forked from vlgiitr/dmn-plus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodelDMN.py
253 lines (207 loc) · 10.5 KB
/
modelDMN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import torch.autograd as Variable
import torch.utils.data as DataLoader
class QuestionModule(nn.Module):
def __init__(self, vocab_size, hidden_size):
super(QuestionModule, self).__init__()
self.vocab_size = vocab_size # Size of the vocabulary used in word embedding
self.hidden_size = hidden_size # Size of the hidden state of GRU
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
def forward(self, questions, word_embedding):
# questions.size() = (batch_size, num_tokens)
# word_embedding -> (batch_size, num_tokens, embedding_length)
# self.gru() -> (1, batch_size, hidden_size)
questions = word_embedding(questions) # Word embedding of the question
output, questions = self.gru(questions) # What is the initial hidden vector given to GRU?
questions = torch.transpose(questions, 0, 1)
return questions
class InputModule(nn.Module):
def __init__(self, vocab_size, hidden_size):
super(InputModule, self).__init__()
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.gru = nn.GRU(hidden_size, hidden_size, bidirectional=True, batch_first=True)
for name, param in self.gru.state_dict().items():
if 'weight' in name:
init.xavier_normal(param)
self.dropout = nn.Dropout(0.1)
''' We will now define the encoding scheme which is positional encoding in the paper " Dynamic Memory Network for Textual and Visual
Question Answering '''
def positional_encoder(embedded_sentence):
# embedded_sentence.size() = (batch_size, num_sentences, num_tokens, embedding_length)
# l.size() = (num_tokems, embedding_length)
# output.size() = (num_batch, num_sentences, embedding_length)
# The outputs are basically f1, f2, f3,.... which will go into the input fusion layer in the next step to add share information
# between sentences using a BiDirfectional GRU module.
batch_size, num_sentences, num_tokens, embedding_length = embedded_sentence.size()
l = [] # It will be same for all sentences in all batches as num_tokens and embedding_length is same for the entire dataset.
for j in range(num_tokens):
x = []
for d in range(embedding_length):
x.append((1 - (j/(num_tokens-1))) - (d/(embedding_length-1)) * (1 - 2*j/(num_tokens-1)))
l.append(x)
l = torch.FloatTensor(l)
l = l.unsqueeze(0) # adding an extra dimension at first place for batch_size
l = l.unsqueeze(1) # adding an extra dimension at sencond place for num_sentences
l = l.expand_as(embedded_sentence) # so that l.size() = (batch_size, num_sentences, num_tokens, embedding_length)
mat = embedded_sentence*Variable(l.cuda())
f_ids = torch.sum(mat, dim=2).squeeze(2) # sum along token dimension
return f_ids
def forward(self, input, word_embedding):
# input.size() = (batch_size, num_sentences, num_tokens)
# word_embedding -> (batch_size, num_sentences, num_tokens, embedding_length)
# positional_encoder(word_embedding(input)) -> (batch_size, num_sentences, embedding_length)
# Now BidirectionalGRU blocks receive their input, the output of the positional encoder and finally give facts
# facts.size() = (batch_size, num_sentences, embedding_length) embedding_length = hidden_size
input = input.view(input.size()[0], -1)# Isn't it already in this format ?
input = word_embedding(input)
input = input.view(input.size()[0], input.size()[1], input.size()[2], -1)
input = self.positional_encoder(input)
input = self.dropout(input)
h0 = Variable(torch.zeros(2, input.size()[0], self.hidden_size).cuda()) # Initializing the initial hidden state (at t=0 time step)
facts, hdn = self.gru(input, h0)
facts = facts[:, :, :hidden_size] + facts[:, :, hidden_size:]
return facts
class AttnGRUCell(nn.Module):
def __init__(self, input_size, hidden_size):
super(AttnGRUCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.Wr = nn.Linear(input_size, hidden_size)
self.Ur = nn.Linear(hidden_size, hidden_size)
self.W = nn.Linear(input_size, hidden_size)
self.U = nn.Linear(hidden_size, hidden_size)
init.xavier_normal(self.Wr.state_dict()['weight'])
init.xavier_normal(self.Ur.state_dict()['weight'])
init.xavier_normal(self.W.state_dict()['weight'])
init.xavier_normal(self.U.state_dict()['weight'])
def forward(self, fact, hi_1, g):
# fact is the final output of InputModule for each sentence and fact.size() = (batch_size, embedding_length)
# hi_1.size() = (batch_size, embedding_length=hidden_size)
# g.size() = (batch_size, )
r_i = F.sigmoid(self.Wr(fact) + self.Ur(hi_1))
h_tilda = F.tanh(self.W(fact) + r*self.U(hi_1))
hi = g*h_tilda + (1 - g)*hi_1
return hi # Returning the next hidden state considering the first fact and so on.
