-
Notifications
You must be signed in to change notification settings - Fork 1
/
PatternsInBinders.v
74 lines (48 loc) · 1.75 KB
/
PatternsInBinders.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
Require Coq.Unicode.Utf8.
(** The purpose of this file is to test printing of the destructive
patterns used in binders ([fun] and [forall]). *)
Parameters (A B : Type) (P:A->Prop).
Definition swap '((x,y) : A*B) := (y,x).
Print swap.
Check fun '((x,y) : A*B) => (y,x).
Check forall '(x,y), swap (x,y) = (y,x).
Definition proj_informative '(exist _ x _ : { x:A | P x }) : A := x.
Print proj_informative.
Inductive Foo := Bar : nat -> bool -> unit -> nat -> Foo.
Definition foo '(Bar n b tt p) :=
if b then n+p else n-p.
Print foo.
Definition baz '(Bar n1 b1 tt p1) '(Bar n2 b2 tt p2) := n1+p1.
Print baz.
Module WithParameters.
Definition swap {A B} '((x,y) : A*B) := (y,x).
Print swap.
Check fun (A B:Type) '((x,y) : A*B) => swap (x,y) = (y,x).
Check forall (A B:Type) '((x,y) : A*B), swap (x,y) = (y,x).
Check exists '((x,y):A*A), swap (x,y) = (y,x).
Check exists '((x,y):A*A) '(z,w), swap (x,y) = (z,w).
End WithParameters.
(** Some test involving unicode notations. *)
Module WithUnicode.
Import Coq.Unicode.Utf8.
Check λ '((x,y) : A*B), (y,x).
Check ∀ '(x,y), swap (x,y) = (y,x).
End WithUnicode.
(** * Suboptimal printing *)
Module Suboptimal.
(** This test shows an example which exposes the [let] introduced by
the pattern notation in binders. *)
Inductive Fin (n:nat) := Z : Fin n.
Definition F '(n,p) : Type := (Fin n * Fin p)%type.
Definition both_z '(n,p) : F (n,p) := (Z _,Z _).
Print both_z.
(** Test factorization of binders *)
Check fun '((x,y) : A*B) '(z,t) => swap (x,y) = (z,t).
Check forall '(x,y) '((z,t) : B*A), swap (x,y) = (z,t).
End Suboptimal.
(** Test risk of collision for internal name *)
Check fun pat => fun '(x,y) => x+y = pat.
(** Test name in degenerate case *)
Definition f 'x := x+x.
Print f.
Check fun 'x => x+x.