-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspatial-mlr3.Rmd
558 lines (451 loc) · 16.3 KB
/
spatial-mlr3.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
---
title: A Spatial Statistics Playground w/ mlr3
output:
html_document:
anchor_sections: true
code_folding: show
css: [assets/style.css]
df_print: default
lib_dir: docs/libs
math_method:
engine: katex
self_contained: FALSE
toc: true
toc_depth: 6
toc_float:
collapsed: false
extra_dependencies:
!expr list(htmltools::htmlDependency('chunk-names', '1.0', paste0(getwd(), '/assets'), script='chunk-names.js', all_files = FALSE))
---
```{r setup, include=FALSE}
library(knitr)
# chunk output ----
options(digits.secs = 3)
opts_chunk$set(results = 'hold')
opts_chunk$set(message = FALSE)
# set code width for default print method - max 10000
knit_hooks$set(print.width = function(before, options) {
if (!is.null(options$print.width)) {
if (before) {
if (options$print.width > 10000) options$print.width <- 10000
options(width = options$print.width)
} else {
options(width = 80)
}
}
})
# globals ----
output <- "docs"
# styling ----
if (!dir.exists(paste0(output, '/assets/'))) dir.create(paste0(output, '/assets/'), recursive = T)
file.copy("assets/style.css", sprintf("%s/assets/", output), overwrite = T, copy.date = TRUE)
# images - path, compression & resolution ----
fig.path <- paste0(output, '/assets/img/')
if (!dir.exists(fig.path)) dir.create(fig.path, recursive = T)
opts_chunk$set(fig.path = fig.path)
knit_hooks$set(pngquant = hook_pngquant)
opts_chunk$set(pngquant = '')
opts_hooks$set(fig.screen = function(options) {
mbp14_dpi <- 254/1.5
mbp14_width <- 3023
mbp14_height <- 1889
if (options$fig.screen == TRUE) {
options$dpi <- mbp14_dpi
options$fig.dim = c(mbp14_width/mbp14_dpi, mbp14_height/mbp14_dpi)
}
options
})
# chunk names as headers & anchors ----
opts_chunk$set(link = TRUE)
knit_hooks$set(link = function(before, options) {
if (options$link == TRUE & ! grepl("^unnamed-chunk-[0-9]*$", options$label)) {
if (before) {
h <- 6
paste0(
'<div id="_', gsub("\\.", "", options$label), '_" class="chunk section level', h, '">',
'<h', h, ' class="hasAnchor">', options$label,
'<a href="#_', gsub("\\.", "", options$label),
'_" class="anchor-section" aria-label="Anchor link to header"></a>',
'</h', h, '>'
)
} else {
'</div>'
}
}
})
```
## Foreward
Here I explore handling spatial data to build predictive models. And in particularly I use the [mlr3](https://mlr3.mlr-org.com) ecosystem as my modeling framework. Much of this code comes from the [Resources](#resources) gathered below.
All of the computations are ran via GitHub Actions. Thus, the [hardware / compute specs](https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#supported-runners-and-hardware-resources) are minimal - but the workflow to render this R Markdown is entirely reproducible.
Enjoy.
## Setup
```{r packages, warning=FALSE}
# from pca-mlr3-pipelines
library(mlr3verse)
library(data.table)
library(future)
library(igraph)
library(ggfortify)
library(scattermore)
library(R6)
library(rlang)
# from Statistical Learning | Geocomputation with R
library(lgr)
library(sf)
library(terra)
library(progressr)
library(mlr3spatiotempcv)
library(spDataLarge)
library(tmap)
library(tmaptools)
library(raster)
library(pROC)
library(tictoc)
library(ggplot2)
library(mlr3extralearners)
```
```{r mlr3verse_info}
mlr3verse_info()
```
## Resources
- [Geocomputing with R](https://geocompr.robinlovelace.net)
- [Chapter 12 Statistical learning](https://geocompr.robinlovelace.net/spatial-cv.html)
- https://github.com/Robinlovelace/geocompr/blob/main/12-spatial-cv.Rmd
- https://github.com/Robinlovelace/geocompr/blob/main/code/12-cv.R
- [Chapter 8.3 Spatiotemporal Analysis | mlr3 Book](https://mlr3book.mlr-org.com/special-tasks.html#spatiotemporal)
- [Handling of Spatial Data | mlr v2 articles](https://mlr.mlr-org.com/articles/tutorial/handling_of_spatial_data.html)
- [Spatial Data Science](https://keen-swartz-3146c4.netlify.app)
- [Chapter 12 Spatial Interpolation](https://keen-swartz-3146c4.netlify.app/interpolation.html)
- [Chapter 16 Spatial Regression](https://keen-swartz-3146c4.netlify.app/spatglmm.html)
## Landslide Susceptibility
### Data
```{r data}
