-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsph.py
248 lines (185 loc) · 5.93 KB
/
sph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import gamma
"""
Create Your Own Smoothed-Particle-Hydrodynamics Simulation (With Python)
Philip Mocz 2023, @PMocz
Simulate the compressible Euler equations
Method based on:
https://philip-mocz.medium.com/create-your-own-smoothed-particle-hydrodynamics-simulation-with-python-76e1cec505f1
see link for details
"""
def W( x, y, h ):
"""
Gausssian Smoothing kernel (2D)
x is a vector/matrix of x positions
y is a vector/matrix of y positions
h is the smoothing length
w is the evaluated smoothing function
"""
r = np.sqrt(x**2 + y**2)
w = (1.0 / (h*np.sqrt(np.pi)))**2 * np.exp( -r**2 / h**2)
return w
def gradW( x, y, h ):
"""
Gradient of the Gausssian Smoothing kernel (2D)
x is a vector/matrix of x positions
y is a vector/matrix of y positions
h is the smoothing length
wx, wy is the evaluated gradient
"""
r = np.sqrt(x**2 + y**2)
n = -2 * np.exp( -r**2 / h**2) / h**4 / np.pi
wx = n * x
wy = n * y
return wx, wy
def getPairwiseSeparations( ri, rj ):
"""
Get pairwise desprations between 2 sets of coordinates
ri is an M x 2 matrix of positions
rj is an N x 2 matrix of positions
dx, dy are M x N matrices of separations
"""
M = ri.shape[0]
N = rj.shape[0]
# positions ri = (x,y)
rix = ri[:,0].reshape((M,1))
riy = ri[:,1].reshape((M,1))
# other set of points positions rj = (x,y)
rjx = rj[:,0].reshape((N,1))
rjy = rj[:,1].reshape((N,1))
# matrices that store all pairwise particle separations: r_i - r_j
dx = rix - rjx.T
dy = riy - rjy.T
# periodic domain
dx[dx <= -0.5] = dx[dx <= -0.5] + 1
dy[dy <= -0.5] = dy[dy <= -0.5] + 1
dx[dx > 0.5] = dx[dx > 0.5] - 1
dy[dy > 0.5] = dy[dy > 0.5] - 1
return dx, dy
def getDensity( dx, dy, m, h ):
"""
Get Density at sampling loctions from SPH particle distribution
dx, dy are N x N matrices of separations
m is the particle mass
h is the smoothing length
rho is N x 1 vector of densities
"""
N = dx.shape[0]
rho = m * np.sum( W(dx, dy, h), 1 ).reshape((N,1))
return rho
def getAcc( pos, vel, rho, m, h, dx, dy ):
"""
Calculate the acceleration on each SPH particle
pos is an N x 2 matrix of positions
vel is an N x 2 matrix of velocities
rho is N x 1 vector of densities
m is the particle mass
h is the smoothing length
dx, dy are N x N matrices of separations
a is N x 2 matrix of accelerations
"""
N = pos.shape[0]
# Get the pressures
P = rho
# Get pairwise distances and gradients
dWx, dWy = gradW( dx, dy, h )
# Calculate/add artificial viscosity (Monaghan 1992)
# alpha = 1.
# beta = 2.
# etaSq = 0.01 * h * h
# vx = vel[:,0].reshape((N,1))
# vy = vel[:,1].reshape((N,1))
# v_dot_r = (vx - vx.T) * dx + (vy - vy.T) * dy
# mu = h * v_dot_r / ( dx*dx+dy*dy + etaSq )
# mu[v_dot_r > 0] = 0
# fac = 0
# Pi = (-alpha * mu + beta * mu * mu) / (0.5*(rho + rho.T))
Pi = 0
# Add Pressure contribution to accelerations
ax = - m * np.sum( ( P/rho**2 + P.T/rho.T**2 + Pi ) * dWx, 1).reshape((N,1))
ay = - m * np.sum( ( P/rho**2 + P.T/rho.T**2 + Pi ) * dWy, 1).reshape((N,1))
# pack together the acceleration components
a = np.hstack((ax,ay))
return a
def main():
""" SPH simulation """
# TODO: add adaptive smoothing h
# TODO: add compact kernel
# TODO: add artificial viscosity
# TODO: speed-up neighbor-search to O(N log N) instead of brute-force O(N^2)
# WARNING: without these features, code may not be able to handle loong-term evolution of this flow
# Simulation parameters
N = 50**2 # Number of particles
t = 0 # current time of the simulation
tEnd = 1/np.sqrt(3) # time at which simulation ends
Nout = 100 # number of frames to draw
saveFrames = False # save frames to create movie
Nlin = int(np.sqrt(N))
h = np.sqrt(2)/Nlin # smoothing length
# Generate Initial Conditions
Lbox = 1. # box size
M = 1 # total mass
dt = 0.3*h # timestep
dx = Lbox / Nlin
xlin = np.linspace(0.5*dx, Lbox-0.5*dx, Nlin)
X, Y = np.meshgrid( xlin, xlin )
vx = 0.5*np.sin(2*np.pi*Y)
vy = 0.1*np.sin(4*np.pi*X)*np.cos(2*np.pi*Y)**2
m = M/N # single particle mass
pos = np.reshape(np.array([X.flatten(),Y.flatten()]).T,(Nlin*Nlin,2))
vel = np.reshape(np.array([vx.flatten(),vy.flatten()]).T,(Nlin*Nlin,2))
# calculate initial acceleration
dx, dy = getPairwiseSeparations( pos, pos )
rho = getDensity( dx, dy, m, h )
acc = getAcc( pos, vel, rho, m, h, dx, dy )
# prep figure
fig = plt.figure(figsize=(4,4), dpi=100)
cmap = plt.cm.bwr
cmap.set_bad('LightGray')
outputCount = 1
# Simulation Main Loop
while t < tEnd:
dt = 0.3*h
plotThisTurn = False
if t + dt > outputCount*tEnd/Nout:
dt = outputCount*tEnd/Nout - t
plotThisTurn = True
# (1/2) kick
vel += acc * dt/2
# drift
pos += vel * dt
# apply periodic BCs
pos = pos % Lbox
# update accelerations
dx, dy = getPairwiseSeparations( pos, pos )
rho = getDensity( dx, dy, m, h )
acc = getAcc( pos, vel, rho, m, h, dx, dy )
# (1/2) kick
vel += acc * dt/2
# update time
t += dt
print(t)
# plot in real time
if (plotThisTurn):
plt.cla()
cval = rho.flatten()
plt.scatter(pos[:,0],pos[:,1], c=cval, cmap=cmap, s=16, alpha=1)
plt.clim(.85,1.15)
ax = plt.gca()
ax.set(xlim=(0,1), ylim=(0,1))
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax.set_aspect('equal')
if saveFrames:
plt.text(0.5*Lbox, 0.9*Lbox, "SPH", fontsize=20, horizontalalignment='center')
ax.set(facecolor = "LightGray")
plt.savefig('tmp/sph%03d.png' % (outputCount-1),dpi=100, bbox_inches='tight', pad_inches=0)
outputCount += 1
plt.pause(0.001)
# Save figure
plt.savefig('sph.png',dpi=240)
plt.show()
return 0
if __name__== "__main__":
main()