diff --git a/docs/source/example_notebooks/dowhy_causal_discovery_example.ipynb b/docs/source/example_notebooks/dowhy_causal_discovery_example.ipynb
index f1f3096095..22e5b8a53a 100644
--- a/docs/source/example_notebooks/dowhy_causal_discovery_example.ipynb
+++ b/docs/source/example_notebooks/dowhy_causal_discovery_example.ipynb
@@ -6,12 +6,12 @@
"source": [
"# Causal Discovery example\n",
"\n",
- "The goal of this notebook is to show how causal discovery methods can work with DoWhy. We use discovery methods from [Causal Discovery Tool (CDT)](https://github.com/FenTechSolutions/CausalDiscoveryToolbox) repo. As we will see, causal discovery methods are not fool-proof and there is no guarantee that they will recover the correct causal graph. Even for the simple examples below, there is a large variance in results. These methods, however, may be combined usefully with domain knowledge to construct the final causal graph."
+ "The goal of this notebook is to show how causal discovery methods can work with DoWhy. We use discovery methods from [causal-learn](https://github.com/py-why/causal-learn) repo. As we will see, causal discovery methods require appropriate assumptions for the correctness guarantees, adn thus there will be variance across results returned by different methods in practice. These methods, however, may be combined usefully with domain knowledge to construct the final causal graph."
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -37,7 +37,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -67,7 +67,7 @@
"source": [
"# Experiments on the Auto-MPG dataset\n",
"\n",
- "In this section, we will use a dataset on the technical specification of cars. The dataset is downloaded from UCI Machine Learning Repository. The dataset contains 9 attributes and 398 instances. We do not know the true causal graph for the dataset and will use CDT to discover it. The causal graph obtained will then be used to estimate the causal effect.\n"
+ "In this section, we will use a dataset on the technical specification of cars. The dataset is downloaded from UCI Machine Learning Repository. The dataset contains 9 attributes and 398 instances. We do not know the true causal graph for the dataset and will use causal-learn to discover it. The causal graph obtained will then be used to estimate the causal effect.\n"
]
},
{
@@ -79,9 +79,109 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 3,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(392, 6)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " mpg \n",
+ " cylinders \n",
+ " displacement \n",
+ " horsepower \n",
+ " weight \n",
+ " acceleration \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 18.0 \n",
+ " 8.0 \n",
+ " 307.0 \n",
