|
14 | 14 | import itertools
|
15 | 15 | import sys
|
16 | 16 |
|
17 |
| -def diagonal_split(x): |
18 |
| - |
19 |
| - ''' pre-processing steps interms of |
20 |
| - cropping to enable the diagonal |
21 |
| - splitting of the input image |
22 |
| - ''' |
23 |
| - |
24 |
| - h, w = x.shape |
25 |
| - cp_x = x |
26 |
| - ''' cropping the rows ''' |
27 |
| - if (np.mod(h, 4)==1): |
28 |
| - cp_x = cp_x[:-1] |
29 |
| - elif(np.mod(h, 4)==2): |
30 |
| - cp_x = cp_x[1:-1] |
31 |
| - elif(np.mod(h, 4)==3): |
32 |
| - cp_x = cp_x[1:-2] |
33 |
| - |
34 |
| - ''' cropping the columns''' |
35 |
| - if (np.mod(w, 4)==1): |
36 |
| - cp_x = cp_x[:, :-1] |
37 |
| - elif(np.mod(w, 4)==2): |
38 |
| - cp_x = cp_x[:,1:-1] |
39 |
| - elif(np.mod(w, 4)==3): |
40 |
| - cp_x = cp_x[:, 1:-2] |
41 |
| - |
42 |
| - |
43 |
| - x = cp_x |
44 |
| - h, w = x.shape |
45 |
| - if((np.mod(h, 4)!=0) or (np.mod(w, 4)!=0)): |
46 |
| - print('[!] diagonal splitting not possible due to cropping issue') |
47 |
| - print('[!] re-check the cropping portion') |
48 |
| - end() |
49 |
| - |
50 |
| - row_indices = np.arange(0, h) |
51 |
| - col_indices = np.arange(0, w) |
52 |
| - |
53 |
| - row_split_u = row_indices[::2] |
54 |
| - row_split_d = np.asanyarray(list(set(row_indices)-set(row_split_u))) |
55 |
| - |
56 |
| - col_split_l = col_indices[::2] |
57 |
| - col_split_r = np.asanyarray(list(set(col_indices)-set(col_split_l))) |
58 |
| - |
59 |
| - ''' ordered pair of pre-processing |
60 |
| - of the diagonal elements |
61 |
| - and sub-sequent splits of the image |
62 |
| - ''' |
63 |
| - op1 = list(itertools.product(row_split_u, col_split_l)) |
64 |
| - ind = [np.asanyarray([fo for fo, _ in op1]), np.asanyarray([so for _, so in op1])] |
65 |
| - s_a1 = x[ind] |
66 |
| - s_a1 = s_a1.reshape((len(row_split_u), len(col_split_l))) |
67 |
| - |
68 |
| - op2 = list(itertools.product(row_split_d, col_split_r)) |
69 |
| - ind = [np.asanyarray([fo for fo, _ in op2]), np.asanyarray([so for _, so in op2])] |
70 |
| - s_a2 = x[ind] |
71 |
| - s_a2 = s_a2.reshape((len(row_split_d), len(col_split_r))) |
72 |
| - |
73 |
| - op3 = list(itertools.product(row_split_d, col_split_l)) |
74 |
| - ind = [np.asanyarray([fo for fo, _ in op3]), np.asanyarray([so for _, so in op3])] |
75 |
| - s_b1 = x[ind] |
76 |
| - s_b1 = s_b1.reshape((len(row_split_d), len(col_split_l))) |
77 |
| - |
78 |
| - op4 = list(itertools.product(row_split_u, col_split_r)) |
79 |
| - ind = [np.asanyarray([fo for fo, _ in op4]), np.asanyarray([so for _, so in op4])] |
80 |
| - s_b2 = x[ind] |
81 |
| - s_b2 = s_b2.reshape((len(row_split_u), len(col_split_r))) |
82 |
| - |
83 |
| - return(s_a1, s_a2, s_b1, s_b2) |
| 17 | +def diagonal_split(img): |
| 18 | + ''' |
| 19 | + This function takes an input image and splits it diagonally into four sub-regions. |
| 20 | + The input image must have dimensions that are divisible by 4. |
| 21 | + ''' |
| 22 | + # Get the shape of the input image |
| 23 | + h, w = img.shape |
| 24 | + # Check that the image has dimensions divisible by 4 |
| 25 | + if (h % 4 != 0) or (w % 4 != 0): |
| 26 | + raise ValueError('Input image must have dimensions divisible by 4') |
| 27 | + # Crop the image to make sure the dimensions are divisible by 4 |
| 28 | + img = img[:h//4*4, :w//4*4] |
| 29 | + h, w = img.shape |
| 30 | + # Create indices for the rows and columns |
| 31 | + row_indices = np.arange(h) |
| 32 | + col_indices = np.arange(w) |
| 33 | + |
| 34 | + # Split the indices into two groups, one for each diagonal split |
| 35 | + row_split_u = row_indices[::2] |
| 36 | + row_split_d = row_indices[1::2] |
| 37 | + |
| 38 | + col_split_l = col_indices[::2] |
| 39 | + col_split_r = col_indices[1::2] |
| 40 | + |
| 41 | + # Split the image into four sub-regions using advanced indexing |
| 42 | + sub_a1 = img[np.ix_(row_split_u, col_split_l)] |
| 43 | + sub_a2 = img[np.ix_(row_split_d, col_split_r)] |
| 44 | + sub_b1 = img[np.ix_(row_split_d, col_split_l)] |
| 45 | + sub_b2 = img[np.ix_(row_split_u, col_split_r)] |
| 46 | + |
| 47 | + # Return the four sub-regions |
| 48 | + return sub_a1, sub_a2, sub_b1, sub_b2 |
84 | 49 |
|
85 | 50 | def get_frc_img(img, frc_img_lx, center=None):
|
86 | 51 | ''' Returns a cropped image version of input image "img"
|
|
0 commit comments