-
Notifications
You must be signed in to change notification settings - Fork 9
/
dataset_utils.py
502 lines (411 loc) · 23.2 KB
/
dataset_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import json
import re
from datasets import load_dataset
import transformers
from transformers.testing_utils import CaptureLogger
from utils import drqa_metric_max_over_ground_truths, drqa_exact_match_score
def load_data(path):
if path.endswith(".json"):
with open(path, "r") as f:
data = json.load(f)
elif path.endswith(".jsonl"):
with open(path, "r") as f:
data = [json.loads(line) for line in f]
else:
raise NotImplementedError(f"file format {path} not supported")
return data
def preprocess_alce(args, demos_data, test_data):
# given the demos data (which is the prompt file from ALCE) and the test data (which is the test file from ALCE)
# return the data in the format that we need and also the templates
demos = demos_data.pop("demos")
for item in demos:
item["answer"] = " " + item["answer"]
item["docs"] = item.pop("docs")[:args.n_demo_doc]
for item in test_data:
item["docs"] = item.pop("docs")[:args.n_test_doc]
template = demos_data
template["template"] = template.pop("demo_prompt")
template["document_template"] = template.pop("doc_prompt")
template["balanced_sampling"] = False
template["recalibrate_every"] = False
template["truncate_seperator"] = "... [The rest of the documents is omitted]\n\n"
# template["instruction"] = template["instruction"].split("\n\n")[0] + f" Given {args.n_test_doc} documents, the citations that you can use are " + "".join([f"[{i+1}]" for i in range(args.n_test_doc)]) + ".\n\n"
template["use_rouge"] = False
return demos, test_data, template
def load_qa_templates(dataset, include_title=True):
truncate_seperator = "... [The rest of the documents is omitted]\n\n"
if dataset == "mmlu":
document_template = "Knowledge (Title: {title}): {text}" if include_title else "Knowledge: {text}"
template = "{instruction}Question: {question}\nChoices:\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:{answer}"
domain_prompt = "Answer:"
recalibrate_every = True
balanced_sampling = False
instruction = "Instruction: Use the knowledge to choose the correct choice to the question.\n\n"
elif dataset == "nq" or dataset == "popqa" or dataset == "boolq" or dataset == "triviaqa":
document_template = "Document (Title: {title}): {text}" if include_title else "Document: {text}"
template = "{instruction}Question: {question}\nAnswer:{answer}"
domain_prompt = "Answer:"
recalibrate_every = False
balanced_sampling = True if dataset == "boolq" else False
instruction = "Instruction: Use the document(s) to write an accurate and concise answer to the question.\n\n"
return {
"document_template": document_template,
"template": template,
"domain_prompt": domain_prompt,
"recalibrate_every": recalibrate_every,
"balanced_sampling": balanced_sampling,
"instruction": instruction,
"truncate_seperator": truncate_seperator,
"use_rouge": False,
}
def add_mmlu_options(data):
for item in data:
options = ["A", "B", "C", "D"]
item["options"] = [f" {o}. " + item[o].strip() for o in options]
item["answer"] = f" {item['answer']}. {item[item['answer'].strip()]}"
return data
def add_boolq_options(data):
for item in data:
item["options"] = [" True", " False"]
item["answer"] = " "+item["answer"][0]
return data
def filter_contexts(data):
# filter the contexts and only keep the ones that contain the answer
new_data = []
for d in data:
d["ctxs"] = [ctx for ctx in d["ctxs"] if drqa_metric_max_over_ground_truths(drqa_exact_match_score, ctx["text"], d["answer"])]
if len(d["ctxs"]) > 0:
new_data.append(d)
return new_data
def load_hf_dataset(dataset, train, test):
recalibrate_every = False
balanced_sampling = False
truncate_seperator = "\n\n"
document_template = None
use_rouge = False
domain_prompt = None
if dataset == "ag_news":
all_dataset = load_dataset("ag_news")
options = [" World", " Sports", " Business", " Sci/Tech"]
template = "{instruction}Article: {text}\nTopic:{answer}"
instruction = "Instruction: Choose the correct topic for the article.\n\n"
