-
Notifications
You must be signed in to change notification settings - Fork 59
/
Lazy Propagation - Internet.cpp
119 lines (87 loc) · 3 KB
/
Lazy Propagation - Internet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/** Segment Tree - Range Max Query with Updates and Lazy Propagtion."
* In this code we have a very large array called arr, and very large set of operations
* Operation #1: Increment the elements within range [i, j] with value val
* Operation #2: Get max element within range [i, j]
* Build tree: build_tree(1, 0, N-1)
* Update tree: update_tree(1, 0, N-1, i, j, value)
* Query tree: query_tree(1, 0, N-1, i, j)
*/
#include<iostream>
#include<algorithm>
using namespace std;
#include<string.h>
#include<math.h>
#define N 20
#define MAX (1+(1<<6))
#define inf 0x7fffffff
int arr[N];
int tree[MAX];
int lazy[MAX];
/**
* Build and init tree
*/
void build_tree(int node, int a, int b) {
if(a > b) return; // Out of range
if(a == b) { // Leaf node
tree[node] = arr[a]; // Init value
return;
}
build_tree(node*2, a, (a+b)/2); // Init left child
build_tree(node*2+1, 1+(a+b)/2, b); // Init right child
tree[node] = max(tree[node*2], tree[node*2+1]); // Init root value
}
/**
* Increment elements within range [i, j] with value value
*/
void update_tree(int node, int a, int b, int i, int j, int value) {
if(lazy[node] != 0) { // This node needs to be updated
tree[node] += lazy[node]; // Update it
if(a != b) {
lazy[node*2] += lazy[node]; // Mark child as lazy
lazy[node*2+1] += lazy[node]; // Mark child as lazy
}
lazy[node] = 0; // Reset it
}
if(a > b || a > j || b < i) // Current segment is not within range [i, j]
return;
if(a >= i && b <= j) { // Segment is fully within range
tree[node] += value;
if(a != b) { // Not leaf node
lazy[node*2] += value;
lazy[node*2+1] += value;
}
return;
}
update_tree(node*2, a, (a+b)/2, i, j, value); // Updating left child
update_tree(1+node*2, 1+(a+b)/2, b, i, j, value); // Updating right child
tree[node] = max(tree[node*2], tree[node*2+1]); // Updating root with max value
}
/**
* Query tree to get max element value within range [i, j]
*/
int query_tree(int node, int a, int b, int i, int j) {
if(a > b || a > j || b < i) return -inf; // Out of range
if(lazy[node] != 0) { // This node needs to be updated
tree[node] += lazy[node]; // Update it
if(a != b) {
lazy[node*2] += lazy[node]; // Mark child as lazy
lazy[node*2+1] += lazy[node]; // Mark child as lazy
}
lazy[node] = 0; // Reset it
}
if(a >= i && b <= j) // Current segment is totally within range [i, j]
return tree[node];
int q1 = query_tree(node*2, a, (a+b)/2, i, j); // Query left child
int q2 = query_tree(1+node*2, 1+(a+b)/2, b, i, j); // Query right child
int res = max(q1, q2); // Return final result
return res;
}
int main() {
for(int i = 0; i < N; i++) arr[i] = 1;
build_tree(1, 0, N-1);
memset(lazy, 0, sizeof lazy);
update_tree(1, 0, N-1, 0, 6, 5); // Increment range [0, 6] by 5
update_tree(1, 0, N-1, 7, 10, 12); // Incremenet range [7, 10] by 12
update_tree(1, 0, N-1, 10, N-1, 100); // Increment range [10, N-1] by 100
cout << query_tree(1, 0, N-1, 0, N-1) << endl; // Get max element in range [0, N-1]
}