forked from TortillasAlfred/feature_selection_CBorne
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtests.py
313 lines (222 loc) · 11.5 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# -*- coding: utf-8 -*-
from pyscm import SetCoveringMachineClassifier
from sklearn.feature_selection import RFE
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import f1_score, accuracy_score, make_scorer
from CustomCqBoost import CqBoostClassifier
from StumpsGenerator import CustomStumpsClassifiersGenerator
import numpy as np
import cPickle as pickle
import os
pickle_path = os.path.join(os.path.realpath('..'), 'CFS/', 'pickles/')
random_state = 420
algos_tested = dict(pyscm=SetCoveringMachineClassifier(random_state=random_state),
svm=SVC(class_weight='balanced', random_state=random_state),
decisionTree=DecisionTreeClassifier(class_weight='balanced', random_state=random_state),
randomForest=RandomForestClassifier(class_weight='balanced', random_state=random_state))
params = dict(pyscm=dict(p=[0.5, 1., 2., 5., 10.], model_type=['disjunction', 'conjunction'], max_rules=[1, 2, 3, 4, 5]),
svm=dict(C=[0.5, 1., 2., 3., 5.], kernel=['linear', 'poly', 'rbf', 'sigmoid']),
decisionTree=dict(max_depth=[2, 3, 5, 10], min_samples_split=[2, 4, 6, 8]),
randomForest=dict(n_estimators=[5, 10, 25, 50, 100], max_depth=[2, 3, 5, 10], min_samples_split=[2, 4, 6]))
def wa(y_true, y_pred, weights):
w_y = np.asarray(y_true, dtype='float64')
for k in weights.keys():
w_y[y_true == k] = k * weights[k]
correct = np.multiply(y_pred, w_y)
return correct[correct > 0].sum()/correct.shape[0]
def get_classifier_scores(X, y, sample_weights, random_states=[1, 42, 69, 420, 666, 33, 17, 6, 0, 51], cv=True):
f1_scores_mean = {}
f1_scores_var = {}
accuracies_mean = {}
accuracies_var = {}
for algo in algos_tested:
f1_scores_mean_algo = []
f1_scores_var_algo = []
accuracies_mean_algo = []
accuracies_var_algo = []
print "Begin " + str(algo)
for x in X:
f1_temp, accuracies_temp = [], []
for rs in random_states:
learner = algos_tested[algo]
x_train, x_test, y_train, y_test, _, sample_weights_test = train_test_split(x, y, sample_weights, train_size=0.7, random_state=rs)
if cv:
cv_params = params[algo]
# Weight_dict est hardcodé avec les poids retournés par determiner_class_weights()
weight_dict = {}
weight_dict[-1] = 0.594979647218453
weight_dict[1] = 3.13214285714286
scorer = make_scorer(wa, weights=weight_dict)
# Cross validation avec weighted accuracy
clf = GridSearchCV(learner, cv_params, verbose=1, n_jobs=-1, scoring=scorer, cv=5)
else:
clf = learner
clf.fit(x_train, y_train)
y_pred = clf.predict(x_test)
f1_temp.append(f1_score(y_test, y_pred))
accuracies_temp.append(accuracy_score(y_test, y_pred, sample_weight=sample_weights_test))
f1_temp = np.asarray(f1_temp)
f1_scores_mean_algo.append(np.mean(f1_temp, dtype=np.float64))
f1_scores_var_algo.append(np.var(f1_temp, dtype=np.float64))
accuracies_temp = np.asarray(accuracies_temp)
accuracies_mean_algo.append(np.mean(accuracies_temp, dtype=np.float64))
accuracies_var_algo.append(np.var(accuracies_temp, dtype=np.float64))
f1_scores_mean[algo] = f1_scores_mean_algo
f1_scores_var[algo] = f1_scores_var_algo
accuracies_mean[algo] = accuracies_mean_algo
accuracies_var[algo] = accuracies_var_algo
return f1_scores_mean, f1_scores_var, accuracies_mean, accuracies_var
def calculer_similarites_features():
retained_features_CqBoost = np.load(open(pickle_path + "retained_features_CqBoost.pck"))
