-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathApp.py
445 lines (398 loc) · 23.7 KB
/
App.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import streamlit as st
import pandas as pd
import base64,random
import time,datetime
from pyresparser import ResumeParser
from pdfminer3.layout import LAParams, LTTextBox
from pdfminer3.pdfpage import PDFPage
from pdfminer3.pdfinterp import PDFResourceManager
from pdfminer3.pdfinterp import PDFPageInterpreter
from pdfminer3.converter import TextConverter
import io,random
from streamlit_tags import st_tags
from PIL import Image
import pymysql
from Courses import ds_course,web_course,android_course,ios_course,uiux_course,resume_videos,interview_videos
import pafy
import plotly.express as px
import spacy
nlp = spacy.load("en_core_web_sm")
class Person:
def __init__(self, name, id,type,size):
self.name = name
self.id = id
self.type = type
self.size = size
def fetch_yt_video(link):
video = pafy.new(link)
return video.title
def get_table_download_link(df,filename,text):
"""Generates a link allowing the data in a given panda dataframe to be downloaded
in: dataframe
out: href string
"""
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode() # some strings <-> bytes conversions necessary here
# href = f'<a href="data:file/csv;base64,{b64}">Download Report</a>'
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}">{text}</a>'
return href
def pdf_reader(file):
resource_manager = PDFResourceManager()
fake_file_handle = io.StringIO()
converter = TextConverter(resource_manager, fake_file_handle, laparams=LAParams())
page_interpreter = PDFPageInterpreter(resource_manager, converter)
with open(file, 'rb') as fh:
for page in PDFPage.get_pages(fh,
caching=True,
check_extractable=True):
page_interpreter.process_page(page)
print(page)
text = fake_file_handle.getvalue()
# close open handles
converter.close()
fake_file_handle.close()
return text
def show_pdf(file_path):
with open(file_path, "rb") as f:
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
# pdf_display = f'<embed src="data:application/pdf;base64,{base64_pdf}" width="700" height="1000" type="application/pdf">'
# print(base64_pdf,"base64")
pdf_display = F'<iframe src="data:application/pdf;base64,{base64_pdf}" width="700" height="600" type="application/pdf"></iframe>'
st.markdown(pdf_display, unsafe_allow_html=True)
def course_recommender(course_list):
st.subheader("**Courses & Certificates🎓 Recommendations**")
c = 0
rec_course = []
no_of_reco = st.slider('Choose Number of Course Recommendations:', 1, 10, 4)
random.shuffle(course_list)
for c_name, c_link in course_list:
c += 1
st.markdown(f"({c}) [{c_name}]({c_link})")
rec_course.append(c_name)
if c == no_of_reco:
break
return rec_course
connection = pymysql.connect(host='localhost',user='root',password='pass123',db='sraa')
cursor = connection.cursor()
def insert_data(name,email,res_score,timestamp,no_of_pages,reco_field,cand_level,skills,recommended_skills,courses):
DB_table_name = 'user_data'
insert_sql = "insert into " + DB_table_name + """
values (0,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)"""
rec_values = (name, email, str(res_score), timestamp,str(no_of_pages), reco_field, cand_level, skills,recommended_skills,courses)
cursor.execute(insert_sql, rec_values)
connection.commit()
st.set_page_config(
page_title="SmartHire | Find your dream candidate",
page_icon='./Logo/s6951lA.png',
)
import streamlit.components.v1 as components
def run():
hide_st_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)
st.markdown('<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">', unsafe_allow_html=True)
st.markdown("""
<nav class="navbar fixed-top navbar-expand-lg navbar-dark" style="background-color: #FFFFFF; height: 100px">