+ " 130.0 \n",
+ " 3504.0 \n",
+ " 12.0 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 15.0 \n",
+ " 8.0 \n",
+ " 350.0 \n",
+ " 165.0 \n",
+ " 3693.0 \n",
+ " 11.5 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 18.0 \n",
+ " 8.0 \n",
+ " 318.0 \n",
+ " 150.0 \n",
+ " 3436.0 \n",
+ " 11.0 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 16.0 \n",
+ " 8.0 \n",
+ " 304.0 \n",
+ " 150.0 \n",
+ " 3433.0 \n",
+ " 12.0 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 17.0 \n",
+ " 8.0 \n",
+ " 302.0 \n",
+ " 140.0 \n",
+ " 3449.0 \n",
+ " 10.5 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " mpg cylinders displacement horsepower weight acceleration\n",
+ "0 18.0 8.0 307.0 130.0 3504.0 12.0\n",
+ "1 15.0 8.0 350.0 165.0 3693.0 11.5\n",
+ "2 18.0 8.0 318.0 150.0 3436.0 11.0\n",
+ "3 16.0 8.0 304.0 150.0 3433.0 12.0\n",
+ "4 17.0 8.0 302.0 140.0 3449.0 10.5"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"data_mpg = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data-original',\n",
" delim_whitespace=True, header=None,\n",
@@ -98,354 +198,992 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "# Causal Discovery with Causal Discovery Tool (CDT)\n",
+ "# Causal Discovery with causal-learn\n",
"\n",
- "We use the CDT library to perform causal discovery on the Auto-MPG dataset. We use three methods for causal discovery here -LiNGAM, PC and GES. These methods are widely used and do not take much time to run. Hence, these are ideal for an introduction to the topic. Other neural network based methods are also available in CDT and the users are encouraged to try them out by themselves. \n",
+ "We use the causal-learn library to perform causal discovery on the Auto-MPG dataset. We use three methods for causal discovery here: PC, FCI and GES. These methods are widely used and do not take much time to run. Hence, these are ideal for an introduction to the topic. Causal-learn provides a comprehensive list of well-tested causal-discovery methods, and readers are welcome to explore.\n",
"\n",
"The documentation for the methods used are as follows:\n",
- "- LiNGAM [[link]](https://fentechsolutions.github.io/CausalDiscoveryToolbox/html/_modules/cdt/causality/graph/LiNGAM.html)\n",
- "- PC [[link]](https://fentechsolutions.github.io/CausalDiscoveryToolbox/html/_modules/cdt/causality/graph/PC.html)\n",
- "- GES [[link]](https://fentechsolutions.github.io/CausalDiscoveryToolbox/html/_modules/cdt/causality/graph/GES.html)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from cdt.causality.graph import LiNGAM, PC, GES\n",
+ "- PC [[link]](https://causal-learn.readthedocs.io/en/latest/search_methods_index/Constraint-based%20causal%20discovery%20methods/PC.html)\n",
