-
Notifications
You must be signed in to change notification settings - Fork 3
/
vanilla_gan.py
225 lines (179 loc) · 7.43 KB
/
vanilla_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import time
import math
import random
import config
import itertools
import scipy.misc
import PIL
import numpy as np
from glob import glob
import tensorflow as tf
from six.moves import xrange
from tensorflow.examples.tutorials.mnist import input_data
class Generator:
def __init__(self, depths=[128, 784]):
self.depths = depths
self.reuse = False
def __call__(self, inputs):
inputs = tf.convert_to_tensor(inputs)
inputs = tf.cast(inputs, tf.float32)
with tf.variable_scope('generator', reuse=self.reuse):
with tf.variable_scope('fc1'):
outputs = tf.layers.dense(inputs, self.depths[0], kernel_initializer=tf.random_normal_initializer(stddev=0.02), name='fc')
outputs = tf.nn.relu(outputs, name='outputs')
with tf.variable_scope('fc2'):
outputs = tf.layers.dense(outputs, self.depths[1], kernel_initializer=tf.random_normal_initializer(stddev=0.02), name='fc')
outputs = tf.nn.sigmoid(outputs, name='outputs')
self.reuse = True
return outputs
class Discriminator:
def __init__(self, depths=[128, 1]):
self.depths = depths
self.reuse = False
def __call__(self, inputs):
inputs = tf.convert_to_tensor(inputs)
inputs = tf.cast(inputs, tf.float32)
with tf.variable_scope('discriminator', reuse=self.reuse):
with tf.variable_scope('fc1'):
outputs = tf.layers.dense(inputs, self.depths[0], kernel_initializer=tf.random_normal_initializer(stddev=0.02), name='fc')
outputs = tf.nn.relu(outputs, name='outputs')
with tf.variable_scope('fc2'):
outputs = tf.layers.dense(outputs, self.depths[1], kernel_initializer=tf.random_normal_initializer(stddev=0.02), name='fc')
res = tf.nn.sigmoid(outputs, name='outputs')
self.reuse = True
return res, outputs
# merge picture
def merge(images, size):
h, w = images.shape[1], images.shape[2]
img = np.zeros((int(h * size[0]), int(w * size[1]), 3))
for id, image in enumerate(images):
i = id // size[0]
j = id % size[1]
i = int(i)
j = int(j)
img[i * h: (i + 1) * h, j * w: (j + 1) * w, :] = image
return img
# save merge picture
def save_images(images, size, image_path):
images = images
img = merge(images, size)
return scipy.misc.imsave(image_path, (255*img).astype(np.uint8))
def create_file(path):
if not os.path.exists(path):
os.makedirs(path)
class Vanilla_GAN:
def __init__(self, sess, dataset):
self.sess = sess;
self.batch_size = 100
self.z_dim = 100
self.g = Generator()
self.d = Discriminator()
#self.z = tf.random_uniform([self.batch_size, self.z_dim], minval=-1.0, maxval=1.0)
self.sample_size = 100
self.model_name = "Vanilla_GAN.models"
self.data_name = dataset
self.name = self.model_name + "_" + self.data_name + "_"
self.checkpoint_dir = self.name + "checkpoint"
self.sample_dir = "./" + self.name + "samples/"
self.logs_dir = "./" + self.name + "logs"
create_file(self.checkpoint_dir)
create_file(self.sample_dir)
create_file(self.logs_dir)
self.build()
def build(self):
self.images = tf.placeholder(tf.float32, [None, 784], name='real_images')
self.z = tf.placeholder(tf.float32, [None, self.z_dim], name='z')
self.z_sum = tf.summary.histogram("z", self.z)
self.G = self.g(self.z)
self.D, self.D_logits = self.d(self.images)
self.D_, self.D_logits_ = self.d(self.G)
self.d_sum = tf.summary.histogram("d", self.D)
self.d__sum = tf.summary.histogram("d_", self.D_)
#self.G_sum = tf.summary.image("G", tf.reshape(self.G, [None, 28, 28]))
self.d_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_logits,
labels=tf.ones_like(self.D)))