retained_features_RFE = np.load(open(pickle_path + "retained_features_RFE.pck"))
retained_features_RFE_5000 = np.load(open(pickle_path + "retained_features_RFE_5000.pck"))
retained_features_CqBoost_sizes, retained_features_RFE_sizes = [], []
sizes = calculer_sizes()
for s in sizes:
retained_features_CqBoost_sizes.append(retained_features_CqBoost[:s])
retained_features_RFE_sizes.append(retained_features_RFE_5000[retained_features_RFE[:s]])
percent_identical_features= []
for i in range(len(sizes)):
x1 = retained_features_CqBoost_sizes[i]
x2 = retained_features_RFE_sizes[i]
percent_identical_features.append(np.sum(np.in1d(x1, x2), dtype='float64') / sizes[i])
return percent_identical_features
def run_tests_comparison():
_, y = load_data()
class_weights = determiner_poids_classes(y)
sizes = calculer_sizes()
X_RFE = [np.load(open(pickle_path + "X_" + str(n) + "_RFE.pck", 'rb')) for n in sizes]
f1_scores_mean_RFE, f1_scores_var_RFE, accuracies_mean_RFE, accuracies_var_RFE = get_classifier_scores(X_RFE, y, sample_weights=class_weights)
print "Done tests RFE"
X_CqBoost = [np.load(open(pickle_path + "X_" + str(n) + "_CqBoost.pck", 'rb')) for n in sizes]
f1_scores_mean_CqBoost, f1_scores_var_CqBoost, accuracies_mean_CqBoost, accuracies_var_CqBoost = get_classifier_scores(X_CqBoost, y, sample_weights=class_weights)
percent_same_features = calculer_similarites_features()
print "Done tests CqBoost"
with open(pickle_path + "f1_scores_mean_RFE.pck", 'wb') as f:
pickle.dump(f1_scores_mean_RFE, f)
with open(pickle_path + "f1_scores_mean_CqBoost.pck", 'wb') as f:
pickle.dump(f1_scores_mean_CqBoost, f)
with open(pickle_path + "f1_scores_var_RFE.pck", 'wb') as f:
pickle.dump(f1_scores_var_RFE, f)
with open(pickle_path + "f1_scores_var_CqBoost.pck", 'wb') as f:
pickle.dump(f1_scores_var_CqBoost, f)
with open(pickle_path + "accuracies_mean_RFE.pck", 'wb') as f:
pickle.dump(accuracies_mean_RFE, f)
with open(pickle_path + "accuracies_mean_CqBoost.pck", 'wb') as f:
pickle.dump(accuracies_mean_CqBoost, f)
with open(pickle_path + "accuracies_var_RFE.pck", 'wb') as f:
pickle.dump(accuracies_var_RFE, f)
with open(pickle_path + "accuracies_var_CqBoost.pck", 'wb') as f:
pickle.dump(accuracies_var_CqBoost, f)
with open(pickle_path + "percent_same_features.pck", 'wb') as f:
pickle.dump(percent_same_features, f)
print "Done tests comparison"
def determiner_poids_classes(y):
n_neg = np.count_nonzero(y == -1)
n_pos = np.count_nonzero(y == 1)
n_samples = len(y)
w_neg = n_samples/(2. * n_neg)
w_pos = n_samples/(2. * n_pos)
return np.asarray([w_neg if i == -1 else w_pos for i in y])
def load_data():
X = np.load(open(pickle_path + 'X.pck', 'rb'))
y = pickle.load(open(pickle_path + 'y.pck', 'rb'))
return X, y
def choisir_features_CFS():
X, y = load_data()
print("Début Prudi Prudi")
estimators_generator = CustomStumpsClassifiersGenerator()
weight_vector = determiner_poids_classes(y)
learner = CqBoostClassifier(estimators_generator=estimators_generator, classes_weights=weight_vector, n_max_iterations=4096)
learner.fit(X, y, from_pickle=True)
print("Fin Prudi Prudi")
retained_features = np.asarray([e.attribute_index for e in learner.estimators_generator.estimators_])
np.save(open(pickle_path + "retained_features_CqBoost.pck", 'wb'), retained_features)
def choisir_5000_features_RFE():
X, y = load_data()
print("Début RFE 5000")
estimator = SVC(kernel='linear', class_weight='balanced')
selector = RFE(estimator, n_features_to_select=5000, step=0.001)
selector.fit(X, y)
print("Fin RFE 5000")