data("lsl", "study_mask", package = "spDataLarge")
lsl <- as.data.table(lsl)
ta <- terra::rast(system.file("raster/ta.tif", package = "spDataLarge"))
```
```{r map-landslides}
lsl_sf <- st_as_sf(lsl, coords = c("x", "y"), crs = "EPSG:32717")
# terra generates errors if this object is called named 'slope'
slope1 <- ta$slope * pi / 180
aspect <- terra::terrain(ta$elev, v = "aspect", unit = "radians")
hs <- terra::shade(slope = slope1, aspect = aspect)
# so far tmaptools does not support terra objects
bbx <- tmaptools::bb(
raster::raster(hs), xlim = c(-0.0001, 1),
ylim = c(-0.0001, 1), relative = TRUE
)
map <- tm_shape(hs, bbox = bbx) +
tm_grid(
col = "black", n.x = 1, n.y = 1, labels.inside.frame = FALSE,
labels.rot = c(0, 90), lines = FALSE
) +
tm_raster(palette = gray(0:100 / 100), n = 100, legend.show = FALSE) +
tm_shape(ta$elev) +
tm_raster(alpha = 0.5, palette = terrain.colors(10), legend.show = FALSE) +
tm_shape(lsl_sf) +
tm_bubbles(
"lslpts", size = 0.2, palette = "-RdYlBu", title.col = "Landslide: "
) +
tm_layout(inner.margins = 0) +
tm_legend(bg.color = "white")
```
```{r map-landslides-fig, echo=FALSE, cache=FALSE}
map
```
```{r lsl}
lsl
```
### Spatial Bias
#### GLM Classif - Predictive Model
```{r glm-fit-pred}
fit <- glm(
lslpts ~ slope + cplan + cprof + elev + log10_carea,
family = binomial(),
data = lsl
)
pred <- terra::predict(ta, model = fit, type = "response")
```
```{r map-landslides-glm-bias-pred}
sv_study_mask <- terra::vect(study_mask)
map_glm <- tm_shape(hs, bbox = bbx) +
tm_grid(
col = "black", n.x = 1, n.y = 1, labels.inside.frame = FALSE,
labels.rot = c(0, 90), lines = FALSE
) +
tm_raster(palette = "white", legend.show = FALSE) +
# hillshade
tm_shape(terra::mask(hs, sv_study_mask), bbox = bbx) +
tm_raster(palette = gray(0:100 / 100), n = 100, legend.show = FALSE) +
# prediction raster
tm_shape(terra::mask(pred, sv_study_mask)) +
tm_raster(
alpha = 0.5, palette = "Reds", n = 6, legend.show = TRUE, title = "Susceptibility"
) +
tm_layout(
legend.position = c("left", "bottom"), legend.title.size = 0.9, inner.margins = 0
)
```
```{r map-landslides-glm-bias-pred-fig, echo=FALSE, cache=FALSE}
map_glm
```
```{r auroc}
pROC::auc(pROC::roc(lsl$lslpts, fitted(fit)))
```
### Spatial CV using mlr3
Here we introduce spatial cross validation to combat spatial autocorrelation and bias. As mentioned previously, we'll use the [mlr3](https://mlr3.mlr-org.com) framework to build our model.
Specifically, we'll run 4 types of models. The first 2 will be specified via an mlr3 'design'. A design is a table of scenarios (models to be evaluated) of unique combinations of [`Task`](https://mlr3.mlr-org.com/reference/Task.html), [`Learner`](https://mlr3.mlr-org.com/reference/Learner.html), and [`Resampling`](https://mlr3.mlr-org.com/reference/Resampling.html) objects.
We create the design using `benchmark_grid` and can run the design object using `benchmark`.
We will parallelize the execution of our models as much as possible. This depends on the number of cores that are available on our machine and by how we instruct `future`s to be resolved by specifying the [future topology](https://future.futureverse.org/articles/future-3-topologies.html) via `future::plan`. An optimal approach can also depend on types of resampling methods used by each of our models (e.g. nested resampling can be executing in parallel in the inner resampling loop), as well as the dimensions of our design.
#### GLM Classif - Model Evaluation
The point of this section is to retrieve a bias-reduced performance estimate. We'll do this by using the logistic regression learner "classif.log_reg" first for predicting landslide susceptibility.
In the next section, we will use a learner that has hyperparameters (an SVM), which we will tune. The goal of training that model will be to maximize predictive performance.
##### Task
Note, both `TaskClassifST$new` & `as_task_classif_st` can accept `sf` objects, e.g. our `lsl_sf` object. When this is the case, spatial metadata can be extracted and used for input arguments to the task (e.g. `coordinate_names` & `crs` in the `extra_args` list).
However, apparently the task converts the `sf` object into a `data.table` object, which we know could become memory intensive when handling large data.
