-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
96 lines (82 loc) · 3.05 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
class NN(nn.Module):
def __init__(self, input_dim, output_dim):
super(NN, self).__init__()
self.hidden_dims = [50, 25]
self.fc1 = nn.Linear(input_dim, self.hidden_dims[0])
self.fc2 = nn.Linear(self.hidden_dims[0], self.hidden_dims[1])
self.fc3 = nn.Linear(self.hidden_dims[1], output_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def gradients(self):
return [
self.fc1.weight.grad,
self.fc1.bias.grad,
self.fc2.weight.grad,
self.fc2.bias.grad,
self.fc3.weight.grad,
self.fc3.bias.grad,
]
def set_gradients(self, gradients):
self.fc1.weight.grad = gradients[0]
self.fc1.bias.grad = gradients[1]
self.fc2.weight.grad = gradients[2]
self.fc2.bias.grad = gradients[3]
self.fc3.weight.grad = gradients[4]
self.fc3.bias.grad = gradients[5]
def set_weights(self, state):
net_state = self.state_dict()
for param in net_state.keys():
net_state[param] = state[param]
self.load_state_dict(net_state)
class CNN(nn.Module):
def __init__(self, in_channels, input_w, input_h, output_dim):
super(CNN, self).__init__()
self.in_channels = in_channels
self.input_w = input_w
self.input_h = input_h
self.output_dim = output_dim
out_channels_1 = 8
kernel_size_1 = 4
padding_1 = 1
self.conv1 = nn.Conv2d(
in_channels,
out_channels=out_channels_1,
kernel_size=kernel_size_1,
padding=padding_1,
)
output_1_w = input_w - kernel_size_1 + 2 * padding_1 + 1
output_1_h = input_h - kernel_size_1 + 2 * padding_1 + 1
kernel_size_2 = 2
stride_2 = 2
self.pool = nn.MaxPool2d(kernel_size=kernel_size_2, stride=stride_2)
output_2_w = np.floor((output_1_w - kernel_size_2) / stride_2) + 1
output_2_h = np.floor((output_1_h - kernel_size_2) / stride_2) + 1
in_channels_3 = out_channels_1
out_channels_3 = 8
kernel_size_3 = 4
padding_3 = 1
self.conv2 = nn.Conv2d(
in_channels_3, out_channels_3, kernel_size=kernel_size_3, padding=padding_1
)
output_3_w = output_2_w - kernel_size_3 + 2 * padding_3 + 1
output_3_h = output_2_h - kernel_size_3 + 2 * padding_3 + 1
# after pooling again
output_4_w = np.floor((output_3_w - kernel_size_2) / stride_2) + 1
output_4_h = np.floor((output_3_h - kernel_size_2) / stride_2) + 1
input_size_4 = int(output_4_h * output_4_w * out_channels_3)
self.fc = nn.Linear(input_size_4, output_dim)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x