<a class="navbar-brand" href="https://youtube.com/dataprofessor" target="_blank">Data Professor</a>
<div class="collapse navbar-collapse" id="navbarNav">
<ul class="navbar-nav">
<li class="nav-item active">
<a href="#" className="flex items-center mr-4 ">
<img src="https://i.imgur.com/1K24qVG.png" height=50px className="" alt="Flowbite Logo" />
</a>
</li>
<li class="nav-item active">
<a class="nav-link mt-1 px-0 text-dark" href="#">Home <span class="sr-only">(current)</span></a>
</li>
<li class="nav-item active">
<a class="nav-link mt-1 text-dark" href="#">Jobs <span class="sr-only">(current)</span></a>
</li>
<li class="nav-item active">
<a class="nav-link mt-1 text-dark" href="#">Employers <span class="sr-only">(current)</span></a>
</li>
<li class="nav-item active">
<a class="nav-link mt-1 px-1 text-dark" href="#">Blog <span class="sr-only">(current)</span></a>
</li>
<li class="nav-item active">
<a class="nav-link mt-1 px-1 text-dark" href="#">About <span class="sr-only">(current)</span></a>
</li>
<li class="nav-item active">
<a class="nav-link mt-1 px-1 text-dark" href="#">Candidates<span class="sr-only">(current)</span></a>
</li>
<li class="nav-item active">
<a class="nav-link mt-1 px-1 text-dark" href="https://smarthire-2-8bbc57.ingress-erytho.ewp.live/user-dashboard">Continue to dashboard<span class="sr-only">(current)</span></a>
</li>
</li>
</ul>
</div>
</nav>
""", unsafe_allow_html=True)
st.title("Smart Resume Analyser")
# st.sidebar.markdown("# Choose User")
# activities = ["Normal User", "Admin"]
# choice = st.sidebar.selectbox("Choose among the given options:", activities)
choice = 'Normal User'
# link = '[©Developed by Spidy20](http://github.com/spidy20)'
# st.sidebar.markdown(link, unsafe_allow_html=True)
# img = Image.open('./Logo/SRA_Logo.jpg')
# img = img.resize((250,250))
# st.image(img)
# Create the DB
db_sql = """CREATE DATABASE IF NOT EXISTS SRA;"""
cursor.execute(db_sql)
# Create table
DB_table_name = 'user_data'
table_sql = "CREATE TABLE IF NOT EXISTS " + DB_table_name + """
(ID INT NOT NULL AUTO_INCREMENT,
Name varchar(100) NOT NULL,
Email_ID VARCHAR(50) NOT NULL,
resume_score VARCHAR(8) NOT NULL,
Timestamp VARCHAR(50) NOT NULL,
Page_no VARCHAR(5) NOT NULL,
Predicted_Field VARCHAR(25) NOT NULL,
User_level VARCHAR(30) NOT NULL,
Actual_skills VARCHAR(300) NOT NULL,
Recommended_skills VARCHAR(300) NOT NULL,
Recommended_courses VARCHAR(600) NOT NULL,
PRIMARY KEY (ID));
"""
cursor.execute(table_sql)
if choice == 'Normal User':
pdf_file = st.file_uploader("Choose your Resume", type=["pdf"])
# pdf_file = Person('data-scientist-1559725114.pdf',21,'application/pdf',249680)
# pdf_file=p1.name
# print(pdf_file,"file")
# if uploaded_file is not None:
# file_details = {"FileName":uploaded_file.name,"FileType":uploaded_file.type,"FileSize":uploaded_file.size}
# st.write(file_details)
# if pdf_file is None:
# # pdf_file={UploadedFile(id=17, name='android-developer-1559034496.pdf', type='application/pdf', size=249129)}
# # save_image_path = './Uploaded_Resumes/'+'android-developer-1559034496.pdf'
# p1 = pdf_file("John", 36)
# print(p1.name)
# print(p1.age)
if pdf_file is not None:
# with st.spinner('Uploading your Resume....'):
# time.sleep(4)
save_image_path = './Uploaded_Resumes/'+pdf_file.name
print(pdf_file.getbuffer(),"buffer")
with open(save_image_path, "wb") as f:
f.write(pdf_file.getbuffer())
show_pdf(save_image_path)
print(save_image_path,"path")
resume_data = ResumeParser(save_image_path).get_extracted_data()
if resume_data:
# print(resume_data)
## Get the whole resume data
resume_text = pdf_reader(save_image_path)
st.header("**Resume Analysis**")
st.success("Hello "+ resume_data['name'])
st.subheader("**Your Basic info**")
try:
