forked from bachmannpatrick/CLVTools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
146 lines (146 loc) · 6.01 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
Package: CLVTools
Title: Tools for Customer Lifetime Value Estimation
Version: 0.9.0
Date: 2022-01-07
Authors@R: c(
person(given="Patrick", family="Bachmann", email = "pbachma@ethz.ch", role = c("cre","aut")),
person(given="Niels", family="Kuebler", email = "niels.kuebler@uzh.ch", role = "aut"),
person(given="Markus", family="Meierer", email = "markus.meierer@business.uzh.ch", role = "aut"),
person(given="Jeffrey", family="Naef", email = "naef@stat.math.ethz.ch",role = "aut"),
person(given="Elliot", family="Oblander", email = "eoblander23@gsb.columbia.edu",role = "aut"),
person(given="Patrik", family="Schilter", email = "patrik.schilter@gmail.com",role = "aut")
)
Depends:
R (>= 3.5.0),
methods
Description:
A set of state-of-the-art probabilistic modeling approaches to derive estimates of individual customer lifetime values (CLV).
Commonly, probabilistic approaches focus on modelling 3 processes, i.e. individuals' attrition, transaction, and spending process.
Latent customer attrition models, which are also known as "buy-'til-you-die models", model the attrition as well as the transaction process.
They are used to make inferences and predictions about transactional patterns of individual customers such as their future purchase behavior.
Moreover, these models have also been used to predict individuals’ long-term engagement in activities such as playing an online game or
posting to a social media platform. The spending process is usually modelled by a separate probabilistic model. Combining these results yields in
lifetime values estimates for individual customers.
This package includes fast and accurate implementations of various probabilistic models for non-contractual settings
(e.g., grocery purchases or hotel visits). All implementations support time-invariant covariates, which can be used to control for e.g.,
socio-demographics. If such an extension has been proposed in literature, we further provide the possibility to control for time-varying
covariates to control for e.g., seasonal patterns.
Currently, the package includes the following latent attrition models to model individuals' attrition and transaction process:
[1] Pareto/NBD model (Pareto/Negative-Binomial-Distribution),
[2] the Extended Pareto/NBD model (Pareto/Negative-Binomial-Distribution with time-varying covariates),
[3] the BG/NBD model (Beta-Gamma/Negative-Binomial-Distribution) and the
[4] GGom/NBD (Gamma-Gompertz/Negative-Binomial-Distribution).
Further, we provide an implementation of the Gamma/Gamma model to model the spending process of individuals.
Imports:
data.table (>= 1.12.0),
ggplot2 (>= 3.2.0),
lubridate (>= 1.7.8),
Matrix (>= 1.2-17),
MASS,
optimx (>= 2019-12.02),
Rcpp(>= 0.12.12),
stats,
utils
Suggests:
covr,
knitr,
rmarkdown,
testthat
License: GPL-3
URL: https://github.com/bachmannpatrick/CLVTools
BugReports: https://github.com/bachmannpatrick/CLVTools/issues
NeedsCompilation: yes
SystemRequirements: C++11
LinkingTo: Rcpp, RcppArmadillo (>= 0.9.500.2.0), RcppGSL (>= 0.3.7)
LazyLoad: yes
Encoding: UTF-8
Collate:
'CLVTools.R'
'RcppExports.R'
'all_generics.R'
'class_clv_time.R'
'class_clv_data.R'
'class_clv_model.R'
'class_clv_fitted.R'
'class_clv_fitted_transactions.R'
'class_clv_model_nocorrelation.R'
'class_clv_model_bgnbd.R'
'class_clv_bgnbd.R'
'class_clv_fitted_transactions_staticcov.R'
'class_clv_data_staticcovariates.R'
'class_clv_model_bgnbd_staticcov.R'
'class_clv_bgnbd_staticcov.R'
'class_clv_data_dynamiccovariates.R'
'class_clv_fitted_spending.R'
'class_clv_fitted_transactions_dynamiccov.R'
'class_clv_model_gg.R'
'class_clv_gg.R'
'class_clv_model_ggomnbd_nocov.R'
'class_clv_ggomnbd.R'
'class_clv_model_ggomnbd_staticcov.R'
'class_clv_ggomnbd_staticcov.R'
'class_clv_model_withcorrelation.R'
'class_clv_model_pnbd.R'
'class_clv_model_pnbd_staticcov.R'
'class_clv_model_pnbd_dynamiccov.R'
'class_clv_pnbd.R'
'class_clv_pnbd_dynamiccov.R'
'class_clv_pnbd_staticcov.R'
'class_clv_time_date.R'
'class_clv_time_datetime.R'
'class_clv_time_days.R'
'class_clv_time_hours.R'
'class_clv_time_weeks.R'
'class_clv_time_years.R'
'clv_template_controlflow_estimate.R'
'clv_template_controlflow_pmf.R'
'clv_template_controlflow_predict.R'
'data.R'
'f_DoExpectation.R'
'f_clvdata_inputchecks.R'
'f_clvfitted_inputchecks.R'
'f_generics_clvfitted.R'
'f_generics_clvfitted_estimate.R'
'f_generics_clvfittedspending.R'
'f_generics_clvfittedtransactions.R'
'f_generics_clvfittedtransactionsdyncov.R'
'f_generics_clvfittedtransactionsstaticcov.R'
'f_generics_clvfittedtransactionsstaticcov_estimate.R'
'f_generics_clvpnbddyncov.R'
'f_interface_bgbb.R'
'f_interface_bgnbd.R'
'f_interface_clvdata.R'
'f_interface_gg.R'
'f_interface_ggomnbd.R'
'f_interface_pmf.R'
'f_interface_pnbd.R'
'f_interface_predict_clvfittedspending.R'
'f_interface_predict_clvfittedtransactions.R'
'f_interface_setdynamiccovariates.R'
'f_interface_setstaticcovariates.R'
'f_s3generics_clvdata.R'
'f_s3generics_clvdata_dynamiccov.R'
'f_s3generics_clvdata_plot.R'
'f_s3generics_clvdata_staticcov.R'
'f_s3generics_clvfitted.R'
'f_s3generics_clvfittedspending_plot.R'
'f_s3generics_clvfittedtransactions_plot.R'
'f_s3generics_clvfittedtransactions_staticcov.R'
'f_s3generics_clvtime.R'
'interlayer_callLL.R'
'interlayer_callnextinterlayer.R'
'interlayer_constraints.R'
'interlayer_correlation.R'
'interlayer_manager.R'
'interlayer_regularization.R'
'pnbd_dyncov_ABCD.R'
'pnbd_dyncov_BkSum.R'
'pnbd_dyncov_CET.R'
'pnbd_dyncov_DECT.R'
'pnbd_dyncov_LL.R'
'pnbd_dyncov_createwalks.R'
'pnbd_dyncov_expectation.R'
'pnbd_dyncov_makewalks.R'
'pnbd_dyncov_palive.R'
RoxygenNote: 7.1.2
VignetteBuilder: knitr