retained_scores_RFE = selector.ranking_
retained_features_RFE_5000 = np.where(retained_scores_RFE == 1)[0]
np.save(open(pickle_path + "retained_features_RFE_5000.pck", 'wb'), retained_features_RFE_5000)
X_5000_RFE = X[:, retained_features_RFE_5000]
np.save(open(pickle_path + "X_RFE_5000.pck", 'wb'), X_5000_RFE)
def choisir_derniers_features_RFE():
_, y = load_data()
X_5000_RFE = np.load(open(pickle_path + "X_RFE_5000.pck", 'rb'))
print("Début RFE")
estimator = SVC(kernel='linear', class_weight='balanced')
selector = RFE(estimator, n_features_to_select=2, step=1)
selector.fit(X_5000_RFE, y)
print("Fin RFE")
retained_scores_RFE = selector.ranking_
np.save(open(pickle_path + "retained_scores_RFE.pck", 'wb'), retained_scores_RFE)
def choisir_features_RFE():
choisir_5000_features_RFE()
choisir_derniers_features_RFE()
def calculer_sizes():
retained_features_CqBoost = np.load(open(pickle_path + "retained_features_CqBoost.pck", 'rb'))
sizes = [2 ** i for i in range(10000) if 2 ** i < len(retained_features_CqBoost)]
sizes.append(len(retained_features_CqBoost))
return sizes
def generer_sous_ensembles_X_from_features_retained():
retained_features_RFE = np.load(open(pickle_path + "retained_features_RFE.pck", 'rb'))
retained_features_CqBoost = np.load(open(pickle_path + "retained_features_CqBoost.pck", 'rb'))
X, _ = load_data()
X_5000_RFE = np.load(open(pickle_path + "X_RFE_5000.pck", 'rb'))
retained_features_RFE_5000 = np.load(open(pickle_path + "retained_features_RFE_5000.pck", 'rb'))
sizes = calculer_sizes()
retained_features_RFE_sizes, retained_features_CqBoost_sizes = [], []
for s in sizes:
retained_features_CqBoost_sizes.append(retained_features_CqBoost[:s])
np.save(open(pickle_path + "X_" + str(s) + "_CqBoost.pck", 'wb'), X[:, retained_features_CqBoost[:s]])
for s in sizes:
retained_features_RFE_sizes.append(retained_features_RFE_5000[retained_features_RFE[:s]])
np.save(open(pickle_path + "X_" + str(s) + "_RFE.pck", 'wb'), X_5000_RFE[:, retained_features_RFE[:s]])
print "done sous-ensembles"
def see_tests_results():
f1_scores_mean_RFE = {}
with open(pickle_path + "f1_scores_mean_RFE.pck", 'rb') as f:
f1_scores_mean_RFE = pickle.load(f)
f1_scores_mean_CqBoost = {}
with open(pickle_path + "f1_scores_mean_CqBoost.pck", 'rb') as f:
f1_scores_mean_CqBoost = pickle.load(f)
f1_scores_var_RFE = {}
with open(pickle_path + "f1_scores_var_RFE.pck", 'rb') as f:
f1_scores_var_RFE = pickle.load(f)
f1_scores_var_CqBoost = {}
with open(pickle_path + "f1_scores_var_CqBoost.pck", 'rb') as f:
f1_scores_var_CqBoost = pickle.load(f)
accuracies_mean_RFE = {}
with open(pickle_path + "accuracies_mean_RFE.pck", 'rb') as f:
accuracies_mean_RFE = pickle.load(f)
accuracies_mean_CqBoost = {}
with open(pickle_path + "accuracies_mean_CqBoost.pck", 'rb') as f:
accuracies_mean_CqBoost = pickle.load(f)
accuracies_var_RFE = {}
with open(pickle_path + "accuracies_var_RFE.pck", 'rb') as f:
accuracies_var_RFE = pickle.load(f)
accuracies_var_CqBoost = {}
with open(pickle_path + "accuracies_var_CqBoost.pck", 'rb') as f:
accuracies_var_CqBoost = pickle.load(f)
percent_same_features = {}
with open(pickle_path + "percent_same_features.pck", 'rb') as f:
percent_same_features = pickle.load(f)
print "Mets un breakpoint ici si tu veux voir les dictionnaires mon chum"
def main_execution():
# choisir_features_CFS()
#
# choisir_features_RFE()
#
# generer_sous_ensembles_X_from_features_retained()
run_tests_comparison()
# see_tests_results()
print "Done"
if __name__ == '__main__':
main_execution()