all_dataset = all_dataset.map(lambda example: {**example, "options": options, "answer": options[example["label"]]})
train_dataset = all_dataset["train"]
test_dataset = all_dataset["test"]
recalibrate_every = False
balanced_sampling = True
domain_prompt = "Topic:"
elif dataset == "glue/sst2" or dataset == "sst2":
all_dataset = load_dataset("glue", "sst2")
train_dataset = all_dataset["train"]
test_dataset = all_dataset["validation"]
options = [" negative", " positive"]
template = "{instruction}Sentence: {sentence}\nSentiment:{answer}"
instruction = "Instruction: Choose the correct sentiment for the sentence.\n\n"
# add options to each example
train_dataset = train_dataset.map(lambda example: {**example, "options": options, "answer": options[example["label"]]})
test_dataset = test_dataset.map(lambda example: {**example, "options": options, "answer": options[example["label"]]})
recalibrate_every = False
balanced_sampling = True
domain_prompt = "Sentiment:"
elif dataset == "mr":
train_dataset = load_dataset("rotten_tomatoes")["train"]
test_dataset = load_dataset("rotten_tomatoes")["test"]
options = [" negative", " positive"]
template = "{instruction}Review: {text}\nSentiment:{answer}"
instruction = "Instruction: Choose the correct sentiment for the review, either positive or negative.\n\n"
# add options to each example
train_dataset = train_dataset.map(lambda example: {**example, "options": options, "answer": options[example["label"]]})
test_dataset = test_dataset.map(lambda example: {**example, "options": options, "answer": options[example["label"]]})
domain_prompt = "Sentiment:"
recalibrate_every = False
balanced_sampling = True
elif dataset == "govreport" or dataset == "scrolls/govreport":
# the two should be the exact same
if dataset == "govreport":
all_dataset = load_dataset("ccdv/govreport-summarization")
all_dataset = all_dataset.map(lambda example: {
"ctxs": [{"text": example["report"]}], "answer": example["summary"]
})
else:
all_dataset = load_dataset("tau/scrolls", "gov_report")
all_dataset = all_dataset.map(lambda example: {"ctxs": [{"text": example["input"]}], "answer": example["output"]})
document_template = "Report:\n{text}"
template = "{instruction}Summary:\n{answer}"
train_dataset = all_dataset["train"]
test_dataset = all_dataset["validation"]
instruction = 'Instruction: You are given a report by a government agency. Write a one-page summary of the report.\n'
truncate_seperator = "... [The rest of the report is omitted]\n\n"
use_rouge = True
elif dataset == "summ_screen_fd":
# we use scrolls because it's nicely preprocessed and has 300+ examples in the validation set
# (as opposed to the 20 validation examples in the ZeroScrolls set)
all_dataset = load_dataset("tau/scrolls", "summ_screen_fd")
document_template = "Episode Script:\n{text}"
template = "{instruction}Summary:\n{answer}"
all_dataset = all_dataset.map(lambda example: {
**example, "ctxs": [{"text": example["input"]}], "answer": example["output"]
})
train_dataset = all_dataset["train"]
test_dataset = all_dataset["validation"]
instruction = "You are given a script of a TV episode. Summarize the episode in a paragraph.\n\n"
truncate_seperator = "... [The rest of the episode script is omitted]\n\n"
use_rouge = True
elif dataset == "qmsum":
all_dataset = load_dataset("tau/scrolls", "qmsum")
document_template = "Transcript:\n{text}"
template = "{instruction}Query:\n{question}\n\nAnswer:\n{answer}"
# we need to parse out the query from the input of scrolls
all_dataset = all_dataset.map(lambda example: {
**example, "question": example["input"].split("\n")[0].strip(), "ctxs": [{"text": example["input"][example["input"].index("\n\n")+2:].strip()}], "answer": example["output"],
})
train_dataset = all_dataset["train"]
test_dataset = all_dataset["validation"]
instruction = "You are given a meeting transcript and a query containing a question or instruction. Answer the query in one or more sentences.\n\n"
truncate_seperator = "... [The rest of the transcript is omitted]\n\n"
use_rouge = True
elif dataset == "narrativeqa":
all_dataset = load_dataset("narrativeqa")
template = "{instruction}Question:\n{question}\n\nAnswer:\n{answer}"
document_template = "Story:\n{text}"
