From abc97b377ee7fd03da505613d0bc64ef0feb9ee4 Mon Sep 17 00:00:00 2001 From: Wang Boyu Date: Tue, 5 Nov 2024 15:49:11 -0500 Subject: [PATCH 1/2] extract draw_plot method for plotting measures using matplotlib --- mesa/visualization/__init__.py | 4 +- .../components/matplotlib_components.py | 23 ++--------- .../{mpl_space_drawing.py => mpl_drawing.py} | 38 +++++++++++++++++++ tests/test_components_matplotlib.py | 2 +- 4 files changed, 45 insertions(+), 22 deletions(-) rename mesa/visualization/{mpl_space_drawing.py => mpl_drawing.py} (94%) diff --git a/mesa/visualization/__init__.py b/mesa/visualization/__init__.py index 66597b0e71d..9a40f8b3308 100644 --- a/mesa/visualization/__init__.py +++ b/mesa/visualization/__init__.py @@ -1,6 +1,7 @@ """Solara based visualization for Mesa models.""" -from mesa.visualization.mpl_space_drawing import ( +from mesa.visualization.mpl_drawing import ( + draw_plot, draw_space, ) @@ -15,6 +16,7 @@ "Slider", "make_space_altair", "draw_space", + "draw_plot", "make_plot_component", "make_space_component", ] diff --git a/mesa/visualization/components/matplotlib_components.py b/mesa/visualization/components/matplotlib_components.py index 6c7bb1ae040..4d8ec6c6de9 100644 --- a/mesa/visualization/components/matplotlib_components.py +++ b/mesa/visualization/components/matplotlib_components.py @@ -5,11 +5,10 @@ import warnings from collections.abc import Callable -import matplotlib.pyplot as plt import solara from matplotlib.figure import Figure -from mesa.visualization.mpl_space_drawing import draw_space +from mesa.visualization.mpl_drawing import draw_plot, draw_space from mesa.visualization.utils import update_counter @@ -151,26 +150,10 @@ def PlotMatplotlib( """ update_counter.get() fig = Figure() - ax = fig.subplots() - df = model.datacollector.get_model_vars_dataframe() - if isinstance(measure, str): - ax.plot(df.loc[:, measure]) - ax.set_ylabel(measure) - elif isinstance(measure, dict): - for m, color in measure.items(): - ax.plot(df.loc[:, m], label=m, color=color) - ax.legend(loc="best") - elif isinstance(measure, list | tuple): - for m in measure: - ax.plot(df.loc[:, m], label=m) - ax.legend(loc="best") - + ax = fig.add_subplot() + draw_plot(model, measure, ax) if post_process is not None: post_process(ax) - - ax.set_xlabel("Step") - # Set integer x axis - ax.xaxis.set_major_locator(plt.MaxNLocator(integer=True)) solara.FigureMatplotlib( fig, format=save_format, bbox_inches="tight", dependencies=dependencies ) diff --git a/mesa/visualization/mpl_space_drawing.py b/mesa/visualization/mpl_drawing.py similarity index 94% rename from mesa/visualization/mpl_space_drawing.py rename to mesa/visualization/mpl_drawing.py index 6353d8106b8..5ef1b9ae139 100644 --- a/mesa/visualization/mpl_space_drawing.py +++ b/mesa/visualization/mpl_drawing.py @@ -556,3 +556,41 @@ def _scatter(ax: Axes, arguments, **kwargs): **{k: v[logical] for k, v in arguments.items()}, **kwargs, ) + + +def draw_plot( + model, + measure, + ax: Axes | None = None, +): + """Create a Matplotlib-based plot for a measure or measures. + + Args: + model (mesa.Model): The model instance. + measure (str | dict[str, str] | list[str] | tuple[str]): Measure(s) to plot. + ax: the axes upon which to draw the plot + post_process: a user-specified callable to do post-processing called with the Axes instance. + + Returns: + plt.Axes: The Axes object with the plot drawn onto it. + """ + if ax is None: + _, ax = plt.subplots() + df = model.datacollector.get_model_vars_dataframe() + if isinstance(measure, str): + ax.plot(df.loc[:, measure]) + ax.set_ylabel(measure) + elif isinstance(measure, dict): + for m, color in measure.items(): + ax.plot(df.loc[:, m], label=m, color=color) + ax.legend(loc="best") + elif isinstance(measure, list | tuple): + for m in measure: + ax.plot(df.loc[:, m], label=m) + ax.legend(loc="best") + + ax.set_xlabel("Step") + # Set integer x axis + ax.xaxis.set_major_locator(plt.MaxNLocator(integer=True)) + + return ax diff --git a/tests/test_components_matplotlib.py b/tests/test_components_matplotlib.py index 