forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlm_1b_eval.py
308 lines (254 loc) · 11.2 KB
/
lm_1b_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Eval pre-trained 1 billion word language model.
"""
import os
import sys
import numpy as np
from six.moves import xrange
import tensorflow as tf
from google.protobuf import text_format
import data_utils
FLAGS = tf.flags.FLAGS
# General flags.
tf.flags.DEFINE_string('mode', 'eval',
'One of [sample, eval, dump_emb, dump_lstm_emb]. '
'"sample" mode samples future word predictions, using '
'FLAGS.prefix as prefix (prefix could be left empty). '
'"eval" mode calculates perplexity of the '
'FLAGS.input_data. '
'"dump_emb" mode dumps word and softmax embeddings to '
'FLAGS.save_dir. embeddings are dumped in the same '
'order as words in vocabulary. All words in vocabulary '
'are dumped.'
'dump_lstm_emb dumps lstm embeddings of FLAGS.sentence '
'to FLAGS.save_dir.')
tf.flags.DEFINE_string('pbtxt', '',
'GraphDef proto text file used to construct model '
'structure.')
tf.flags.DEFINE_string('ckpt', '',
'Checkpoint directory used to fill model values.')
tf.flags.DEFINE_string('vocab_file', '', 'Vocabulary file.')
tf.flags.DEFINE_string('save_dir', '',
'Used for "dump_emb" mode to save word embeddings.')
# sample mode flags.
tf.flags.DEFINE_string('prefix', '',
'Used for "sample" mode to predict next words.')
tf.flags.DEFINE_integer('max_sample_words', 100,
'Sampling stops either when </S> is met or this number '
'of steps has passed.')
tf.flags.DEFINE_integer('num_samples', 3,
'Number of samples to generate for the prefix.')
# dump_lstm_emb mode flags.
tf.flags.DEFINE_string('sentence', '',
'Used as input for "dump_lstm_emb" mode.')
# eval mode flags.
tf.flags.DEFINE_string('input_data', '',
'Input data files for eval model.')
tf.flags.DEFINE_integer('max_eval_steps', 1000000,
'Maximum mumber of steps to run "eval" mode.')
# For saving demo resources, use batch size 1 and step 1.
BATCH_SIZE = 1
NUM_TIMESTEPS = 1
MAX_WORD_LEN = 50
def _LoadModel(gd_file, ckpt_file):
"""Load the model from GraphDef and Checkpoint.
Args:
gd_file: GraphDef proto text file.
ckpt_file: TensorFlow Checkpoint file.
Returns:
TensorFlow session and tensors dict.
"""
with tf.Graph().as_default():
sys.stderr.write('Recovering graph.\n')
with tf.gfile.FastGFile(gd_file, 'r') as f:
s = f.read().decode()
gd = tf.GraphDef()
text_format.Merge(s, gd)
tf.logging.info('Recovering Graph %s', gd_file)
t = {}
[t['states_init'], t['lstm/lstm_0/control_dependency'],
t['lstm/lstm_1/control_dependency'], t['softmax_out'], t['class_ids_out'],
t['class_weights_out'], t['log_perplexity_out'], t['inputs_in'],
t['targets_in'], t['target_weights_in'], t['char_inputs_in'],
t['all_embs'], t['softmax_weights'], t['global_step']
] = tf.import_graph_def(gd, {}, ['states_init',
'lstm/lstm_0/control_dependency:0',
'lstm/lstm_1/control_dependency:0',
'softmax_out:0',
'class_ids_out:0',
'class_weights_out:0',
'log_perplexity_out:0',
'inputs_in:0',
'targets_in:0',
'target_weights_in:0',
'char_inputs_in:0',
'all_embs_out:0',
'Reshape_3:0',
'global_step:0'], name='')
sys.stderr.write('Recovering checkpoint %s\n' % ckpt_file)
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
sess.run('save/restore_all', {'save/Const:0': ckpt_file})
sess.run(t['states_init'])
return sess, t
def _EvalModel(dataset):
"""Evaluate model perplexity using provided dataset.
Args:
dataset: LM1BDataset object.
"""
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
current_step = t['global_step'].eval(session=sess)
sys.stderr.write('Loaded step %d.\n' % current_step)
data_gen = dataset.get_batch(BATCH_SIZE, NUM_TIMESTEPS, forever=False)
sum_num = 0.0
sum_den = 0.0
perplexity = 0.0
for i, (inputs, char_inputs, _, targets, weights) in enumerate(data_gen):
input_dict = {t['inputs_in']: inputs,
t['targets_in']: targets,
t['target_weights_in']: weights}
if 'char_inputs_in' in t:
input_dict[t['char_inputs_in']] = char_inputs
log_perp = sess.run(t['log_perplexity_out'], feed_dict=input_dict)
if np.isnan(log_perp):
sys.stderr.error('log_perplexity is Nan.\n')
else:
sum_num += log_perp * weights.mean()
sum_den += weights.mean()
if sum_den > 0:
perplexity = np.exp(sum_num / sum_den)
sys.stderr.write('Eval Step: %d, Average Perplexity: %f.\n' %
(i, perplexity))
if i > FLAGS.max_eval_steps:
break
def _SampleSoftmax(softmax):
return min(np.sum(np.cumsum(softmax) < np.random.rand()), len(softmax) - 1)
def _SampleModel(prefix_words, vocab):
"""Predict next words using the given prefix words.