By default, all variables *other* than the `target` parameter & the `coordinate_names` within the `backend`/`x` object are used as predictor variables. By default `coords_as_features` is set to `FALSE`, which instructs the task to not use `coordinate_names` as predictors. Set this to `TRUE` to use them as predictors.
```{r task_new}
task_new <- mlr3spatiotempcv::TaskClassifST$new(
id = "lsl",
backend = mlr3::as_data_backend(lsl),
target = "lslpts",
positive = "TRUE",
extra_args = list(
coordinate_names = c("x", "y"),
coords_as_features = FALSE,
crs = "EPSG:32717"
)
)
task_new
```
```{r task}
task <- as_task_classif_st(
x = lsl,
target = "lslpts",
positive = "TRUE",
coordinate_names = c("x", "y"),
coords_as_features = FALSE,
crs = "EPSG:32717"
)
task
```
Creating the tasks via the above methods seem to make them identical, but that's not ***strictly*** the case.
```{r}
identical(task_new, task)
```
```{r plt_duo}
mlr3viz::autoplot(task, type = "duo")
```
```{r plot_pairs, fig.screen=TRUE}
mlr3viz::autoplot(task, type = "pairs")
```
##### Learner
We'll use a logistic regression learner for this task since the response variable of `lsl$lslpts` is binary.
```{r print.width=10000}
as.data.table(mlr_learners) %>% `[`(key == "classif.log_reg")
```
```{r}
learner <- lrn("classif.log_reg", predict_type = "prob")
# to make sure that training does not stop b/c of any failing models, we define a fallback learner
learner$fallback <- lrn("classif.featureless", predict_type = "prob")
```
##### Resampling
```{r}
resamplings <- list(
rsmp("repeated_spcv_coords", folds = 5, repeats = 100),
rsmp("repeated_cv", folds = 5, repeats = 100)
)
```
##### Design & Benchmark Grid
```{r}
design <- benchmark_grid(
tasks = task,
learners = learner,
resamplings = resamplings
)
design
```
##### Execution - Training
Set seed for reproducibility.
```{r}
set.seed(1)
plan(multisession)
```
```{r cache=TRUE, cache.lazy=FALSE}
lgr::get_logger("mlr3")$set_threshold("warn")
tic()
progressr::with_progress(
bmr <- benchmark(
design = design,
store_models = FALSE,
store_backends = FALSE,
encapsulate = "evaluate"
)
)
toc()
```
##### Model Performance Evaluation
```{r}
p_auroc <- autoplot(bmr, measure = msr("classif.auc"))
p_auroc$labels$y = "AUROC"
p_auroc$layers[[1]]$aes_params$fill = c("lightblue2", "mistyrose2")
p_auroc + scale_x_discrete(labels=c("spatial CV", "conventional CV"))
```
```{r}
autoplot(bmr) + scale_x_discrete(labels=c("spatial CV", "conventional CV"))
```
#### SVM Classif - Predictive Model
##### Learner
```{r print.width=10000}
as.data.table(mlr_learners) %>% `[`(grepl("svm", key) & task_type == "classif")
```
```{r}
lrn_ksvm <- lrn("classif.ksvm", predict_type = "prob", kernel = "rbfdot", type = "C-svc")
# to make sure that tuning does not stop b/c of any failing models, we define a fallback learner
lrn_ksvm$fallback <- lrn("classif.featureless", predict_type = "prob")
```
##### Hyperparameter Tuner Strategy
```{r}
# five spatially disjoint k-means partitions
tune_level_spcv <- rsmp("spcv_coords", folds = 5)
# randomly sample partitions
tune_level_cv <- rsmp("cv", folds = 5)
# use 50 randomly selected hyperparameters
terminator <- trm("evals", n_evals = 50)
tuner <- tnr("random_search")
# define the outer limits of the randomly selected hyperparameters
search_space <- paradox::ps(
C = paradox::p_dbl(lower = -12, upper = 15, trafo = function(x) 2^x),
sigma = paradox::p_dbl(lower = -15, upper = 6, trafo = function(x) 2^x)
)
```
```{r}
at_ksvm_spcv = mlr3tuning::AutoTuner$new(
learner = lrn_ksvm,
resampling = tune_level_spcv, # spatially disjoint k-fold k-means partitioning
measure = mlr3::msr("classif.auc"), # performance measure
terminator = terminator, # n iterations of unique randomly selected hyperparameters
tuner = tuner, # specify random search
search_space = search_space, # predefined hyperparameter search space