9c454e77b2e..3e1e915cc1a 100644 --- a/tests/test_components_matplotlib.py +++ b/tests/test_components_matplotlib.py @@ -17,7 +17,7 @@ PropertyLayer, SingleGrid, ) -from mesa.visualization.mpl_space_drawing import ( +from mesa.visualization.mpl_drawing import ( draw_continuous_space, draw_hex_grid, draw_network, From ff8eded63982da2f28eb88400f60fb22fcbae3c5 Mon Sep 17 00:00:00 2001 From: Wang Boyu Date: Tue, 5 Nov 2024 19:32:58 -0500 Subject: [PATCH 2/2] implement VideoViz to record model runs in a video --- .gitignore | 3 + mesa/examples/basic/schelling/video.py | 40 +++++ mesa/visualization/video_viz.py | 201 +++++++++++++++++++++++++ 3 files changed, 244 insertions(+) create mode 100644 mesa/examples/basic/schelling/video.py create mode 100644 mesa/visualization/video_viz.py diff --git a/.gitignore b/.gitignore index a33dd9b7b41..3aa5fd30c2a 100644 --- a/.gitignore +++ b/.gitignore @@ -92,3 +92,6 @@ dmypy.json # JS dependencies mesa/visualization/templates/external/ mesa/visualization/templates/js/external/ + +# Video +**/*.mp4 diff --git a/mesa/examples/basic/schelling/video.py b/mesa/examples/basic/schelling/video.py new file mode 100644 index 00000000000..97aef3dd0dd --- /dev/null +++ b/mesa/examples/basic/schelling/video.py @@ -0,0 +1,40 @@ +"""Example of using VideoViz with the Schelling model.""" + +from mesa.examples.basic.schelling.model import Schelling +from mesa.visualization.video_viz import ( + VideoViz, + make_plot_component, + make_space_component, +) + +# Create model +model = Schelling(10, 10) + + +def agent_portrayal(agent): + """Portray agents based on their type.""" + if agent is None: + return {} + + portrayal = { + "color": "red" if agent.type == 0 else "blue", + "size": 25, + "marker": "s", # square marker + } + return portrayal + + +# Create visualization with space and some metrics +viz = VideoViz( + model, + [ + make_space_component(agent_portrayal=agent_portrayal), + make_plot_component("happy"), + ], + title="Schelling's Segregation Model", +) + +# Record simulation +if __name__ == "__main__": + viz.record(steps=50, filepath="schelling.mp4") + print("Video saved to: schelling.mp4") diff --git a/mesa/visualization/video_viz.py b/mesa/visualization/video_viz.py new file mode 100644 index 00000000000..94e77c30a4a --- /dev/null +++ b/mesa/visualization/video_viz.py @@ -0,0 +1,201 @@ +"""Mesa visualization module for recording videos of model simulations. + +This module uses Matplotlib to create visualizations of model spaces and +measures, and records them as videos. + +Please install FFmpeg to use this module: + - macOS: brew install ffmpeg + - Linux: sudo apt-get install ffmpeg + - Windows: download from https://ffmpeg.org/download.html +""" + +import shutil +from collections.abc import Callable, Sequence +from pathlib import Path + +import matplotlib.animation as animation +import matplotlib.pyplot as plt +import numpy as np + +import mesa +from mesa.visualization.mpl_drawing import ( + draw_plot, + draw_space, +) + + +def make_space_component( + agent_portrayal: Callable | None = None, + propertylayer_portrayal: dict | None = None, + post_process: Callable | None = None, + **space_drawing_kwargs, +) -> Callable[[mesa.Model, plt.Axes | None], plt.Axes]: + """Create a Matplotlib-based space visualization component. + + Args: + agent_portrayal: Function to portray agents. + propertylayer_portrayal: Dictionary of PropertyLayer portrayal specifications + post_process : a callable that will be called with the Axes instance. Allows for fine tuning plots (e.g., control ticks) + space_drawing_kwargs : additional keyword arguments to be passed on to the underlying space drawer function. See + the functions for drawing the various spaces for further details. + + ``agent_portrayal`` is called with an agent and should return a dict. Valid fields in this dict are "color", + "size", "marker", and "zorder". Other field are ignored and will result in a user warning. + + + Returns: + function: A function that returns a Axes instance with the space drawn + """ + if agent_portrayal is None: + + def agent_portrayal(a): + return {} + + def _make_space_component(model, ax=None): + space = getattr(model, "grid", None) or getattr(model, "space", None) + ax = draw_space( + space, + agent_portrayal, + propertylayer_portrayal, + ax, + **space_drawing_kwargs, + ) + if post_process: + post_process(ax) + return ax + + return _make_space_component + + +def make_plot_component( + measure: Callable, + post_process: Callable | None = None, + **kwargs, +) -> Callable[[mesa.Model, plt.Axes | None], plt.Axes]: + """Create a plotting function for a specified measure. + + Args: + measure (str | dict[str, str] | list[str] | tuple[str]): Measure(s) to plot. + post_process : a callable that will be called with the Axes instance. Allows for fine tuning plots (e.g., control ticks) + kwargs: Additional keyword arguments to pass to the MeasureRendererMatplotlib constructor. + + Returns: + function: A function that returns a Axes instance with the measure(s) drawn + """ + + def _make_plot_component(model, ax=None): + ax = draw_plot(model, measure, ax, **kwargs) + if post_process: + post_process(ax) + return ax + + return _make_plot_component + + +class VideoViz: + """Create high-quality video recordings of model simulations.""" + + def __init__( + self, + model: mesa.Model, + components: Sequence[Callable[[mesa.Model, plt.Axes | None], plt.Axes]], + *, + title: str | None = None, + figsize: tuple[float, float] | None = None, + grid: tuple[int, int] | None = None, + ): + """Initialize video visualization configuration. + + Args: + model: The model to simulate and record + components: Sequence of component objects defining what to visualize + title: Optional title for the video + figsize: Optional figure size in inches (width, height) + grid: Optional (rows, cols) for custom layout. Auto-calculated if None. + """ + # Check if FFmpeg is available + if not shutil.which("ffmpeg"): + raise RuntimeError( + "FFmpeg not found. Please install FFmpeg to save animations:\n" + " - macOS: brew install ffmpeg\n" + " - Linux: sudo apt-get install ffmpeg\n" + " - Windows: download from https://ffmpeg.org/download.html" + ) + self.model = model + self.components = components + self.title = title + self.figsize = figsize + self.grid = grid or self._calculate_grid(len(components)) + + # Setup figure and axes + self.fig, self.axes = self._setup_figure() + + def record( + self, + *, + steps: int, + filepath: str | Path, + dpi: int = 100, + fps: int = 10, + codec: str = "h264", + bitrate: int = 2000, + ) -> None: + """Record model simulation to video file. + + Args: + steps: Number of simulation steps to record + filepath: Where to save the video file + dpi: Resolution of the output video + fps: Frames per second in the output video + codec: Video codec to use + bitrate: Video bitrate in kbps (default: 2000) + + Raises: + RuntimeError: If FFmpeg is not installed + """ + filepath = Path(filepath) + + def update(frame_num): + # Update model state + self.model.step() + + # Render all visualization frames + for component, ax in zip(self.components, self.axes): + ax.clear() + component(self.model, ax) + return self.axes + + # Create and save animation + anim = animation.FuncAnimation( + self.fig, update, frames=steps, interval=1000 / fps, blit=False + ) + + writer = animation.FFMpegWriter( + fps=fps, + codec=codec, + bitrate=bitrate, # Now passing as integer + ) + + anim.save(filepath, writer=writer, dpi=dpi) + + def _calculate_grid(self, n_frames: int) -> tuple[int, int]: + """Calculate optimal grid layout for given number of frames.""" + cols = min(3, n_frames) # Max 3 columns + rows = int(np.ceil(n_frames / cols)) + return (rows, cols) + + def _setup_figure(self): + """Setup matplotlib figure and axes.""" + if not self.figsize: + self.figsize = (5 * self.grid[1], 5 * self.grid[0]) + fig = plt.figure(figsize=self.figsize) + axes = [] + + for i in range(len(self.components)): + ax = fig.add_subplot(self.grid[0], self.grid[1], i + 1) + axes.append(ax) + + if self.title: + fig.suptitle(self.title, fontsize=16) + fig.tight_layout() + return fig, axes