all_dataset = all_dataset.map(lambda example: {
"question": example["question"]["text"],
"answer": [ex["text"] for ex in example["answers"]],
"ctxs": [{"text": example["document"]["text"]}],
})
train_dataset = all_dataset["train"]
test_dataset = all_dataset["validation"]
instruction = "You are given a story, which can be either a novel or a movie script, and a question. Answer the question as concisely as you can, using a single phrase if possible.\n\n"
truncate_seperator = "... [The rest of the story is omitted]\n\n"
# note: zeroscrolls uses F1 for narrativeqa
use_rouge = True
elif dataset == "qasper":
# instead of using allenai/qasper, we use tau/scrolls, because it's nicely preprocessed
# but the instructions are from zeroscrolls
all_dataset = load_dataset("tau/scrolls", "qasper")
template = "{instruction}Question:\n{question}\n\nAnswer:\n{answer}"
document_template = "Article:\n{text}"
all_dataset = all_dataset.map(lambda example: {
"ctxs": [{"text": example["input"][example["input"].index("\n\n")+2:].strip()}],
"question": example["input"][:example["input"].index("\n\n")].strip(),
"answer": example["output"],
})
train_dataset = all_dataset["train"]
test_dataset = all_dataset["validation"]
instruction = 'You are given a scientific article and a question. Answer the question as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write "unanswerable". If the question is a yes/no question, answer "yes", "no", or "unanswerable".\n\n'
truncate_seperator = "... [The rest of the article is omitted]\n\n"
# note: zeroscrolls use F1 for qasper
use_rouge = True
elif dataset == "quality":
all_dataset = load_dataset("tau/scrolls", "quality")
document_template = "Story:\n{text}"
# template from zeroscrolls, which is slighlty different from the scrolls template
template = "{instruction}Question and Possible Answers:\n{question}\n\n{A}\n{B}\n{C}\n{D}\n\nAnswer:{answer}"
def preprocess(example):
input_text = example["input"]
example["question"] = input_text.split('\n')[0]
labels = ["A", "B", "C", "D"]
for i, option in enumerate(labels):
idx = input_text.index(f'({option})')
o = " " + input_text[idx:].strip()
if i < 3:
next_index = o.index(f'({labels[i+1]})')
else:
next_index = o.index("\n\n")
example[option] = o[:next_index].strip()
input_text = input_text[idx + len(example[option]):]
example["ctxs"] = [{'text': input_text.strip()}]
answer = ""
for option in labels:
if example['output'] in example[option]:
answer = " " + option
break
assert answer != ""
if "generate" in dataset:
# either just outputing the letter or the entire answer is considered correct
example["answer"] = [answer, f'({answer.strip()}) {example["output"]}', ]
else:
example["answer"] = answer
example["options"] = [' ' + l for l in labels]
return example
train_dataset = all_dataset["train"].map(preprocess)
test_dataset = all_dataset["validation"].map(preprocess)
instruction = "You are provided a story and a multiple-choice question with 4 possible answers (marked by A, B, C, D). Choose the best answer by writing its corresponding letter (either A, B, C, or D).\n\n"
truncate_seperator = "... [The rest of the story is omitted]\n\n"
# zeroscrolls use acc as the metric but it's a bit harsh so we also include rouge-l
use_rouge = True
elif dataset == "sst5":
all_dataset = load_dataset("SetFit/sst5")
label_mapping = {0: ' terrible', 1: ' bad', 2: ' okay', 3: ' good', 4: ' great'}
template = "{instruction}Sentence: {text}\nSentiment:{answer}"
instruction = "Instruction: Choose the correct sentiment for the sentence.\n\n"
all_dataset = all_dataset.map(lambda example: {**example, "answer": label_mapping[example["label"]], "options": label_mapping.values()})
train_dataset = all_dataset["train"]
test_dataset = all_dataset["validation"]
recalibrate_every = False
balanced_sampling = True
domain_prompt = "Sentiment:"
elif dataset == "trec-coarse" or dataset == "trec-fine":
all_dataset = load_dataset("trec")
template = "{instruction}Question: {text}\nType:{answer}"
# from https://github.com/AI21Labs/Parallel-Context-Windows/blob/main/datasets_loader.py
# labels mapping based on: https://aclanthology.org/2023.acl-long.352/, https://aclanthology.org/C16-1116.pdf, https://aclanthology.org/C02-1150.pdf
if dataset == "trec-coarse":
