From 18e140d7a1de12549579ad4cc315f589d85e17ac Mon Sep 17 00:00:00 2001 From: Patrick Bloebaum Date: Thu, 9 Nov 2023 16:07:05 -0800 Subject: [PATCH] Remove deprecated feature.py module from GCM These methods are now available in the feature_relevance.py module. Signed-off-by: Patrick Bloebaum --- dowhy/gcm/feature.py | 90 -------------------------------------------- 1 file changed, 90 deletions(-) delete mode 100644 dowhy/gcm/feature.py diff --git a/dowhy/gcm/feature.py b/dowhy/gcm/feature.py deleted file mode 100644 index 651bff5261..0000000000 --- a/dowhy/gcm/feature.py +++ /dev/null @@ -1,90 +0,0 @@ -"""This module is deprecated! All functions are moved into the feature_relevance.py module. """ -import warnings -from typing import Any, Callable, Dict, Optional, Tuple, Union - -import numpy as np -import pandas as pd - -from dowhy.gcm import feature_relevance -from dowhy.gcm.causal_models import StructuralCausalModel -from dowhy.gcm.shapley import ShapleyConfig - - -def parent_relevance( - causal_model: StructuralCausalModel, - target_node: Any, - parent_samples: Optional[pd.DataFrame] = None, - subset_scoring_func: Optional[Callable[[np.ndarray, np.ndarray], Union[np.ndarray, float]]] = None, - num_samples_randomization: int = 5000, - num_samples_baseline: int = 500, - max_batch_size: int = 100, - shapley_config: Optional[ShapleyConfig] = None, -) -> Tuple[Dict[Any, Any], np.ndarray]: - """Deprecated, please use parent_relevance from the feature_relevance.py module instead.""" - warnings.warn( - "This module is deprecated. All feature.py functions are moved into parent_relevance.py.", DeprecationWarning - ) - return feature_relevance.parent_relevance( - causal_model=causal_model, - target_node=target_node, - parent_samples=parent_samples, - subset_scoring_func=subset_scoring_func, - num_samples_randomization=num_samples_randomization, - num_samples_baseline=num_samples_baseline, - max_batch_size=max_batch_size, - shapley_config=shapley_config, - ) - - -def feature_relevance_distribution( - prediction_method: Callable[[np.ndarray], np.ndarray], - feature_samples: np.ndarray, - subset_scoring_func: Callable[[np.ndarray, np.ndarray], Union[np.ndarray, float]], - max_num_samples_randomization: int = 5000, - max_num_baseline_samples: int = 500, - max_batch_size: int = 100, - randomize_features_jointly: bool = True, - shapley_config: Optional[ShapleyConfig] = None, -) -> np.ndarray: - """Deprecated, please use feature_relevance_distribution from the feature_relevance.py module instead.""" - warnings.warn( - "This module is deprecated. All feature.py functions are moved into parent_relevance.py.", DeprecationWarning - ) - return feature_relevance.feature_relevance_distribution( - prediction_method=prediction_method, - feature_samples=feature_samples, - subset_scoring_func=subset_scoring_func, - max_num_samples_randomization=max_num_samples_randomization, - max_num_baseline_samples=max_num_baseline_samples, - max_batch_size=max_batch_size, - randomize_features_jointly=randomize_features_jointly, - shapley_config=shapley_config, - ) - - -def feature_relevance_sample( - prediction_method: Callable[[np.ndarray], np.ndarray], - feature_samples: np.ndarray, - baseline_samples: np.ndarray, - subset_scoring_func: Callable[[np.ndarray, np.ndarray], Union[np.ndarray, float]], - baseline_target_values: Optional[np.ndarray] = None, - average_set_function: bool = False, - max_batch_size: int = 100, - randomize_features_jointly: bool = True, - shapley_config: Optional[ShapleyConfig] = None, -) -> np.ndarray: - """Deprecated, please use feature_relevance_sample from the feature_relevance.py module instead.""" - warnings.warn( - "This module is deprecated. All feature.py functions are moved into parent_relevance.py.", DeprecationWarning - ) - return feature_relevance.feature_relevance_sample( - prediction_method=prediction_method, - feature_samples=feature_samples, - baseline_samples=baseline_samples, - subset_scoring_func=subset_scoring_func, - baseline_target_values=baseline_target_values, - average_set_function=average_set_function, - max_batch_size=max_batch_size, - randomize_features_jointly=randomize_features_jointly, - shapley_config=shapley_config, - )