st.text('Name: '+resume_data['name'])
st.text('Email: ' + resume_data['email'])
st.text('Contact: ' + resume_data['mobile_number'])
st.text('Resume pages: '+str(resume_data['no_of_pages']))
except:
pass
cand_level = ''
if resume_data['no_of_pages'] == 1:
cand_level = "Fresher"
st.markdown( '''<h4 style='text-align: left; color: #d73b5c;'>You are looking Fresher.</h4>''',unsafe_allow_html=True)
elif resume_data['no_of_pages'] == 2:
cand_level = "Intermediate"
st.markdown('''<h4 style='text-align: left; color: #1ed760;'>You are at intermediate level!</h4>''',unsafe_allow_html=True)
elif resume_data['no_of_pages'] >=3:
cand_level = "Experienced"
st.markdown('''<h4 style='text-align: left; color: #fba171;'>You are at experience level!''',unsafe_allow_html=True)
st.subheader("**Skills Recommendation💡**")
## Skill shows
keywords = st_tags(label='### Skills that you have',
text='See our skills recommendation',
value=resume_data['skills'],key = '1')
## recommendation
ds_keyword = ['tensorflow','keras','pytorch','machine learning','deep Learning','flask','streamlit']
web_keyword = ['react', 'django', 'node jS', 'react js', 'php', 'laravel', 'magento', 'wordpress',
'javascript', 'angular js', 'c#', 'flask']
android_keyword = ['android','android development','flutter','kotlin','xml','kivy']
ios_keyword = ['ios','ios development','swift','cocoa','cocoa touch','xcode']
uiux_keyword = ['ux','adobe xd','figma','zeplin','balsamiq','ui','prototyping','wireframes','storyframes','adobe photoshop','photoshop','editing','adobe illustrator','illustrator','adobe after effects','after effects','adobe premier pro','premier pro','adobe indesign','indesign','wireframe','solid','grasp','user research','user experience']
recommended_skills = []
reco_field = ''
rec_course = ''
## Courses recommendation
for i in resume_data['skills']:
## Data science recommendation
if i.lower() in ds_keyword:
print(i.lower())
reco_field = 'Data Science'
st.success("** Our analysis says you are looking for Data Science Jobs.**")
recommended_skills = ['Data Visualization','Predictive Analysis','Statistical Modeling','Data Mining','Clustering & Classification','Data Analytics','Quantitative Analysis','Web Scraping','ML Algorithms','Keras','Pytorch','Probability','Scikit-learn','Tensorflow',"Flask",'Streamlit']
recommended_keywords = st_tags(label='### Recommended skills for you.',
text='Recommended skills generated from System',value=recommended_skills,key = '2')
st.markdown('''<h4 style='text-align: left; color: #1ed760;'>Adding this skills to resume will boost🚀 the chances of getting a Job💼</h4>''',unsafe_allow_html=True)
rec_course = course_recommender(ds_course)
break
## Web development recommendation
elif i.lower() in web_keyword:
print(i.lower())
reco_field = 'Web Development'
st.success("** Our analysis says you are looking for Web Development Jobs **")
recommended_skills = ['React','Django','Node JS','React JS','php','laravel','Magento','wordpress','Javascript','Angular JS','c#','Flask','SDK']
recommended_keywords = st_tags(label='### Recommended skills for you.',
text='Recommended skills generated from System',value=recommended_skills,key = '3')
st.markdown('''<h4 style='text-align: left; color: #1ed760;'>Adding this skills to resume will boost🚀 the chances of getting a Job💼</h4>''',unsafe_allow_html=True)
rec_course = course_recommender(web_course)
break
## Android App Development
elif i.lower() in android_keyword:
print(i.lower())
reco_field = 'Android Development'
st.success("** Our analysis says you are looking for Android App Development Jobs **")
recommended_skills = ['Android','Android development','Flutter','Kotlin','XML','Java','Kivy','GIT','SDK','SQLite']
recommended_keywords = st_tags(label='### Recommended skills for you.',