label_mapping = {0: "abbreviation", 1: "entity", 2: "description", 3: "human", 4: "location", 5: 'numeric'}
label_mapping = {k: " " + v for k, v in label_mapping.items()}
all_dataset = all_dataset.map(lambda example: {**example, "answer": label_mapping[example["coarse_label"]], "options": label_mapping.values()})
else:
label_mapping = {0: 'abbreviation abbreviation', 1: 'abbreviation expansion', 2: 'entity animal', 3: 'entity body', 4: 'entity color', 5: 'entity creation', 6: 'entity currency', 7: 'entity disease', 8: 'entity event', 9: 'entity food', 10: 'entity instrument', 11: 'entity language', 12: 'entity letter', 13: 'entity other', 14: 'entity plant', 15: 'entity product', 16: 'entity religion', 17: 'entity sport', 18: 'entity substance', 19: 'entity symbol', 20: 'entity technique', 21: 'entity term', 22: 'entity vehicle', 23: 'entity word', 24: 'description definition', 25: 'description description', 26: 'description manner', 27: 'description reason', 28: 'human group', 29: 'human individual', 30: 'human title', 31: 'human description', 32: 'location city', 33: 'location country', 34: 'location mountain', 35: 'location other', 36: 'location state', 37: 'numeric code', 38: 'numeric count', 39: 'numeric date', 40: 'numeric distance', 41: 'numeric money', 42: 'numeric order', 43: 'numeric other', 44: 'numeric period', 45: 'numeric percent', 46: 'numeric speed', 47: 'numeric temperature', 48: 'numeric size', 49: 'numeric weight'}
label_mapping = {k: " " + v for k, v in label_mapping.items()}
all_dataset = all_dataset.map(lambda example: {**example, "answer": label_mapping[example["fine_label"]], "options": label_mapping.values()})
train_dataset = all_dataset["train"]
test_dataset = all_dataset["test"]
domain_prompt = "Type:"
recalibrate_every = False
balanced_sampling = True
instruction = "Instruction: Choose the correct type for the question.\n"
elif dataset == "dbpedia":
all_dataset = load_dataset("dbpedia_14")
# https://github.com/AI21Labs/Parallel-Context-Windows/blob/e6d31005f22273ccd208ca10f658a14c445ebb7e/datasets_loader.py#L148
# we ignore the title?
options = [" Company", " School", " Artist", " Athlete", " Politics", " Transportation", " Building", " Nature", " Village", " Animal", " Plant", " Album", " Film", " Book"]
template = "{instruction}Input: {content}\nType:{answer}"
all_dataset = all_dataset.map(lambda example: {**example, "answer": options[example["label"]], "options": options})
train_dataset = all_dataset["train"]
test_dataset = all_dataset["test"]
domain_prompt = "Type:"
recalibrate_every = False
balanced_sampling = True
instruction = "Instruction: Choose the correct type for the input.\n"
elif dataset == "nlu_scenario" or dataset == "nlu_intent":
all_dataset = load_dataset("nlu_evaluation_data")
all_dataset = all_dataset["train"].train_test_split(seed=42)
if dataset == "nlu_intent":
labels = all_dataset["train"].features["label"].names
labels = [" " + l.replace("_", " ") for l in labels]
all_dataset = all_dataset.map(lambda example: {**example, "answer": labels[example["label"]], "options": labels})
template = "{instruction}Utterance: {text}\nIntent:{answer}"
domain_prompt = "Intent:"
instruction = "Instruction: Choose the correct intent for the utterance.\n"
else:
options = [' general', ' weather', ' play', ' music', ' qa', ' audio', ' alarm', ' email', ' calendar', ' cooking', ' datetime', ' news', ' social', ' recommendation', ' iot', ' lists', ' takeaway', ' transport']
all_dataset = all_dataset.map(lambda example: {**example, "answer": " "+example["scenario"], "options": options})
template = "{instruction}Utterance: {text}\nScenario:{answer}"
domain_prompt = "Scenario:"
instruction = "Instruction: Choose the correct scenario for the utterance.\n"
train_dataset = all_dataset["train"]
test_dataset = all_dataset["test"]
recalibrate_every = False
balanced_sampling = True
elif dataset == "banking77":
all_dataset = load_dataset("banking77")
labels = all_dataset["train"].features["label"].names