store_models = TRUE
)
at_ksvm_cv = mlr3tuning::AutoTuner$new(
learner = lrn_ksvm,
resampling = tune_level_cv,
measure = mlr3::msr("classif.auc"),
terminator = terminator,
tuner = tuner,
search_space = search_space
)
```
##### Execution - Training
```{r}
set.seed(1)
plan(multisession)
```
```{r train-auto, cache=TRUE, cache.lazy=FALSE}
lgr::get_logger("mlr3")$set_threshold("warn")
lgr::get_logger("bbotk")$set_threshold("warn")
tic()
progressr::with_progress(
{
at_ksvm_spcv$train(task = task)
at_ksvm_cv$train(task)
}
)
toc()
# explicit assignment for caching entire object
at_ksvm_spcv <- at_ksvm_spcv
at_ksvm_cv <- at_ksvm_cv
```
```{r cache=TRUE, dependson='train-auto'}
at_ksvm_spcv$model$learner$state$model
```
```{r print.width=10000, cache=TRUE, dependson='train-auto'}
at_ksvm_spcv$model$tuning_instance
```
```{r cache=TRUE, dependson='train-auto'}
at_ksvm_spcv$tuning_result$learner_param_vals
```
```{r cache=TRUE, dependson='train-auto'}
at_ksvm_spcv$model$tuning_instance$archive$benchmark_result$resample_results$resample_result[[1]]
```
```{r print.width=10000, cache=TRUE, dependson='train-auto'}
at_ksvm_spcv$model$tuning_instance$archive$benchmark_result$resample_results$resample_result[[1]]$score()
```
```{r cache=TRUE, dependson='train-auto'}
at_ksvm_spcv$model$tuning_instance$archive$benchmark_result$resample_results$resample_result[[1]]$learner
```
```{r cache=TRUE, dependson='train-auto'}
at_ksvm_spcv$model$tuning_instance$archive$benchmark_result$resample_results$resample_result[[1]]$learners
```
```{r cache=TRUE, dependson='train-auto'}
at_ksvm_spcv$model$tuning_instance$archive$benchmark_result$resample_results$resample_result[[1]]$learners[[1]]$model
at_ksvm_spcv$model$tuning_instance$archive$benchmark_result$resample_results$resample_result[[1]]$learners[[5]]$model
```
##### k-folds CV Spatial Partitioning
```{r fig.screen=TRUE, cache=FALSE, dependson='train-auto'}
autoplot(
object = at_ksvm_spcv$archive$benchmark_result$resamplings$resampling[[1]],
task = task, fold_id = 1:5
)
```
##### k-folds CV Random Partitioning
```{r fig.screen=TRUE, cache=FALSE, dependson='train-auto'}
autoplot(
object = at_ksvm_cv$archive$benchmark_result$resamplings$resampling[[1]],
task = task, fold_id = 1:5
)
```
##### Prediction
```{r preds_svm, cache=FALSE, cache.lazy=FALSE, dependson='train-auto'}
tic()
pred_spcv = terra::predict(
object = ta, model = at_ksvm_spcv$model$learner$state$model,
type = "probabilities", na.rm = T
)
pred_cv = terra::predict(
object = ta, model = at_ksvm_cv$model$learner$state$model,
type = "probabilities", na.rm = T
)
toc()
```
##### Prediction Maps
Here we display landslide susceptibility.
```{r}
tmap_pred <- function(preds, hs, bbx, sv_study_mask, palette) {
t_map <- tm_shape(shp = hs, bbox = bbx) +
tm_grid(
col = "black", n.x = 1, n.y = 1, labels.inside.frame = FALSE,
labels.rot = c(0, 90), lines = FALSE
) +
tm_raster(palette = "white", legend.show = FALSE) +
# hillshade
tm_shape(terra::mask(x = hs, mask = sv_study_mask), bbox = bbx) +
tm_raster(palette = gray(0:100 / 100), n = 100, legend.show = FALSE) +
# add prediction raster
tm_shape(terra::mask(x = preds, mask = sv_study_mask)) +
tm_raster(
alpha = 0.5, palette = palette, n = 6, legend.show = TRUE, title = "Susceptibility"
) +
tm_layout(
legend.position = c("left", "bottom"), legend.title.size = 0.9, inner.margins = 0
)
return(t_map)
}
```
```{r maps-svm, cache=FALSE, dependson='preds_svm'}
map_svm_spcv <- tmap_pred(
preds = pred_spcv[[1]], hs = hs, bbx = bbx, sv_study_mask = sv_study_mask, palette = "Reds"
)
map_svm_cv <- tmap_pred(
preds = pred_cv[[1]], hs = hs, bbx = bbx, sv_study_mask = sv_study_mask, palette = "Reds"
)
```
```{r fig.screen=TRUE, cache=FALSE, dependson=c('maps-svm')}
tmap_arrange(map, map_glm, map_svm_spcv, map_svm_cv)
```
##### Prediction Data
```{r fig.screen=TRUE, cache=FALSE}
plot(ta)
```