-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
272 lines (247 loc) · 10.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from __future__ import print_function
import argparse
import os
import shutil
import time
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
#import torch.utils.data
import torch.nn.functional as F
#import torchvision.transforms as transforms
#import torchvision.datasets as datasets
#from torchsummary import summary
import torchvision.models as models
# from models import *
from collections import OrderedDict
from torch.autograd import Variable
# import scipy as sp
from scipy import signal
from models.resnet_50 import Resnet50_face_sfew_dag
from models.resnet50_model import resnet_TCN
from models.pytorch_i3d_new import InceptionI3d
from models.I3DWSDDA import I3D_WSDDA
from models.CNN_LSTM import CNN_RNN
from models.Vgg_vd_face_fer_dag import Vgg_vd_face_fer_dag
from train import train
from val import validate
from test import Test
import logging
#import models.resnet as ResNet
import utils
import matplotlib.pyplot as plt
import numpy as np
# import cv2
from models.cam import CAM
from models.tsav import TwoStreamAuralVisualModel
import sys
#from fer import FER2013
#from load_imglist import ImageList
from datasets.dataset_new import ImageList
import math
from losses.CCC import CCC
from losses.CCCLoss import CCCLoss
import wandb
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
#wandb.init(settings=wandb.Settings(start_method="fork"), project='Audio Visual Fusion')
from models.vggish_pytorch.vggish import VGGish
parser = argparse.ArgumentParser(description='PyTorch Deep WSDAOR')
parser.add_argument('--arch', '-a', metavar='ARCH', default='WSDA-OR')
parser.add_argument('--cuda', '-c', default=True)
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 16)')
parser.add_argument('--epochs', default=80, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=128, type=int,
metavar='N', help='mini-batch size (default: 128)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--root_path', default='', type=str, metavar='PATH',
help='root path of face images (default: none).')
parser.add_argument('-seq_l','--seq-length', default=64, type=int, metavar='N',
help='sequence length for lstm')
parser.add_argument('-stride','--stride-length', default=64, type=int, metavar='N',
help='stride length for lstm')
parser.add_argument('--train_list', default='', type=str, metavar='PATH',
help='path to training list (default: none)')
parser.add_argument('--val_list', default='', type=str, metavar='PATH',
help='path to validation list (default: none)')
parser.add_argument('--wavs_list', default='', type=str, metavar='PATH',
help='path to wav files (default: none)')
parser.add_argument('--time_list', default='', type=str, metavar='PATH',
help='path to timestamps (default: none)')
parser.add_argument('--save_path', default='', type=str, metavar='PATH',
help='save root path for features of face images.')
parser.add_argument('--num_classes', default=79077, type=int,
metavar='N', help='number of classes (default: 79077)')
args = parser.parse_args()
best_PublicTest_acc = 0 # best PublicTest accuracy
best_PublicTest_acc_epoch = 0
best_Val_acc = 0 # best PrivateTest accuracy
best_Val_acc_epoch = 0
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
learning_rate_decay_start = 5 # 50
learning_rate_decay_every = 2 # 5
learning_rate_decay_rate = 0.8 # 0.9
total_epoch = 30
TrainingAccuracy = []
ValidationAccuracy = []
#def init_weights(m):
# if type(m) == nn.Linear:
# torch.nn.init.xavier_uniform(m.weight)
# m.bias.data.fill_(0.01)
ts = time.time()
Logfile_name = "LogFiles/" + "log_file.log"
logging.basicConfig(filename=Logfile_name, level=logging.INFO)
SEED = 0
### Using seed for deterministic perfromVisual_model_withI3Dg order
if (SEED == 0):
torch.backends.cudnn.benchmark = True
else:
print("Using SEED")
random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
class PadSequence:
def __call__(self, batch):
sorted_batch = sorted(batch, key=lambda x: x[0].shape[0], reverse=True)
sequences = [x[0] for x in sorted_batch]
aud_sequences = [x[1] for x in sorted_batch]
for aud in aud_sequences:
print(aud.shape)
sys.exit()
#sequences_padded = torch.nn.utils.rnn.pad_sequence(sequences, batch_first=True)
aud_sequences_padded = torch.nn.utils.rnn.pad_sequence(aud_sequences, batch_first=True)
labels = [x[2] for x in sorted_batch]
#vis_seq_padded = sequences_padded.permute(0,4,1,2,3)
audio_sequences = torch.stack(aud_sequences_padded)
return sequences, audio_sequences, labels
if not os.path.isdir("SavedWeights"):
os.makedirs("SavedWeights")
path = "SavedWeights"
#resnet = Resnet50_face_sfew_dag()
#resnet.load_state_dict(torch.load('PretrainedWeights/resnet50_face_sfew_dag.pth'))
#cnn_lstm_model = resnet_TCN(resnet, feat_dim=2048, output_dim=1, channels=[1024, 1024, 1024, 1024], attention=0,
# kernel_size=5, dropout=0.1)
#cnn_lstm_model.cuda()
#cnn_lstm_model = nn.DataParallel(cnn_lstm_model)
#cudnn.benchmark = True
i3d = InceptionI3d(400, in_channels=3)
#i3d.load_state_dict(torch.load('PretrainedWeights/rgb_imagenet.pt'))
cnn_lstm_model = I3D_WSDDA(i3d)
cnn_lstm_model.cuda()
cnn_lstm_model = nn.DataParallel(cnn_lstm_model)
cnn_lstm_model.load_state_dict(torch.load('PretrainedWeights/Val_model_valence_cnn_lstm_mil_64_new.t7')['net'])
visualmodel_acc = torch.load('PretrainedWeights/Val_model_valence_cnn_lstm_mil_64_new.t7')['best_Val_acc']
print(visualmodel_acc)
for param in cnn_lstm_model.module.i3d_WSDDA.parameters(): # children():
param.requires_grad = False
model_path = '../ABAW2020TNT/aff2model_tntsub4/model2/TSAV_Sub4_544k.pth.tar' # path to the model
model = TwoStreamAuralVisualModel(num_channels=4)
saved_model = torch.load(model_path)
model.load_state_dict(saved_model['state_dict'])
model = model.to('cuda')
for p in model.children():
audio_model = p
break
#audio_model = nn.DataParallel(audio_model)
#for param in audio_model.module.parameters(): # children():
for param in audio_model.parameters(): # children():
param.requires_grad = False
#model_urls = {
#'vggish': 'https://github.com/harritaylor/torchvggish/'
# 'releases/download/v0.1/vggish-10086976.pth',
#'pca': 'https://github.com/harritaylor/torchvggish/'
# 'releases/download/v0.1/vggish_pca_params-970ea276.pth'
#}
#audio_model = VGGish(model_urls)
#audio_model = nn.DataParallel(audio_model)
#for param in audio_model.module.parameters(): # children():
# param.requires_grad = False
print('==> Preparing data..')