labels = [" " + l.replace("_", " ") for l in labels]
all_dataset = all_dataset.map(lambda example: {**example, "answer": labels[example["label"]], "options": labels})
train_dataset = all_dataset["train"]
test_dataset = all_dataset["test"]
template = "{instruction}Query: {text}\nIntent:{answer}"
domain_prompt = "Intent:"
recalibrate_every = False
balanced_sampling = True
instruction = "Instruction: Choose the correct intent for the query.\n"
elif dataset == "clinic150":
all_dataset = load_dataset("clinc_oos", "plus")
labels = all_dataset["train"].features["intent"].names
labels = [" " + l.replace("_", " ") for l in labels]
all_dataset = all_dataset.map(lambda example: {**example, "answer": labels[example["intent"]], "options": labels})
train_dataset = all_dataset["train"]
test_dataset = all_dataset["validation"]
template = "{instruction}Utterance: {text}\nIntent:{answer}"
domain_prompt = "Intent:"
recalibrate_every = False
balanced_sampling = True
instruction = "Instruction: Choose the correct intent for the utterance.\n"
else:
raise NotImplementedError
return {
"train": train_dataset,
"test": test_dataset,
"template": template,
"document_template": document_template,
"recalibrate_every": recalibrate_every,
"balanced_sampling": balanced_sampling,
"domain_prompt": domain_prompt,
"instruction": instruction,
"truncate_seperator": truncate_seperator,
"use_rouge": use_rouge,
}
DATASET_TO_TASK = {
# Open-domain QA
"nq": "generate",
"popqa": "generate",
"triviaqa": "generate",
# Scrolls/ZeroScrolls
"qmsum": "generate",
"summ_screen_fd": "generate",
"govreport": "generate",
"scrolls/govreport": "generate",
"narrativeqa": "generate",
"qasper": "generate",
"quality": "generate",
# datasets from PCW
"sst2": "loglikelihood",
"ag_news": "loglikelihood",
"mr": "loglikelihood",
"sst5": "loglikelihood",
"nlu_scenario": "loglikelihood",
"trec-coarse": "loglikelihood",
"trec-fine": "loglikelihood",
"dbpedia": "loglikelihood",
"nlu_intent": "loglikelihood",
"banking77": "loglikelihood",
"clinic150": "loglikelihood",
}
def load_lm_dataset(dataset):
if dataset == "pg19":
eval_dataset = load_dataset("emozilla/pg19-test")["test"]
text_column_name = "text"
elif dataset == "proofpile":
eval_dataset = load_dataset("hoskinson-center/proof-pile")["test"]
text_column_name = "text"
elif dataset == "codeparrot":
eval_dataset = load_dataset("codeparrot/codeparrot-valid-v2-near-dedup")["train"]
text_column_name = "content"
else:
raise NotImplementedError
return eval_dataset, text_column_name
def add_contriever_scores(dataset, llama_tokenizer):
import torch
from transformers import AutoModel, AutoTokenizer
contriever_tokenizer = AutoTokenizer.from_pretrained("facebook/contriever")
contriever_model = AutoModel.from_pretrained("facebook/contriever",)
contriever_model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
contriever_model = contriever_model.to(device)
def mean_pooling(token_embeddings, mask ):
token_embeddings = token_embeddings.masked_fill(~mask[..., None].bool(), 0.0)
sentence_embeddings = token_embeddings.sum(dim=1) / mask.sum(dim=1)[..., None]
return sentence_embeddings
def calculate_score(query, passages):
# calculate the score between query and passages
query_text = llama_tokenizer.decode(query)
query = contriever_tokenizer(query_text, return_tensors="pt", max_length=512, truncation=True)
query = {k: v.cuda() for k, v in query.items()}
q_embed = contriever_model(**query)
q_embed = mean_pooling(q_embed[0], query["attention_mask"])
passages_text = llama_tokenizer.batch_decode(passages)
passages = contriever_tokenizer(passages_text, return_tensors="pt", max_length=512, truncation=True, padding=True)
passages = {k: v.cuda() for k, v in passages.items()}
p_embed = contriever_model(**passages)
p_embed = mean_pooling(p_embed[0], passages["attention_mask"])
score = torch.inner(q_embed, p_embed)
return score
def add_scores(example):
query = example["input_ids"][:256]
passages = example["encoder_input_ids"]
with torch.inference_mode():
scores = calculate_score(query, passages)
example["scores"] = scores.cpu().numpy()
return example
dataset = dataset.map(add_scores, batched=False, )
return dataset