dealias):
""" apply 2/3 rule dealias to field f """
f_hat = dealias * np.fft.fftn(f)
return np.real(np.fft.ifftn( f_hat ))
def diffusion_solve( v, dt, nu, kSq ):
""" solve the diffusion equation over a timestep dt, given viscosity nu """
v_hat = (np.fft.fftn( v )) / (1.0+dt*nu*kSq)
v = np.real(np.fft.ifftn(v_hat))
return v
def main():
""" Spectral Simulation """
# Simulation parameters
N = 100 # resolution
courant_fac = 0.5 # Courant factor
t = 0 # current time of the simulation
tEnd = 1/np.sqrt(3) # time at which simulation ends
Nout = 100 # number of frames to draw
nu = 0.001 # viscosity (spectral methods need explicit viscosity)
saveFrames = False # save frames to create movie
# Mesh
Lbox = 1. # box size
dx = Lbox / N
xlin = np.linspace(0.5*dx, Lbox-0.5*dx, N)
X, Y = np.meshgrid( xlin, xlin )
# Generate Initial Conditions
rho = 0*X + 1
vx = 0.5*np.sin(2*np.pi*Y)
vy = 0.1*np.sin(4*np.pi*X)*np.cos(2*np.pi*Y)**2
# Fourier Space Variables
klin = 2.0 * np.pi / Lbox * np.arange(-N/2, N/2)
kmax = np.max(klin)
kx, ky = np.meshgrid(klin, klin)
kx = np.fft.ifftshift(kx)
ky = np.fft.ifftshift(ky)
kSq = kx**2 + ky**2
# De-alias with the 2/3 rule
dealias = (np.abs(kx) < (2./3.)*kmax) & (np.abs(ky) < (2./3.)*kmax)
# prep figure
fig = plt.figure(figsize=(4,4), dpi=100)
cmap = plt.cm.bwr
cmap.set_bad('LightGray')
outputCount = 1
# Simulation Main Loop
while t < tEnd:
# get time step (CFL) = dx / max signal speed
dt = courant_fac * np.min( dx / (1 + np.sqrt(vx**2+vy**2)) )
plotThisTurn = False
if t + dt > outputCount*tEnd/Nout:
dt = outputCount*tEnd/Nout - t
plotThisTurn = True
# Advection: rhs = -(v.grad)v
drho_x, drho_y = grad(rho, kx, ky)
dvx_x, dvx_y = grad(vx, kx, ky)
dvy_x, dvy_y = grad(vy, kx, ky)
rhs_rho = -(vx * drho_x + vy * drho_y) - rho * (dvx_x + dvy_y)
rhs_vx = -(vx * dvx_x + vy * dvx_y)
rhs_vy = -(vx * dvy_x + vy * dvy_y)
rhs_rho = apply_dealias(rhs_rho, dealias)
rhs_vx = apply_dealias(rhs_vx, dealias)
rhs_vy = apply_dealias(rhs_vy, dealias)
rho += dt * rhs_rho
vx += dt * rhs_vx
vy += dt * rhs_vy
# Pressure
P = rho
dPx, dPy = grad(P, kx, ky)
# Add pressure
#rho += -dt * rho * (dvx_x + dvy_y)
vx += - dt * dPx / rho # apply_dealias(dt * dPx / rho, dealias)
vy += - dt * dPy / rho # apply_dealias(dt * dPy / rho, dealias)
# Diffusion solve (implicit)
vx = diffusion_solve( vx, dt, nu, kSq )
vy = diffusion_solve( vy, dt, nu, kSq )
# update time
t += dt
# Plot in real time
if (plotThisTurn):
plt.cla()
plot_field = 1.*rho
if saveFrames:
# fancy plot to illustrate FV concept
plot_field[np.tile(mask,(int(N/10),int(N/10)))==0] = np.nan
plt.imshow(plot_field, cmap=cmap)
plt.clim(.85,1.15)
ax = plt.gca()
ax.invert_yaxis()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax.set_aspect('equal')
if saveFrames:
plt.text(0.5*N, 0.9*N, "Spectral", fontsize=20, horizontalalignment='center')
plt.savefig('tmp/spec%03d.png' % (outputCount-1),dpi=100, bbox_inches='tight', pad_inches=0)
outputCount += 1
plt.pause(0.001)
# Save figure
plt.savefig('spectral.png',dpi=240)
plt.show()
return 0
if __name__== "__main__":
main()