-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathtrain_vgg.py
264 lines (213 loc) · 10.7 KB
/
train_vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import tensorflow as tf
import os
import glob
from skimage import io, transform
from tensorflow.python.framework import graph_util
import collections
path = 'vgg16/picture/'
w = 224
h = 224
c = 3
def read_img(path):
cate = [path + x for x in os.listdir(path) if os.path.isdir(path + x)]
imgs = []
labels = []
for idx, folder in enumerate(cate):
for im in glob.glob(folder + '/*.jpg'):
print('reading the image: %s' % (im))
img = io.imread(im)
img = transform.resize(img, (w, h, c))
imgs.append(img)
labels.append(idx)
return np.asarray(imgs, np.float32), np.asarray(labels, np.int32)
data, label = read_img(path)
num_example = data.shape[0]
arr = np.arange(num_example)
np.random.shuffle(arr)
data = data[arr]
label = label[arr]
ratio = 0.8
s = np.int(num_example * ratio)
x_train = data[:s]
y_train = label[:s]
x_val = data[s:]
y_val = label[s:]
def build_network(height, width, channel):
x = tf.placeholder(tf.float32, shape=[None, height, width, channel], name='input')
y = tf.placeholder(tf.int64, shape=[None, 2], name='labels_placeholder')
def weight_variable(shape, name="weights"):
initial = tf.truncated_normal(shape, dtype=tf.float32, stddev=0.1)
return tf.Variable(initial, name=name)
def bias_variable(shape, name="biases"):
initial = tf.constant(0.1, dtype=tf.float32, shape=shape)
return tf.Variable(initial, name=name)
def conv2d(input, w):
return tf.nn.conv2d(input, w, [1, 1, 1, 1], padding='SAME')
def pool_max(input):
return tf.nn.max_pool(input,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool1')
def fc(input, w, b):
return tf.matmul(input, w) + b
# conv1
with tf.name_scope('conv1_1') as scope:
kernel = weight_variable([3, 3, 3, 64])
biases = bias_variable([64])
output_conv1_1 = tf.nn.relu(conv2d(x, kernel) + biases, name=scope)
with tf.name_scope('conv1_2') as scope:
kernel = weight_variable([3, 3, 64, 64])
biases = bias_variable([64])
output_conv1_2 = tf.nn.relu(conv2d(output_conv1_1, kernel) + biases, name=scope)
pool1 = pool_max(output_conv1_2)
# conv2
with tf.name_scope('conv2_1') as scope:
kernel = weight_variable([3, 3, 64, 128])
biases = bias_variable([128])
output_conv2_1 = tf.nn.relu(conv2d(pool1, kernel) + biases, name=scope)
with tf.name_scope('conv2_2') as scope:
kernel = weight_variable([3, 3, 128, 128])
biases = bias_variable([128])
output_conv2_2 = tf.nn.relu(conv2d(output_conv2_1, kernel) + biases, name=scope)
pool2 = pool_max(output_conv2_2)
# conv3
with tf.name_scope('conv3_1') as scope:
kernel = weight_variable([3, 3, 128, 256])
biases = bias_variable([256])
output_conv3_1 = tf.nn.relu(conv2d(pool2, kernel) + biases, name=scope)
with tf.name_scope('conv3_2') as scope:
kernel = weight_variable([3, 3, 256, 256])
biases = bias_variable([256])
output_conv3_2 = tf.nn.relu(conv2d(output_conv3_1, kernel) + biases, name=scope)
with tf.name_scope('conv3_3') as scope:
kernel = weight_variable([3, 3, 256, 256])
biases = bias_variable([256])
output_conv3_3 = tf.nn.relu(conv2d(output_conv3_2, kernel) + biases, name=scope)
pool3 = pool_max(output_conv3_3)
# conv4
with tf.name_scope('conv4_1') as scope:
kernel = weight_variable([3, 3, 256, 512])
biases = bias_variable([512])
output_conv4_1 = tf.nn.relu(conv2d(pool3, kernel) + biases, name=scope)
with tf.name_scope('conv4_2') as scope:
kernel = weight_variable([3, 3, 512, 512])
biases = bias_variable([512])
output_conv4_2 = tf.nn.relu(conv2d(output_conv4_1, kernel) + biases, name=scope)
with tf.name_scope('conv4_3') as scope:
kernel = weight_variable([3, 3, 512, 512])
biases = bias_variable([512])
output_conv4_3 = tf.nn.relu(conv2d(output_conv4_2, kernel) + biases, name=scope)
pool4 = pool_max(output_conv4_3)
# conv5
with tf.name_scope('conv5_1') as scope:
kernel = weight_variable([3, 3, 512, 512])
biases = bias_variable([512])
output_conv5_1 = tf.nn.relu(conv2d(pool4, kernel) + biases, name=scope)
with tf.name_scope('conv5_2') as scope:
kernel = weight_variable([3, 3, 512, 512])
biases = bias_variable([512])