class AttnGRU(nn.Module):
def __init__(self, input_size, hidden_size):
super(AttnGRU, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.AttnGRUCell = AttnGRUCell(input_size, hidden_size)
def forward(self, facts, G):
# facts.size() = (batch_size, num_sentences, embedding_length)
# fact.size() = (batch_size, embedding_length=hidden_size)
# G.size() = (batch_size, num_sentences)
# g.size() = (batch_size, )
h_0 = Variable(torch.zeros(self.hidden_size)).cuda()
for sen in range(facts.size()[1]):
fact = facts[:, sen, :]
g = G[:, sen]
if sen == 0: # Initialization for first sentence only
hi_1 = h_0.unsqueeze(0).expand_as(fact)
hi_1 = self.AttnGRUCell(fact, hi_1, g)
C = hi_1 # Final hidden vector as the contextual vector used for updating memory
return C
class MemoryModule(nn.Module): # Takes facts, question and prev_mem as its and output next_mem
def __init__(self, hidden_size):
super(MemoryModule, self).__init__()
self.hidden_size = hidden_size
self.AttnGRU = AttnGRU(hidden_size, hidden_size)
self.W1 = nn.Linear(4*hidden_size, hidden_size)
self.W2 = nn.Linear(hidden_size, 1)
self.W_mem = nn.Linear(3*hidden_size, hidden_size)
init.xavier_normal(self.W1.state_dict()['weight'])
init.xavier_normal(self.W2.state_dict()['weight'])
init.xavier_normal(self.W_mem.state_dict()['weight'])
def gateMatrix(self, facts, questions, prev_mem):
# facts.size() = (batch_size, num_sentences, embedding_length=hidden_size)
# questions.size() = (batch_size, 1, embedding_length)
# prev_mem.size() = (batch_size, 1, embedding_length)
# z.size() = (batch_size, num_sentences, 4*embedding_length)
# G.size() = (batch_size, num_sentences)
questions = questions.expand_as(facts)
prev_mem = prev_mem.expand_as(facts)
z = torch.cat([facts*questions, facts*prev_mem, torch.abs(facts - questions), torch.abs(facts - prev_mem)], dim=2)
# z.size() = (batch_size, num_sentences, 4*embedding_length)
z = z.view(-1, 4*embedding_length)
Z = self.W2(F.tanh(self.W1(z)))
Z = Z.view(batch_size, -1)
G = F.softmax(Z)
return G
def forward(self, facts, questions, prev_mem):
# questions = questions.unsqueeze(1)
# prev_mem = prev_mem.unsqueeze(1)
G = self.gateMatrix(facts, questions, prev_mem)
C = self.AttnGRU(facts, G)
# Now considering prev_mem, C and question, we will update the memory state as follows
concat = torch.cat([prev_mem.squeeze(1), C, questions.squeeze(1)], dim=1)
next_mem = F.relu(self.W_mem(concat))
next_mem = next_mem.unsqueeze(1)
return next_mem
class AnswerModule(nn.Module):
def __init__(self, vocab_size, hidden_size):
super(AnswerModule, self).__init__()
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.W = nn.Linear(2*hidden_size, vocab_size)
init.xavier_normal(self.W.state_dict()['weight'])
self.dropout = nn.Dropout(0.1)
def forward(self, final_mem, questions):
final_mem = self.dropout(final_mem)
concat = torch.cat([final_mem, questions], dim=2).squeeze(1)
out = self.W(concat) # As per the paper, we are concatenating the final memory state m_T, and the question q and passing
# this resultant vector to a linear layer
return out
''' We define the model for the network incorporating the input, question, answer and the episodic memory module. We use the Cross Entropy loss criterion for measuring loss'''
class DMN(nn.Module):
def __init__(self, hidden_size, vocab_size, num_pass=3, qa=None):
super(DMN,self).__init__()
self.num_pass= num_pass
self.qa= qa
self.word_embedding= nn.Embedding(vocab_size, hidden_size, padding_index=0, sparse=True)
init.uniform(self.word_embedding.state_dict()['weight'], a= -(3**0.5), b=3**0.5)
self.criterion= nn.CrossEntropyLoss(size_average=False)
self.input_module= input_module(vocab_size,hidden_size) ##Vocab size refers to the size of vocabulary used
self.question_module= question_module(vocab_size, hidden_size)
self.memory= episodic_memory(hidden_size)
self.answer_module= answer_module(vocab_size,hidden_size)
def forward(self, context, questions):
#facts.size()= (batch_size, num_sentences, embedding_length= hidden.size())
#questions.size() = (batch_size, 1, embedding_length)
facts= self.input_module(context, self.word_embedding)
questions= self.question_module(questions, self.word_embedding)
X= questions
for passes in range(self.num_pass):
X= self.memory(facts, questions, X)
pred= self.answer_module(X, questions)
return pred_id
'''Total loss to be calculated '''
def loss(self,context, questions, targets):
output= self.forward(context, questions)
loss= self.criterion(output, targets)
para_loss= 0
for param in self.parameters():
para_loss+= 0.001* torch.sum(param*param)
pred= F.softmax(output)
_, pred_id= torch.max(pred, dim=1)
correct= (pred_id.data == answers.data)
acc= torch.mean(correct.float())
return loss+para_loss, acc
def interpret_indexed_tensor(self,var):
if len(var.size()) == 3:
for n, sentences in enumerate(var):
s= ' '.join([self.qa.IVOCAB[elem.data[0]] for elem in sentence])
print (str(n)+'th batch, '+str(i)+'th sentence, '+str(s))
elif len(var.size()) == 2:
for n, sentence in enumerate(var):
s= ' '.join([self.qa.IVOCAB[elem.data[0]] for elem in sentence])
print (str(n)+'th batch, '+str(s))
elif len(var.size()) == 1:
for n, token in enumerate(var):
s= self.qa.IVOCAB[token.data[0]]
print (str(n)+'th of batch, '+str(s))