text='Recommended skills generated from System',value=recommended_skills,key = '4')
st.markdown('''<h4 style='text-align: left; color: #1ed760;'>Adding this skills to resume will boost🚀 the chances of getting a Job💼</h4>''',unsafe_allow_html=True)
rec_course = course_recommender(android_course)
break
## IOS App Development
elif i.lower() in ios_keyword:
print(i.lower())
reco_field = 'IOS Development'
st.success("** Our analysis says you are looking for IOS App Development Jobs **")
recommended_skills = ['IOS','IOS Development','Swift','Cocoa','Cocoa Touch','Xcode','Objective-C','SQLite','Plist','StoreKit',"UI-Kit",'AV Foundation','Auto-Layout']
recommended_keywords = st_tags(label='### Recommended skills for you.',
text='Recommended skills generated from System',value=recommended_skills,key = '5')
st.markdown('''<h4 style='text-align: left; color: #1ed760;'>Adding this skills to resume will boost🚀 the chances of getting a Job💼</h4>''',unsafe_allow_html=True)
rec_course = course_recommender(ios_course)
break
## Ui-UX Recommendation
elif i.lower() in uiux_keyword:
print(i.lower())
reco_field = 'UI-UX Development'
st.success("** Our analysis says you are looking for UI-UX Development Jobs **")
recommended_skills = ['UI','User Experience','Adobe XD','Figma','Zeplin','Balsamiq','Prototyping','Wireframes','Storyframes','Adobe Photoshop','Editing','Illustrator','After Effects','Premier Pro','Indesign','Wireframe','Solid','Grasp','User Research']
recommended_keywords = st_tags(label='### Recommended skills for you.',
text='Recommended skills generated from System',value=recommended_skills,key = '6')
st.markdown('''<h4 style='text-align: left; color: #1ed760;'>Adding this skills to resume will boost🚀 the chances of getting a Job💼</h4>''',unsafe_allow_html=True)
rec_course = course_recommender(uiux_course)
break
#
## Insert into table
ts = time.time()
cur_date = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d')
cur_time = datetime.datetime.fromtimestamp(ts).strftime('%H:%M:%S')
timestamp = str(cur_date+'_'+cur_time)
### Resume writing recommendation
st.subheader("**Resume Tips & Ideas💡**")
resume_score = 0
if 'Objective' in resume_text:
resume_score = resume_score+20
st.markdown('''<h4 style='text-align: left; color: #1ed760;'>[+] Awesome! You have added Objective</h4>''',unsafe_allow_html=True)
else:
st.markdown('''<h4 style='text-align: left; color: #fabc10;'>[-] According to our recommendation please add your career objective, it will give your career intension to the Recruiters.</h4>''',unsafe_allow_html=True)
if 'Declaration' in resume_text:
resume_score = resume_score + 20
st.markdown('''<h4 style='text-align: left; color: #1ed760;'>[+] Awesome! You have added Delcaration✍/h4>''',unsafe_allow_html=True)
else:
st.markdown('''<h4 style='text-align: left; color: #fabc10;'>[-] According to our recommendation please add Declaration✍. It will give the assurance that everything written on your resume is true and fully acknowledged by you</h4>''',unsafe_allow_html=True)
if 'Hobbies' or 'Interests'in resume_text:
resume_score = resume_score + 20
st.markdown('''<h4 style='text-align: left; color: #1ed760;'>[+] Awesome! You have added your Hobbies⚽</h4>''',unsafe_allow_html=True)
else:
st.markdown('''<h4 style='text-align: left; color: #fabc10;'>[-] According to our recommendation please add Hobbies⚽. It will show your persnality to the Recruiters and give the assurance that you are fit for this role or not.</h4>''',unsafe_allow_html=True)
if 'Achievements' in resume_text:
resume_score = resume_score + 20
st.markdown('''<h4 style='text-align: left; color: #1ed760;'>[+] Awesome! You have added your Achievements🏅 </h4>''',unsafe_allow_html=True)
else:
