From d1702d7f08ddae6e4980552d93c7bf70ba534209 Mon Sep 17 00:00:00 2001 From: prajwel Date: Wed, 18 Oct 2023 12:28:18 +0530 Subject: [PATCH] Closes https://github.com/prajwel/aafitrans/issues/5. --- README.md | 3 +++ src/aafitrans/aafitrans.py | 18 +++++++++++------- 2 files changed, 14 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index a11960a..9bb8149 100644 --- a/README.md +++ b/README.md @@ -49,6 +49,9 @@ transf, (matched_source_xy, matched_target_xy) = find_transform(source_xy, targe ``` + +**WARNING:** The Astroalign [`find_transform`](https://astroalign.quatrope.org/en/latest/tutorial.html#finding-the-transformation) function takes both coordinate lists and images as input, while the Aafitrans `find_transform` function only takes coordinate lists as input. + ## Documentation for `find_transform` function The `find_transform` function estimates the transform between two sets of control points, source and target. It returns a GeometricTransform object `T` ([see scikit-image documentation for details](https://scikit-image.org/docs/stable/auto_examples/transform/plot_transform_types.html#sphx-glr-auto-examples-transform-plot-transform-types-py)) that maps pixel x, y indices from the source image s = (x, y) into the target (destination) image t = (x, y). diff --git a/src/aafitrans/aafitrans.py b/src/aafitrans/aafitrans.py index 3badbcf..11567cd 100755 --- a/src/aafitrans/aafitrans.py +++ b/src/aafitrans/aafitrans.py @@ -40,7 +40,7 @@ from collections import Counter from skimage import transform -__version__ = "0.2.0" +__version__ = "0.2.1" # Arun and Horn's method. @@ -304,26 +304,31 @@ def find_transform( If no transformation is found. """ + if np.array(source).shape[1] != 2 or np.array(target).shape[1] != 2: + raise ValueError( + "The source and target coordinate lists must have two columns." + ) + try: source = get_unique_array(source) target = get_unique_array(target) except Exception: - raise TypeError("Input type for source not supported.") + raise TypeError("Input type for source or target not supported.") try: source_controlp = np.array(source)[:max_control_points] target_controlp = np.array(target)[:max_control_points] except Exception: - raise TypeError("Input type for source not supported.") + raise TypeError("Input type for source or target not supported.") # Check for low number of reference points if len(source_controlp) < 3: raise ValueError( - "Reference stars in source image are less than the " "minimum value (3)." + "Reference stars in source image are less than the minimum value (3)." ) if len(target_controlp) < 3: raise ValueError( - "Reference stars in target image are less than the " "minimum value (3)." + "Reference stars in target image are less than the minimum value (3)." ) source_invariants, source_asterisms = _generate_invariants( @@ -486,8 +491,7 @@ def _ransac( if good_fit is None: raise MaxIterError( - "List of matching triangles exhausted before an acceptable " - "transformation was found" + "List of matching triangles exhausted before an acceptable transformation was found" ) better_fit = best_fit