Args:
prefix_words: Prefix words.
vocab: Vocabulary. Contains max word chard id length and converts between
words and ids.
"""
targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32)
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
if prefix_words.find('<S>') != 0:
prefix_words = '<S> ' + prefix_words
prefix = [vocab.word_to_id(w) for w in prefix_words.split()]
prefix_char_ids = [vocab.word_to_char_ids(w) for w in prefix_words.split()]
for _ in xrange(FLAGS.num_samples):
inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
char_ids_inputs = np.zeros(
[BATCH_SIZE, NUM_TIMESTEPS, vocab.max_word_length], np.int32)
samples = prefix[:]
char_ids_samples = prefix_char_ids[:]
sent = ''
while True:
inputs[0, 0] = samples[0]
char_ids_inputs[0, 0, :] = char_ids_samples[0]
samples = samples[1:]
char_ids_samples = char_ids_samples[1:]
softmax = sess.run(t['softmax_out'],
feed_dict={t['char_inputs_in']: char_ids_inputs,
t['inputs_in']: inputs,
t['targets_in']: targets,
t['target_weights_in']: weights})
sample = _SampleSoftmax(softmax[0])
sample_char_ids = vocab.word_to_char_ids(vocab.id_to_word(sample))
if not samples:
samples = [sample]
char_ids_samples = [sample_char_ids]
sent += vocab.id_to_word(samples[0]) + ' '
sys.stderr.write('%s\n' % sent)
if (vocab.id_to_word(samples[0]) == '</S>' or
len(sent) > FLAGS.max_sample_words):
break
def _DumpEmb(vocab):
"""Dump the softmax weights and word embeddings to files.
Args:
vocab: Vocabulary. Contains vocabulary size and converts word to ids.
"""
assert FLAGS.save_dir, 'Must specify FLAGS.save_dir for dump_emb.'
inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32)
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
softmax_weights = sess.run(t['softmax_weights'])
fname = FLAGS.save_dir + '/embeddings_softmax.npy'
with tf.gfile.Open(fname, mode='w') as f:
np.save(f, softmax_weights)
sys.stderr.write('Finished softmax weights\n')
all_embs = np.zeros([vocab.size, 1024])
for i in xrange(vocab.size):
input_dict = {t['inputs_in']: inputs,
t['targets_in']: targets,
t['target_weights_in']: weights}
if 'char_inputs_in' in t:
input_dict[t['char_inputs_in']] = (
vocab.word_char_ids[i].reshape([-1, 1, MAX_WORD_LEN]))
embs = sess.run(t['all_embs'], input_dict)
all_embs[i, :] = embs
sys.stderr.write('Finished word embedding %d/%d\n' % (i, vocab.size))
fname = FLAGS.save_dir + '/embeddings_char_cnn.npy'
with tf.gfile.Open(fname, mode='w') as f:
np.save(f, all_embs)
sys.stderr.write('Embedding file saved\n')
def _DumpSentenceEmbedding(sentence, vocab):
"""Predict next words using the given prefix words.
Args:
sentence: Sentence words.
vocab: Vocabulary. Contains max word chard id length and converts between
words and ids.
"""
targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32)
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
if sentence.find('<S>') != 0:
sentence = '<S> ' + sentence
word_ids = [vocab.word_to_id(w) for w in sentence.split()]
char_ids = [vocab.word_to_char_ids(w) for w in sentence.split()]
inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
char_ids_inputs = np.zeros(
[BATCH_SIZE, NUM_TIMESTEPS, vocab.max_word_length], np.int32)
for i in xrange(len(word_ids)):
inputs[0, 0] = word_ids[i]
char_ids_inputs[0, 0, :] = char_ids[i]
# Add 'lstm/lstm_0/control_dependency' if you want to dump previous layer
# LSTM.
lstm_emb = sess.run(t['lstm/lstm_1/control_dependency'],
feed_dict={t['char_inputs_in']: char_ids_inputs,
t['inputs_in']: inputs,
t['targets_in']: targets,
t['target_weights_in']: weights})
fname = os.path.join(FLAGS.save_dir, 'lstm_emb_step_%d.npy' % i)
with tf.gfile.Open(fname, mode='w') as f:
np.save(f, lstm_emb)
sys.stderr.write('LSTM embedding step %d file saved\n' % i)
def main(unused_argv):
vocab = data_utils.CharsVocabulary(FLAGS.vocab_file, MAX_WORD_LEN)
if FLAGS.mode == 'eval':
dataset = data_utils.LM1BDataset(FLAGS.input_data, vocab)
_EvalModel(dataset)
elif FLAGS.mode == 'sample':
_SampleModel(FLAGS.prefix, vocab)
elif FLAGS.mode == 'dump_emb':
_DumpEmb(vocab)
elif FLAGS.mode == 'dump_lstm_emb':
_DumpSentenceEmbedding(FLAGS.sentence, vocab)
else:
raise Exception('Mode not supported.')
if __name__ == '__main__':
tf.app.run()