label_file = '../../SpeechEmotionRec/ratings_gold_standard/ratings_gold_standard/valence/'
traindataset = ImageList(root=args.root_path, fileList=args.train_list, audList=args.wavs_list,
length=256, flag='train', stride=1, dilation = 4, subseq_length = 32)
trainloader = torch.utils.data.DataLoader(
traindataset,
batch_size=96, shuffle=True, #collate_fn=PadSequence(),
num_workers=4, pin_memory=True, drop_last = True)
valdataset = ImageList(root=args.root_path, fileList=args.val_list, audList=args.wavs_list,
length=256, flag='val', stride=1, dilation = 4, subseq_length = 32)
valloader = torch.utils.data.DataLoader(
valdataset,
batch_size=96, shuffle=False, #collate_fn=PadSequence(),
num_workers=4, pin_memory=True, drop_last = True)
#testdataset = ImageList(root=args.root_path, fileList=args.val_list, audList=args.wavs_list,
# length=256, flag='val', stride=4, dilation = 4, subseq_length = 32)
#testloader = torch.utils.data.DataLoader(
# valdataset,
# batch_size=96, shuffle=False, #collate_fn=PadSequence(),
# num_workers=4, pin_memory=True, drop_last = True)
print("Number of Train samples:" + str(len(traindataset)))
print("Number of Val samples:" + str(len(valdataset)))
cam = CAM().cuda()
#cam.load_state_dict(torch.load('SavedWeights/Val_model_valence_cnn_lstm_mil_64_new.t7')['net'])
#best_Val_acc = torch.load('SavedWeights/Val_model_valence_cnn_lstm_mil_64_new.t7')['best_Val_acc']
#cudnn.benchmark = True
criterion = CCC().cuda()
optimizer = torch.optim.Adam(cam.parameters(),# filter(lambda p: p.requires_grad, multimedia_model.parameters()),
args.lr)
#optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, cnn_lstm_model.parameters()),
# args.lr,
# momentum=args.momentum,
# weight_decay=args.weight_decay)
#optimizer = torch.optim.Adam(model.parameters(), lr= 0.001 , amsgrad=True)
cnt = 0
for epoch in range(start_epoch, total_epoch):
#adjust_learning_rate(optimizer, epoch)
#adjust_learning_rate(optimizer, epoch)
logging.info("Epoch")
logging.info(epoch)
#if cnt == 0:
# train for one epoch
Training_loss, Training_acc = train(trainloader, cnn_lstm_model, audio_model, criterion, optimizer, epoch, cam)
#cnt = cnt + 1
# evaluate on validation set
#Training_acc = 0.0
Valid_loss, Valid_acc = validate(valloader, cnn_lstm_model, audio_model, criterion, epoch, cam)
#Test(PrivateTestloader , original_model, criterion, epoch)
TrainingAccuracy.append(Training_acc)
ValidationAccuracy.append(Valid_acc)
logging.info('TrainingAccuracy:')
logging.info(TrainingAccuracy)
logging.info('ValidationAccuracy:')
logging.info(ValidationAccuracy)
if Valid_acc > best_Val_acc:
print('Saving..')
print("best_Val_acc: %0.3f" % Valid_acc)
state = {
'net': cam.state_dict() ,
'best_Val_acc': Valid_acc,
'best_Val_acc_epoch': epoch,
}
if not os.path.isdir(path):
os.mkdir(path)
torch.save(state, os.path.join(path,'Val_model_valence_cnn_lstm_mil_64_new.t7'))
best_Val_acc = Valid_acc
best_Val_acc_epoch = epoch
#print("best_PublicTest_acc: %0.3f" % best_PublicTest_acc)
#print("best_PublicTest_acc_epoch: %d" % best_PublicTest_acc_epoch)
print("best_PrivateTest_acc: %0.3f" % best_Val_acc)
print("best_PrivateTest_acc_epoch: %d" % best_Val_acc_epoch)