-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbikeshare.py
273 lines (168 loc) · 7.91 KB
/
bikeshare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import time
import pandas as pd
import numpy as np
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!\n')
# TO DO: get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
while (True):
city = input('You can choose between Chicago, New York City or Washington.\nPlease type in the city which you want to explore: ').lower()
print()
if city in CITY_DATA.keys():
break
else:
continue
# TO DO: get user input for month (all, january, february, ... , june)
months = ['all', 'january', 'february', 'march', 'april', 'may', 'june', 'july', 'august', 'september', 'october', 'november', 'december']
while (True):
month = input('If you want to filter the results by month, type in the month (e.g. "January", "July", "October").\nIn case you want to see all the months, type in "all": ').lower()
print()
if month in months:
break
else:
continue
# TO DO: get user input for day of week (all, monday, tuesday, ... sunday)
days = ['all', 'monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday']
while (True):
day = input('Now you can decide if you want to filter by a specific day (e.g. "Monday", "Thurday", "Saturday").\nIf so, type in the day. Othewise type in "all": ').lower()
print()
if day in days:
break
else:
continue
print('-'*40)
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
df = pd.read_csv(CITY_DATA[city])
# convert the Start Time column to datetime
df['Start Time'] = pd.to_datetime(df['Start Time'])
# extract month and day of week from Start Time to create new columns
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.day_name() # IMPORTANT: instead of 'day_name()', method 'weekday_name' was used for prject submission, because based on older version of Pandas
df['hour'] = df['Start Time'].dt.hour
# filter by month if applicable
if month != 'all':
# use the index of the months list to get the corresponding int
months = ['january', 'february', 'march', 'april', 'may', 'june', 'july', 'august', 'september', 'october', 'november', 'december']
month = months.index(month) + 1
# filter by month to create the new dataframe
df = df[df['month'] == month]
# filter by day of week if applicable
if day != 'all':
# filter by day of week to create the new dataframe
df = df[df['day_of_week'] == day.title()]
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
# TO DO: display the most common month
months = ['january', 'february', 'march', 'april', 'may', 'june', 'july', 'august', 'september', 'october', 'november', 'december']
popular_month_index = df['month'].mode()[0]
popular_month = months[popular_month_index - 1]
print('The most common month is:', popular_month.title(), '\n')
# TO DO: display the most common day of week
print('The most common day of the week is:', df['day_of_week'].mode()[0], '\n')
# TO DO: display the most common start hour
print('The most common start hour is:', df['hour'].mode()[0])
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# TO DO: display most commonly used start station
print('The most common start station is:', df['Start Station'].mode()[0], '\n')
# TO DO: display most commonly used end station
print('The most common end station is:', df['End Station'].mode()[0], '\n')
# TO DO: display most frequent combination of start station and end station trip
df['Station Combination'] = df['Start Station'] + ' to ' + df['End Station']
print('The most common station combination is:', df['Station Combination'].mode()[0])
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# TO DO: display total travel time
total_time = df['Trip Duration'].sum()
print("The total travel time is {} seconds, which equals to {:.2f} minutes, {:.2f} hours or {:.2f} days.\n".format(total_time, total_time / 60, total_time / 3600, total_time / 86400))
# TO DO: display mean travel time
mean_time = df['Trip Duration'].mean()
print("The mean travel time is {} seconds, which equals to {:.2f} minutes.".format(mean_time, mean_time / 60))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# TO DO: Display counts of user types
data = df.groupby(['User Type'])['Start Time'].count()
type_count = len(data.index)
print("There are {} types of customers:\n".format(type_count))
for i in range(type_count):
print("{}. '{}', Count: {}".format(i+1, data.index[i], data[i]))
print()
# TO DO: Display counts of gender
if 'Gender' in df.columns:
data = df.groupby(['Gender'])['Start Time'].count()
type_count = len(data.index)
print("Counts of gender:\n")
for i in range(type_count):
print("{}: {}".format(data.index[i], data[i]))
print()
# TO DO: Display earliest, most recent, and most common year of birth
if 'Birth Year' in df.columns:
print("Stats about birth years:\n")
print("Earliest year of birth:", int(df['Birth Year'].min()))
print("Most recent year of birth:", int(df['Birth Year'].max()))
print("Most common year of birth:", int(df['Birth Year'].mode()[0]))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def display_data(df):
"""Display 5 rows of data until the user stops."""
print("Displaying first 5 rows...\n")
x = True
start = 0
stop = 5
while(x):
x = False
print(df[start:stop], '\n')
y = input("Would you like to display more? Enter 'yes' or 'no':\n")
if y.lower() == "yes":
x = True
start += 5
stop += 5
print()
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
display_data(df)
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()