forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
279 lines (218 loc) · 8.21 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A library for loading 1B word benchmark dataset."""
import random
import numpy as np
import tensorflow as tf
class Vocabulary(object):
"""Class that holds a vocabulary for the dataset."""
def __init__(self, filename):
"""Initialize vocabulary.
Args:
filename: Vocabulary file name.
"""
self._id_to_word = []
self._word_to_id = {}
self._unk = -1
self._bos = -1
self._eos = -1
with tf.gfile.Open(filename) as f:
idx = 0
for line in f:
word_name = line.strip()
if word_name == '<S>':
self._bos = idx
elif word_name == '</S>':
self._eos = idx
elif word_name == '<UNK>':
self._unk = idx
if word_name == '!!!MAXTERMID':
continue
self._id_to_word.append(word_name)
self._word_to_id[word_name] = idx
idx += 1
@property
def bos(self):
return self._bos
@property
def eos(self):
return self._eos
@property
def unk(self):
return self._unk
@property
def size(self):
return len(self._id_to_word)
def word_to_id(self, word):
if word in self._word_to_id:
return self._word_to_id[word]
return self.unk
def id_to_word(self, cur_id):
if cur_id < self.size:
return self._id_to_word[cur_id]
return 'ERROR'
def decode(self, cur_ids):
"""Convert a list of ids to a sentence, with space inserted."""
return ' '.join([self.id_to_word(cur_id) for cur_id in cur_ids])
def encode(self, sentence):
"""Convert a sentence to a list of ids, with special tokens added."""
word_ids = [self.word_to_id(cur_word) for cur_word in sentence.split()]
return np.array([self.bos] + word_ids + [self.eos], dtype=np.int32)
class CharsVocabulary(Vocabulary):
"""Vocabulary containing character-level information."""
def __init__(self, filename, max_word_length):
super(CharsVocabulary, self).__init__(filename)
self._max_word_length = max_word_length
chars_set = set()
for word in self._id_to_word:
chars_set |= set(word)
free_ids = []
for i in range(256):
if chr(i) in chars_set:
continue
free_ids.append(chr(i))
if len(free_ids) < 5:
raise ValueError('Not enough free char ids: %d' % len(free_ids))
self.bos_char = free_ids[0] # <begin sentence>
self.eos_char = free_ids[1] # <end sentence>
self.bow_char = free_ids[2] # <begin word>
self.eow_char = free_ids[3] # <end word>
self.pad_char = free_ids[4] # <padding>
chars_set |= {self.bos_char, self.eos_char, self.bow_char, self.eow_char,
self.pad_char}
self._char_set = chars_set
num_words = len(self._id_to_word)
self._word_char_ids = np.zeros([num_words, max_word_length], dtype=np.int32)
self.bos_chars = self._convert_word_to_char_ids(self.bos_char)
self.eos_chars = self._convert_word_to_char_ids(self.eos_char)
for i, word in enumerate(self._id_to_word):
self._word_char_ids[i] = self._convert_word_to_char_ids(word)
@property
def word_char_ids(self):
return self._word_char_ids
@property
def max_word_length(self):
return self._max_word_length
def _convert_word_to_char_ids(self, word):
code = np.zeros([self.max_word_length], dtype=np.int32)
code[:] = ord(self.pad_char)
if len(word) > self.max_word_length - 2:
word = word[:self.max_word_length-2]
cur_word = self.bow_char + word + self.eow_char
for j in range(len(cur_word)):
code[j] = ord(cur_word[j])
return code
def word_to_char_ids(self, word):
if word in self._word_to_id:
return self._word_char_ids[self._word_to_id[word]]
else:
return self._convert_word_to_char_ids(word)
def encode_chars(self, sentence):
chars_ids = [self.word_to_char_ids(cur_word)
for cur_word in sentence.split()]
return np.vstack([self.bos_chars] + chars_ids + [self.eos_chars])
def get_batch(generator, batch_size, num_steps, max_word_length, pad=False):
"""Read batches of input."""
cur_stream = [None] * batch_size
inputs = np.zeros([batch_size, num_steps], np.int32)
char_inputs = np.zeros([batch_size, num_steps, max_word_length], np.int32)
global_word_ids = np.zeros([batch_size, num_steps], np.int32)
targets = np.zeros([batch_size, num_steps], np.int32)
weights = np.ones([batch_size, num_steps], np.float32)
no_more_data = False
while True:
inputs[:] = 0
char_inputs[:] = 0
global_word_ids[:] = 0
targets[:] = 0
weights[:] = 0.0
for i in range(batch_size):
cur_pos = 0
while cur_pos < num_steps:
if cur_stream[i] is None or len(cur_stream[i][0]) <= 1:
try:
cur_stream[i] = list(generator.next())
except StopIteration:
# No more data, exhaust current streams and quit
no_more_data = True
break
how_many = min(len(cur_stream[i][0]) - 1, num_steps - cur_pos)
next_pos = cur_pos + how_many
inputs[i, cur_pos:next_pos] = cur_stream[i][0][:how_many]
char_inputs[i, cur_pos:next_pos] = cur_stream[i][1][:how_many]
global_word_ids[i, cur_pos:next_pos] = cur_stream[i][2][:how_many]
targets[i, cur_pos:next_pos] = cur_stream[i][0][1:how_many+1]
weights[i, cur_pos:next_pos] = 1.0
cur_pos = next_pos
cur_stream[i][0] = cur_stream[i][0][how_many:]
cur_stream[i][1] = cur_stream[i][1][how_many:]
cur_stream[i][2] = cur_stream[i][2][how_many:]
if pad:
break
if no_more_data and np.sum(weights) == 0:
# There is no more data and this is an empty batch. Done!
break
yield inputs, char_inputs, global_word_ids, targets, weights
class LM1BDataset(object):
"""Utility class for 1B word benchmark dataset.
The current implementation reads the data from the tokenized text files.
"""
def __init__(self, filepattern, vocab):
"""Initialize LM1BDataset reader.
Args:
filepattern: Dataset file pattern.
vocab: Vocabulary.
"""
self._vocab = vocab
self._all_shards = tf.gfile.Glob(filepattern)
tf.logging.info('Found %d shards at %s', len(self._all_shards), filepattern)
def _load_random_shard(self):
"""Randomly select a file and read it."""
return self._load_shard(random.choice(self._all_shards))
def _load_shard(self, shard_name):
"""Read one file and convert to ids.
Args:
shard_name: file path.
Returns:
list of (id, char_id, global_word_id) tuples.
"""
tf.logging.info('Loading data from: %s', shard_name)
with tf.gfile.Open(shard_name) as f:
sentences = f.readlines()
chars_ids = [self.vocab.encode_chars(sentence) for sentence in sentences]
ids = [self.vocab.encode(sentence) for sentence in sentences]
global_word_ids = []
current_idx = 0
for word_ids in ids:
current_size = len(word_ids) - 1 # without <BOS> symbol
cur_ids = np.arange(current_idx, current_idx + current_size)
global_word_ids.append(cur_ids)
current_idx += current_size
tf.logging.info('Loaded %d words.', current_idx)
tf.logging.info('Finished loading')
return zip(ids, chars_ids, global_word_ids)
def _get_sentence(self, forever=True):
while True:
ids = self._load_random_shard()
for current_ids in ids:
yield current_ids
if not forever:
break
def get_batch(self, batch_size, num_steps, pad=False, forever=True):
return get_batch(self._get_sentence(forever), batch_size, num_steps,
self.vocab.max_word_length, pad=pad)
@property
def vocab(self):
return self._vocab