output_conv5_2 = tf.nn.relu(conv2d(output_conv5_1, kernel) + biases, name=scope)
with tf.name_scope('conv5_3') as scope:
kernel = weight_variable([3, 3, 512, 512])
biases = bias_variable([512])
output_conv5_3 = tf.nn.relu(conv2d(output_conv5_2, kernel) + biases, name=scope)
pool5 = pool_max(output_conv5_3)
#fc6
with tf.name_scope('fc6') as scope:
shape = int(np.prod(pool5.get_shape()[1:]))
kernel = weight_variable([shape, 4096])
biases = bias_variable([4096])
pool5_flat = tf.reshape(pool5, [-1, shape])
output_fc6 = tf.nn.relu(fc(pool5_flat, kernel, biases), name=scope)
#fc7
with tf.name_scope('fc7') as scope:
kernel = weight_variable([4096, 4096])
biases = bias_variable([4096])
output_fc7 = tf.nn.relu(fc(output_fc6, kernel, biases), name=scope)
#fc8
with tf.name_scope('fc8') as scope:
kernel = weight_variable([4096, 2])
biases = bias_variable([2])
output_fc8 = tf.nn.relu(fc(output_fc7, kernel, biases), name=scope)
finaloutput = tf.nn.softmax(output_fc8, name="softmax")
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=finaloutput, labels=y))
optimize = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cost)
prediction_labels = tf.argmax(finaloutput, axis=1, name="output")
read_labels = y
correct_prediction = tf.equal(prediction_labels, read_labels)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
correct_times_in_batch = tf.reduce_sum(tf.cast(correct_prediction, tf.int32))
return dict(
x=x,
y=y,
optimize=optimize,
correct_prediction=correct_prediction,
correct_times_in_batch=correct_times_in_batch,
cost=cost,
)
def train_network(graph, batch_size, num_epochs, pb_file_path):
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
epoch_delta = 2
for epoch_index in range(num_epochs):
for i in range(12):
sess.run([graph['optimize']], feed_dict={
graph['x']: np.reshape(x_train[i], (1, 224, 224, 3)),
graph['y']: ([[1, 0]] if y_train[i] == 0 else [[0, 1]])
})
if epoch_index % epoch_delta == 0:
total_batches_in_train_set = 0
total_correct_times_in_train_set = 0
total_cost_in_train_set = 0.
for i in range(12):
return_correct_times_in_batch = sess.run(graph['correct_times_in_batch'], feed_dict={
graph['x']: np.reshape(x_train[i], (1, 224, 224, 3)),
graph['y']: ([[1, 0]] if y_train[i] == 0 else [[0, 1]])
})
mean_cost_in_batch = sess.run(graph['cost'], feed_dict={
graph['x']: np.reshape(x_train[i], (1, 224, 224, 3)),
graph['y']: ([[1, 0]] if y_train[i] == 0 else [[0, 1]])
})
total_batches_in_train_set += 1
total_correct_times_in_train_set += return_correct_times_in_batch
total_cost_in_train_set += (mean_cost_in_batch * batch_size)
total_batches_in_test_set = 0
total_correct_times_in_test_set = 0
total_cost_in_test_set = 0.
for i in range(3):
return_correct_times_in_batch = sess.run(graph['correct_times_in_batch'], feed_dict={
graph['x']: np.reshape(x_val[i], (1, 224, 224, 3)),
graph['y']: ([[1, 0]] if y_val[i] == 0 else [[0, 1]])
})
mean_cost_in_batch = sess.run(graph['cost'], feed_dict={
graph['x']: np.reshape(x_val[i], (1, 224, 224, 3)),
graph['y']: ([[1, 0]] if y_val[i] == 0 else [[0, 1]])
})
total_batches_in_test_set += 1
total_correct_times_in_test_set += return_correct_times_in_batch
total_cost_in_test_set += (mean_cost_in_batch * batch_size)
acy_on_test = total_correct_times_in_test_set / float(total_batches_in_test_set * batch_size)
acy_on_train = total_correct_times_in_train_set / float(total_batches_in_train_set * batch_size)
print('Epoch - {:2d}, acy_on_test:{:6.2f}%({}/{}),loss_on_test:{:6.2f}, acy_on_train:{:6.2f}%({}/{}),loss_on_train:{:6.2f}'.format(epoch_index, acy_on_test*100.0,total_correct_times_in_test_set,
total_batches_in_test_set * batch_size,
total_cost_in_test_set,
acy_on_train * 100.0,
total_correct_times_in_train_set,
total_batches_in_train_set * batch_size,
total_cost_in_train_set))
constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ["output"])
with tf.gfile.FastGFile(pb_file_path, mode='wb') as f:
f.write(constant_graph.SerializeToString())
def main():
batch_size = 12
num_epochs = 50
pb_file_path = "vggs.pb"
g = build_network(height=224, width=224, channel=3)
train_network(g, batch_size, num_epochs, pb_file_path)
main()