st.markdown('''<h4 style='text-align: left; color: #fabc10;'>[-] According to our recommendation please add Achievements🏅. It will show that you are capable for the required position.</h4>''',unsafe_allow_html=True)
if 'Projects' in resume_text:
resume_score = resume_score + 20
st.markdown('''<h4 style='text-align: left; color: #1ed760;'>[+] Awesome! You have added your Projects👨💻 </h4>''',unsafe_allow_html=True)
else:
st.markdown('''<h4 style='text-align: left; color: #fabc10;'>[-] According to our recommendation please add Projects👨💻. It will show that you have done work related the required position or not.</h4>''',unsafe_allow_html=True)
st.subheader("**Resume Score📝**")
st.markdown(
"""
<style>
.stProgress > div > div > div > div {
background-color: #d73b5c;
}
</style>""",
unsafe_allow_html=True,
)
my_bar = st.progress(0)
score = 37
for percent_complete in range(resume_score):
score +=1
time.sleep(0.1)
my_bar.progress(percent_complete + 1)
st.success('** Your Resume Writing Score: ' + str(score)+'**')
st.warning("** Note: This score is calculated based on the content that you have added in your Resume. **")
st.balloons()
# insert_data(resume_data['name'], resume_data['email'], str(resume_score), timestamp,
# str(resume_data['no_of_pages']), reco_field, cand_level, str(resume_data['skills']),
# str(recommended_skills), str(rec_course))
## Resume writing video
st.header("**Bonus Video for Resume Writing Tips💡**")
resume_vid = random.choice(resume_videos)
# res_vid_title = fetch_yt_video(resume_vid)
res_vid_title="Resume Tips For Freshers | How To Write A Resume"
st.subheader("✅ **"+res_vid_title+"**")
# print(resume_vid,"kkkkk")
resume_vid="https://www.youtube.com/watch?v=HQqqQx5BCFY"
st.video(resume_vid)
# Interview Preparation Video
st.header("**Bonus Video for Interview👨💼 Tips💡**")
# interview_vid = random.choice(interview_videos)
# int_vid_title = fetch_yt_video(interview_vid)
int_vid_title="Modern Hire interview questions - and how to answer them!"
st.subheader("✅ **" + int_vid_title + "**")
interview_vid="https://www.youtube.com/watch?v=XCjosBT3Gy8"
st.video(interview_vid)
connection.commit()
else:
st.error('Something went wrong..')
else:
## Admin Side
st.success('Welcome to Admin Side')
# st.sidebar.subheader('**ID / Password Required!**')
ad_user = st.text_input("Username")
ad_password = st.text_input("Password", type='password')
if st.button('Login'):
if ad_user == 'machine_learning_hub' and ad_password == 'mlhub123':
st.success("Welcome Kushal")
# Display Data
cursor.execute('''SELECT*FROM user_data''')
data = cursor.fetchall()
st.header("**User's👨💻 Data**")
df = pd.DataFrame(data, columns=['ID', 'Name', 'Email', 'Resume Score', 'Timestamp', 'Total Page',
'Predicted Field', 'User Level', 'Actual Skills', 'Recommended Skills',
'Recommended Course'])
st.dataframe(df)
st.markdown(get_table_download_link(df,'User_Data.csv','Download Report'), unsafe_allow_html=True)
## Admin Side Data
query = 'select * from user_data;'
plot_data = pd.read_sql(query, connection)
## Pie chart for predicted field recommendations
labels = plot_data.Predicted_Field.unique()
print(labels)
values = plot_data.Predicted_Field.value_counts()
print(values)
st.subheader("📈 **Pie-Chart for Predicted Field Recommendations**")
fig = px.pie(df, values=values, names=labels, title='Predicted Field according to the Skills')
st.plotly_chart(fig)
### Pie chart for User's👨💻 Experienced Level
labels = plot_data.User_level.unique()
values = plot_data.User_level.value_counts()
st.subheader("📈 ** Pie-Chart for User's👨💻 Experienced Level**")
fig = px.pie(df, values=values, names=labels, title="Pie-Chart📈 for User's👨💻 Experienced Level")
st.plotly_chart(fig)
else:
st.error("Wrong ID & Password Provided")
run()