-
Notifications
You must be signed in to change notification settings - Fork 1
/
bundle.py
348 lines (275 loc) · 10.6 KB
/
bundle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
from json import loads, load
from random import randint
from torch.utils.data import Dataset
from torch import tensor, cuda, randint as torch_rand, save
from transformers import TrainingArguments, AutoConfig, RobertaConfig, GPT2Config, GPTJConfig
from transformers import RobertaForMaskedLM, GPT2LMHeadModel, GPTJModel
from transformers import RobertaTokenizerFast, AutoTokenizer, DataCollatorForLanguageModeling
from transformers import DefaultFlowCallback
from transformers.trainer_callback import TrainerState, TrainerControl, TrainingArguments, IntervalStrategy
from transformers import pipeline, Trainer
for c in range(0, cuda.device_count()):
print(cuda.get_device_name(c))
class JsonDataset(Dataset):
def __init__(self, jpath):
if isinstance(jpath, str):
with open(jpath, "r", encoding="utf-8") as jf:
self.examples = list(jf)
else:
self.examples = []
for jp in jpath:
with open(jp, "r", encoding="utf-8") as jf:
self.examples += list(jf)
def __len__(self):
return len(self.examples)
def __getitem__(self, i):
return tensor(loads(self.examples[i])).long()
false = False
true = True
config = {
"paths": {
"main_path": "data",
"train_path": "%main_path%/train_mini_bert.jsonl",
"dev_path": "%main_path%/dev_mini_bert.jsonl",
"tokenizer_path":"%main_path%/tokenizer.json",
"model_folder": "%main_path%/saved",
"pretrained": ""
},
"model-options": {
"model_type": "roberta-base",
"resume-from-checkpoint": false,
"output_from_model": true
},
"training-options": {
"num_train_epochs": 2,
"per_device_train_batch_size": 8,
"per_device_eval_batch_size": 8,
"learning_rate": 0.000004,
"weight_decay": 0.01,
"warmup_steps": 0,
"save_steps": 50000,
"eval_steps": 50000,
"save_total_limit": 1,
"load_best_model_at_end": false,
"overwrite_output_dir": true,
"evaluation_strategy": "epoch"
},
"misc": {
"encoded_file_keyword": "_encoded_",
"default_gen_input": ""
},
"tokenizer_training": {
"path" : "C:/gpt2/tokenizer/",
"size": 49152,
"freq": 2,
"special_tokens": ["<s>", "<pad>", "</s>", "<unk>", "<mask>"],
"unk_token": "<UNK>",
"type": "BPE"
}
}
examples = [
"Ana ide u<mask>.",
"Osnovna<mask> Vuk Karadžić",
"Kupio sam dva<mask> i mleko."
]
def get_model(model_type, fast_tokenizer, pretrained="", model_params=None):
if pretrained:
if "roberta" in model_type:
return RobertaForMaskedLM.from_pretrained(pretrained)
elif "gpt2" in model_type:
return GPT2LMHeadModel.from_pretrained(pretrained)
elif "gptj" in model_type:
return GPTJModel.from_pretrained(pretrained)
else:
if not model_params:
with open("training-configs/" + model_type + ".json", "r", encoding="utf-8") as mf:
model_params = load(mf)
return create_model(model_type, fast_tokenizer, model_params)
def create_model(model_type, fast_tokenizer, model_params):
if "roberta" in model_type:
model_config = RobertaConfig(**model_params)
elif "gpt2" in model_type:
model_config = GPT2Config(**model_params)
elif "gptj" in model_type:
model_config = GPTJConfig(**model_params)
else:
model_config = AutoConfig()
model_config.vocab_size = fast_tokenizer.vocab_size
model_config.bos_token_id = fast_tokenizer.bos_token_id
model_config.eos_token_id = fast_tokenizer.bos_token_id
if "roberta" in model_type:
return RobertaForMaskedLM(config=model_config)
elif "gpt2" in model_type:
return GPT2LMHeadModel(config=model_config)
elif "gptj" in model_type:
return GPTJModel(config=model_config)
def load_tokenizer(model_type, tokenizer_path):
if "roberta" in model_type:
return RobertaTokenizerFast(tokenizer_file=tokenizer_path,
pad_token="<pad>", unk_token="<unk>", mask_token="<mask>")
elif "gpt" in model_type:
return RobertaTokenizerFast(tokenizer_file=tokenizer_path, padding=False, pad_token="<pad>")
else:
return AutoTokenizer()
def collator(model_type, fast_tokenizer):
if "roberta" in model_type:
return DataCollatorForLanguageModeling(
mlm=True,
mlm_probability=0.15,
tokenizer=fast_tokenizer,
)
elif "gpt" in model_type:
return DataCollatorForLanguageModeling(
tokenizer=fast_tokenizer,
mlm=False,
)
else:
return DataCollatorForLanguageModeling(
tokenizer=fast_tokenizer
)
def load_configs(cfg=None, cfgpath="training-configs/config.json"):
if not cfg:
with open(cfgpath, "r", encoding="utf-8") as cf:
cfg = load(cf)
# paths
main_path = cfg["paths"]["main_path"]
newpaths = {x: process_path(y, "%main_path%", main_path) for (x, y) in cfg["paths"].items()}
# model and training parameters
options = cfg["model-options"]
training_options = cfg["training-options"]