self.d_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_logits_,
labels=tf.zeros_like(self.D_)))
self.g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_logits_,
labels=tf.ones_like(self.D_)))
self.d_loss = self.d_loss_real + self.d_loss_fake
self.d_loss_real_sum = tf.summary.scalar("d_loss_real", self.d_loss_real)
self.d_loss_fake_sum = tf.summary.scalar("d_loss_fake", self.d_loss_fake)
self.g_loss_sum = tf.summary.scalar("g_loss", self.g_loss)
self.d_loss_sum = tf.summary.scalar("d_loss", self.d_loss)
t_vars = tf.trainable_variables()
self.d_vars = [var for var in t_vars if 'discriminator' in var.name]
self.g_vars = [var for var in t_vars if 'generator' in var.name]
self.saver = tf.train.Saver(max_to_keep=1)
def train(self):
mnist = input_data.read_data_sets('./MNIST_data', one_hot=True)
d_optim = tf.train.AdamOptimizer().minimize(self.d_loss, var_list=self.d_vars)
g_optim = tf.train.AdamOptimizer().minimize(self.g_loss, var_list=self.g_vars)
try:
tf.global_variables_initializer().run()
except:
tf.initialize_all_variables().run()
self.g_sum = tf.summary.merge([self.z_sum, self.d__sum, self.d_loss_fake_sum, self.g_loss_sum])
self.d_sum = tf.summary.merge([self.z_sum, self.d_sum, self.d_loss_real_sum, self.d_loss_sum])
self.writer = tf.summary.FileWriter(self.logs_dir, self.sess.graph)
# for sample picture
sample_z = np.random.uniform(-1, 1, size=(self.sample_size, self.z_dim))
sample_images, _ = mnist.test.next_batch(100)
#sample_images = (sample_images - 0.5) * 2.0
start_time = time.time()
# load check point
if self.load(self.checkpoint_dir):
print('load the checkpoint!')
else:
print('cannot load the checkpoint and init all the varibale')
for id in range(1000001):
# mini_batch
batch_images, batch_labels = mnist.train.next_batch(self.batch_size)
#batch_images = (batch_images - 0.5) * 2.0
batch_z = np.random.uniform(-1, 1, [self.batch_size, self.z_dim]).astype(np.float32)
# before = batch_images.reshape(-1, 28, 28, 1)
# print(before[0])
# save_images(before, [10, 10], self.sample_dir + 'before.png')
# update D and G
#if id % 100 == 0:
_, summary_str, err_d = self.sess.run([d_optim, self.d_sum, self.d_loss],
feed_dict={self.images: batch_images, self.z: batch_z})
self.writer.add_summary(summary_str, id)
_, summary_str, err_g = self.sess.run([g_optim, self.g_sum, self.g_loss],
feed_dict={self.z: batch_z})
self.writer.add_summary(summary_str, id)
# err_d_fake = self.d_loss_fake.eval({self.z: batch_z})
# err_d_real = self.d_loss_real.eval({self.images: batch_images})
# err_g = self.g_loss.eval({self.z: batch_z})
if id % 100 == 0:
print("Epoch: [{:4d}/{:4d}] time: {:4.4f}, d_loss: {:.8f}, g_loss: {:.8f}".format(
id, 1000000, time.time() - start_time, err_d, err_g))
if id % 10000 == 0:
samples, d_loss, g_loss = self.sess.run(
[self.G, self.d_loss, self.g_loss],
feed_dict={self.z: sample_z, self.images: sample_images}
)
samples = samples.reshape(-1, 28, 28, 1)
# print('shape of samples = ')
# print(samples[0])
save_images(samples, [10, 10], self.sample_dir + 'sample_{:07d}.png'.format(id))
print("[Sample] d_loss: {:.8f}, g_loss: {:.8f}".format(d_loss, g_loss))
if id % 50000 == 0:
self.save(self.checkpoint_dir)
print("Save the checkpoint for the count: {:4d}".format(id))
def save(self, checkpoint_dir):
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.saver.save(self.sess, os.path.join(checkpoint_dir, self.model_name))
def load(self, checkpoint_dir):
print('Being to load the checkpoint')
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
self.saver.restore(self.sess, ckpt.model_checkpoint_path)
return True
else:
return False