-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset_test.py
35 lines (27 loc) · 1.12 KB
/
dataset_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from os import listdir
from os.path import join
import random
from PIL import Image
import cv2
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
from utils import is_image_file, load_img
class DatasetFromFolder_Test(data.Dataset):
def __init__(self, image_dir):
super(DatasetFromFolder_Test, self).__init__()
self.path = image_dir
self.image_filenames = [x for x in listdir(self.path) if is_image_file(x)]
transform_list = [transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
self.transform = transforms.Compose(transform_list)
def __getitem__(self, index):
image = cv2.imread(join(self.path, self.image_filenames[index]))
width = image.shape[0]
a = image[:,:width*1, :]
a1 = cv2.resize(a, (256, 256), interpolation = cv2.INTER_CUBIC)
a1 = transforms.ToTensor()(a1)
a1 = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(a1)
return a1, self.image_filenames[index]
def __len__(self):
return len(self.image_filenames)