training_options["output_dir"] = newpaths["model_folder"]
training_options["remove_unused_columns"] = False
tokenizer_training = cfg["tokenizer_training"]
# Training args fill
args = TrainingArguments(**training_options)
efk = cfg["misc"]["encoded_file_keyword"]
default_input = cfg["misc"]["default_gen_input"]
return newpaths, options, args, efk, default_input, tokenizer_training
def process_path(path, key, replace_path):
if isinstance(path, str):
return path.replace(key, replace_path)
else:
results = []
for x in path:
results.append(x.replace(key, replace_path))
return results
def get_examples(examples=None, examples_path="training-configs/fill_mask_examples.json"):
if not examples:
with open(examples_path, "r", encoding="utf-8") as ef:
examples = load(ef)
return examples
paths, model_options, training_args, encoded_file_keyword, default_gen_input, tokenizer_training = load_configs(config)
fill_test_examples = get_examples(examples)
tokenizer = load_tokenizer(model_options["model_type"], paths["tokenizer_path"])
data_collator = collator(model_options["model_type"], tokenizer)
model = get_model(model_options["model_type"], tokenizer, paths["pretrained"])
device = "cuda:0" if cuda.is_available() else "cpu"
def fill_examples(mod, tok):
# Create a Fill mask pipeline
fill_mask = pipeline(
"fill-mask",
model=mod,
tokenizer=tok,
device=device,
top_k=3
)
examples = []
for example in fill_test_examples:
examples.append([x["sequence"] for x in fill_mask(example)])
return examples
def generate(model, context, length=20, temperature=0.75):
encoded_input = context.to(device)
output = model.generate(
**encoded_input,
bos_token_id=randint(1, 50000),
do_sample=True,
top_k=0,
max_length=length,
temperature=temperature,
no_repeat_ngram_size=3,
# top_p=0.95,
num_return_sequences=1,
pad_token_id=0
)
return output
def generatetion_test(mod, tok, samples=3, length=24, context=default_gen_input, temp=0.75):
outs = []
if context == "":
tokens = torch_rand(low=260, high=52000, size=(1,))
context = tok.decode(tokens, skip_special_tokens=True)
context = tok(context, return_tensors="pt")
cl = context.data["input_ids"].size()[1]
for x in range(samples):
output = generate(mod, context=context, length=length+cl, temperature=temp)
decoded_output = []
for sample in output:
sample = sample[cl:]
decoded_output.append(tokenizer.decode(sample, skip_special_tokens=True))
outs.append("".join(decoded_output))
return outs
def test(mod, tok=tokenizer):
if "roberta" in model_options["model_type"]:
return fill_examples(mod, tok)
elif "gpt" in model_options["model_type"]:
return generatetion_test(mod, tok)
class CustomDefaultFlowCallback(DefaultFlowCallback):
def on_epoch_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
# Log
if args.logging_strategy == IntervalStrategy.EPOCH:
control.should_log = True
# Evaluate
if args.evaluation_strategy == IntervalStrategy.EPOCH and args.eval_delay <= state.epoch:
control.should_evaluate = True
# Save
if args.save_strategy == IntervalStrategy.EPOCH:
control.should_save = True
# Save model?
if model_options["save_each_epoch"]:
save(kwargs["model"], paths["model_folder"] + "/epoch_" + str(state.epoch))
return control
def on_step_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
# Log
if state.global_step == 1 and args.logging_first_step:
control.should_log = True
if args.logging_strategy == IntervalStrategy.STEPS and state.global_step % args.logging_steps == 0:
control.should_log = True
# Evaluate
if (
args.evaluation_strategy == IntervalStrategy.STEPS
and state.global_step % args.eval_steps == 0
and args.eval_delay <= state.global_step
):
control.should_evaluate = True
# Save
if (
args.save_strategy == IntervalStrategy.STEPS
and args.save_steps > 0
and state.global_step % args.save_steps == 0
):
control.should_save = True
# Perform Experiment?
if model_options["output_from_model"]:
examples = test(kwargs["model"])
if not isinstance(examples[0], str):
examples = [e for ee in examples for e in ee]
with open(paths["model_folder"] + "/experiments.log", "a+", encoding="utf-8") as lf:
lf.write("\t".join(examples))
lf.write("\n")
# End training
if state.global_step >= state.max_steps:
control.should_training_stop = True
return control
train_dataset = JsonDataset(paths["train_path"])
eval_dataset = JsonDataset(paths["dev_path"])
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
# prediction_loss_only=True,
)
trainer.remove_callback(DefaultFlowCallback)
trainer.add_callback(CustomDefaultFlowCallback)
# Train the model
trainer.train(resume_from_checkpoint=model_options["resume-from-checkpoint"])