+ "- GES [[link]](https://causal-learn.readthedocs.io/en/latest/search_methods_index/Score-based%20causal%20discovery%20methods/GES.html)\n",
+ "- LiNGAM [[link]](https://causal-learn.readthedocs.io/en/latest/search_methods_index/Causal%20discovery%20methods%20based%20on%20constrained%20functional%20causal%20models/lingam.html#ica-based-lingam)\n",
"\n",
- "graphs = {}\n",
- "labels = [f'{col}' for i, col in enumerate(data_mpg.columns)]\n",
- "functions = {\n",
- " 'LiNGAM' : LiNGAM,\n",
- " 'PC' : PC,\n",
- " 'GES' : GES,\n",
- "}\n",
- "\n",
- "for method, lib in functions.items():\n",
- " obj = lib()\n",
- " output = obj.predict(data_mpg)\n",
- " adj_matrix = nx.to_numpy_array(output)\n",
- " adj_matrix = np.asarray(adj_matrix)\n",
- " graph_dot = make_graph(adj_matrix, labels)\n",
- " graphs[method] = graph_dot\n",
- "\n",
- "# Visualize graphs\n",
- "for method, graph in graphs.items():\n",
- " print(\"Method : %s\"%(method))\n",
- " display(graph)"
+ "More methods could be found in the causal-learn documentation [[link]](https://causal-learn.readthedocs.io/en/latest/)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "As you can see, no two methods agree on the graphs. PC and GES effectively produce an undirected graph whereas LiNGAM produces a directed graph. We use only the LiNGAM method in the next section."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Estimate causal effects using Linear Regression\n",
- "\n",
- "Now let us see whether these differences in the graphs also lead to significant differences in the causal estimate of effect of *mpg* on *weight*."
+ "We first try the PC algorithm with default parameters."
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 4,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "1ed197e9f5ec42c8bf7fc51c5ece4485",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/6 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU8AAAGFCAYAAAB9vnEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAACf90lEQVR4nOydd1gU19fHv7PLskvvvStIFRVs2I2995rYU4zGmkTT80ti1Ng1sZcYscQasWLBXrAXRHoRpNeFZfvMff/QnRcsieLCwjKf55lnYXfnztmZO9+599x7z6EIIQQcHBwcHG8FT9cGcHBwcNRHOPHk4ODgqAaceHJwcHBUA048OTg4OKoBJ54cHBwc1YATTw4ODo5qwIknBwcHRzXgxJODg4OjGnDiycHBwVENOPHk4ODgqAaceHJwcHBUAwNdG9DQIIRApVJBrVZDrVZDpVJBqVRCqVRCpVJBpVLBwMAAhoaG7CYQCGBgYAADAwMIBAJQFKXrn8HB0eDhxLMG0MRaIYRAIpEgJycH6enpSE5ORnJyMp4+fYrCwkKUlJRAKpWCEAIejwce7/87AgzDgGEYUBQFY2NjWFlZwcbGBm5ubvD29oaPjw88PDzg5OQEU1NTUBTFiSoHRy1CcVGVtAdN0ygvL0dCQgKuXbuG6OhopKSkQCwWw9LSEq6urvDw8ECjRo3g5OQEOzs7WFhYQCQSgc/nw8DAADweDwzDQK1Wg6ZpyOVyiMVi5OfnIy8vDykpKXjy5AkyMzMhFothYWGBxo0bo23btmjXrh18fX1hZmYGHo/HiSkHRw3Ciec7oDl1paWluHXrFo4cOYKrV69CLpfD29sbYWFhaNasGfz9/WFjYwMjI6N37nZruv0ymQxFRUWIi4vDw4cPce3aNaSmpkIoFCIsLAyDBg1CaGgorK2tAYATUg4OLcOJZzXQCFhCQgJ2796N06dPQ6FQoEuXLujXrx+CgoLg5OQEPp8PoGaFS3P5aJpGfn4+Hjx4gJMnT+LixYvg8Xjo1asXRo0ahcDAQM5fysGhRTjxfAs0ohkdHY0NGzbg1q1bCAkJwZgxY9CuXTvY2NiwgqlLGIZBYWEhrl+/jt27d+PevXto1aoVPv74Y7Rt2xaGhoaciHJwvCOceL4harUad+7cwerVq3Hnzh0MHDgQ77//PgIDA2FgYFAnxYgQArVajfj4eOzYsQNHjhxBSEgIZs+ejdDQUBgYcOOFHBzVhRPP/4AQgoKCAqxevRr79+9Hr169MHXqVPj5+dWJVuabQtM0kpKSsG7dOpw8eRIjRozAzJkz4eDgUCeFn4OjrsOJ579A0zTOnz+PH374Aaampvjhhx/Qtm1b8Pn8eik4hBDQNI0bN27gl19+QWlpKX7++Wd069atXj0IODjqApx4vgJCCBQKBTZt2oTff/8dkydPxqeffgoLC4t6KZqvQiwWY+PGjdi8eTM+++wzfPLJJxCJRLo2i4Oj3sCJ5yuQSCT46aefEBkZiSVLlqBnz556OW+SpmmcPXsWX3zxBXr37o0ff/wRJiYmevc7OThqAk48K0EIgVwux/fff48LFy5g48aNCAkJ0WsxIYTg3r17+OSTT9CpUyf88ssvMDY21rVZHBx1Hi4wSCVomsbKlStx9uxZbNu2Te+FE3g2B7VFixbYunUrzp07h5UrV0KtVuvaLA6OOg8nns8hhODkyZPYvn07Vq1ahaZNm+q9cGqgKApNmzbFqlWrsGPHDpw8eRJch4SD49/huu14Jpw5OTkYOHAgJkyYgGnTpjXI0WeGYbBu3Tps374dR44cgZOTU4N5gHBwvC1cyxPPxHPr1q2wsbHBxIkTG6RwAgCPx8OECRNgY2ODrVu36tocDo46DSeeAHJycrBv3z7MmjULpqamWimTEAKZTIby8nIolUoQQsAwDKRSKSQSCVQq1Wu7xoQQKJVKlJeXQyaTvfQ9zXzNiooKSCQS0DSttW62qakpZs2ahb179yInJ0crZXJw6CMNfn0eIQQXLlyAmZkZOnToUO1uqlwux+bNm5GVlQVbW1v4+fnh0KFDSE5OhqenJ/73v//h3r17OHDgADIzM9GiRQv873//Y6Mebdu2DUlJSRCJROjVqxf27NmDpKQk0DSNKVOmYNiwYTAwMAAhBKWlpVi5ciUuXrwIGxsbtGrVCmFhYYiMjARFURg0aBDatm1brd9BURQ6dOgACwsLnDt3Du+//z7XdefgeBWkgaNWq8m4cePId999R2iarnY5KpWKXL9+nXzwwQfE3NycLF26lBQWFpKYmBjSpEkT0qFDB7Jx40ZSUlJCbty4QVxdXcmKFSsIwzCEYRhy584dMnfuXCISiciMGTNISkoKKSkpIWvWrCF2dnYkIiKCMAxDFAoFmTFjBvHx8SFXrlwhZWVl5MKFC6R79+7EwsKCbN++nWRkZLzTOWEYhnz//fdkwoQJRKVSvVNZHBz6SoPvtldUVCAxMRGtW7euEsn9bTEwMECbNm3QqFEjCIVCDB48GDY2NvD390fLli2RmZmJgQMHwtLSEqGhoWjSpAmio6PZaPEhISEIDAwEj8dDv3794OXlBUtLS0yYMAGenp5Yt24d5HI5kpOTsWfPHjaSk5mZGTp27IigoCAYGhqiffv2cHNze6dzQlEU2rRpg0ePHkGpVL5TWRwc+kqDF0+ZTIbi4mJ4enpqrUwrKyu2O87j8WBiYgJHR0fWn0pRFMzNzSGRSF7aVygUokmTJmxX2djYGH5+fnj06BHKysoQHx+PkpISNG/enP2OZqqRNnFycmL9sxwcHC/T4MVTk+5CKBRqrczK+Yg0uYVeDFv3Oj8iRVFVbNH8L5fL2bQcNE3DyMioyn7aXpeusUGhUGi1XA4OfaHBiyefzwePx6szIsEwDMrLy9n/1Wo1CgoKYG9vD5FIxL6+OBIuFou1aofmfGjzocLBoU80ePE0MjKCtbU1MjIydG0KAEAqleLKlSsghIAQgqdPn+Lu3bvo0aMHLCws0KxZM/j4+ODUqVOQy+XstKbz589r1Y7c3FwYGRlpbeoWB4e+0eCnKpmamsLHxwc3b95E3759qz0th6ZpXL9+HQkJCZBIJDhz5gx69OiB+/fvIz09HUVFRThz5gy6du2KW7duITs7G2q1GqdOnUK3bt3YFp6hoSFu374NiUQCa2trhIeHw9PTE3PnzgWfz4etrS1+/fVXzJkzB19++SU6dOiAhw8favOUgBCCmzdvIjAwEIaGhlotm4NDX2jwLU8+n48ePXogKioKFRUV1S6HYRikpaUhICAAH330EdLS0iCTyZCUlIT27dtjzJgxSE1NhUwmQ0JCAvr27YuBAwciPj6+SiAOQ0NDzJ07F56ensjJycG4ceNw4MABuLu7A3jmA+3Xrx8iIiLQpEkTZGdnY+DAgejVqxf4fD4EAsE7nxOJRIKoqCguSDIHx7+h25lSdYOMjAwSEBBAIiMjCcMwOrNj69atxNrammRnZ7/2OwzDkJiYGJKXl8e+R9M0mTVrFmndujWpqKh4JxsYhiGRkZEkICCAZGZmvlNZHBz6TIPvtgOAi4sLhg4dijVr1qBDhw4wMTGp1eOT54FJ8vPzwTAM0tPTYWpqCjMzs1d+d8OGDSgqKsLs2bNhamqKy5cv4+TJk/jll19eGoV/WyoqKrBmzRoMGzYMzs7O71QWB4c+w0VVwjNBysrKwsCBA/HJJ5/go48+eqcJ89U5/sKFC3Hnzh2oVCoYGRnhs88+Q6dOnV753Rs3buDIkSPIzc2FQqGAk5MThgwZgjZt2rxTRkyGYbBlyxasX78eR44cgaurK7c0k4PjNXDi+RxCCA4dOoRvvvkG27ZtQ7t27WpVOF51GV53/NddsnexlxCC6OhoTJo0Cb/++iuGDh3KCScHx7/Q4AeMNFAUhYEDB2Ls2LGYOXMm4uLiajUgsGYyfeXtbb77rsIZFxeHGTNmYNSoURg4cCAnnBwc/wEnnpUQCAT44osv0K5dO0yZMgWPHj3S+4jqhBDExsZiypQpaNOmDb788st36vpzcDQUOPF8ARMTEyxcuBCtW7fGuHHjcOHCBa3Gy6xL0DSNCxcuYNy4cWjTpg0WL17MZc/k4HhDOJ/na5BKpfjjjz+wZcsWTJ8+HZMnT4apqaneCEt5eTm2bduGtWvX4sMPP8SMGTMgEon05vdxcNQ0nHj+C5oVQD/++COcnJzw/fffIzQ0tF7ncKdpGvfu3cMvv/yCzMxM/Pzzz+jduzfXVefgeEs48fwPNNOYVqxYgWPHjmHIkCH48MMP0bhx41qdzvSuaFZAbd68GQcPHkT//v3x+eefw8XFpd4+CDg4dAknnm8AIQRqtRrR0dFYtWoV4uLiMGLECIwaNQpNmjQBn8+vkwJEnuc6SklJwa5du7B//374+flhzpw5CAsL08pSTg6Ohgonnm8BeR7B6OLFi1i/fj0eP36MsLAwjBkzBi1btoS1tXWdEFFCCEpKSnD79m3s3r0b169fR2BgID755BN07twZQqGwTtjJwVGf4cSzGhBCoFAoEBsbix07duDChQvg8/no3r07evfujYCAANja2tZai1TTwiwtLUVMTAwiIyMRFRUFmUyG7t27Y+zYsWjWrBknmhwcWoQTz3dAc+oKCwtx9epVHDlyBDdv3gQhBEFBQWjbti2aN28Ob29vWFlZwcjISCuDTTRNQyqVQiwWIzExEQ8fPsS1a9cQFxcHAGjVqhUGDRqENm3awN7e/p0n0XNwcLwMJ55aQtP6E4vFiI2NxZUrV3Dz5k08efIE5eXlcHBwgLOzM7y9vdG4cWM4OTnB0tIS5ubmEIlEEAgEMDAwAJ/PB03TUKvVUKlUbO730tJS5ObmIjk5GampqcjKykJubi7MzMzg7u6ONm3aoEOHDggMDISFhUWd9cNycOgLnHjWAJpTyjAMSktLkZWVhS+//BIVFRUICgpCZmYmCgsLUV5eDoZh2NaoZiPPo8gTQsAwDACgoKAAfn5+CA4ORqNGjeDt7Q0fHx9WhCvnTOLg4Kh5uMl9NYBGwPh8PmxsbFBcXIwnT55g/fr16NSpE9RqNZt4TiKRQCaTQalUQqVSgaZpNqixoaEhjIyMIBQKMXbsWPTp0wczZsyo1/NMOTj0BU48axiaprFlyxY0bdoUYWFh4PP54PP5bNoNc3Pz/yyDEIKePXvi3LlzmD59OhfdnYOjDlB/ZnnXQwghSElJQUREBKZPn/5OmSi7dOmCpKQkZGVladFCDg6O6sKJZw1CCMGWLVsQFBSEsLCwane1KYqCr68vrKysEB0drWUrOTg4qgMnnjVISkoKjhw5gmnTpr1zFkpjY2N07doVkZGRoGlaSxZycHBUF048awiaprF161YEBQVpJSo9j8dDz549cevWLRQWFmrJSg4OjurCiWcNoPF1Hj58+J19nZUJCgqCoaEh7t69q5fxRTk46hOceNYAhBBs3rxZa61ODdbW1mjTpg1Onz7NiScHh47hxLMGSE1NxdGjR7Xi63yRXr164fLly5BIJFotl4OD4+3gxFPLVJ7Xqe0MnBRFoXXr1pBIJHj8+LHWyuXg4Hh7OPHUIjXl66yMnZ0dmjZtinPnznFddw4OHcKJpxbRzOsMDAx8p3md/4ZAIEDPnj1x/vx5yGQyrZfPwcHxZnDiqUVSU1O1Nq/zdVAUhY4dOyI9PR2ZmZk1cgwODo7/hhNPLaHxdQYFBaF9+/Y1GrjD09MT7u7uuHz5Mtd15+DQEZx4agFCCFJTU2vU11kZoVCILl264MyZM9xqIw4OHcGJpxao7OvU9gj763jvvffw6NEj5Ofn1/ixODg4XoYTTy2QmpqKiIiIGvV1VoaiKAQGBsLQ0BD37t2r8eNxcHC8DCee70jlNew17eusjJmZGTp06IDIyEg22jwHB0ftwYnnO6Dxdf7zzz+14uusDJ/PR48ePXD9+nWIxeJaOy4HB8czOPF8B3Th66xMaGgoKioqkJCQUKvH5eDg4MTznahtX+eLODg4wN/fHxcvXuSmLHFw1DKceFYTja8zMDCwVn2dleHz+ejevTuioqKgUqlq/fgcHA0ZTjyrgS59nS/Svn17ZGRkcKuNODhqGU48q4HG1xkQEKCzVifwbMqSt7c3rK2tcevWLZ3YwMHRUOHEsxpofJ3Tp0/Xia+zMkZGRujUqRPOnDnDTVni4KhFOPF8S7Sdm+hdoSgK3bt3x+3bt1FcXKxTWzg4GhKceL4FlX2d06ZNg0gk0rVJoCgKQUFBoGkajx8/5kbdOThqCU483wJCiM5H2F+Fvb09goODcf78eU48OThqCU4834K0tDQcPnxYZ/M6X4em637hwgUolUpdm8PB0SDgxPMNqTyvsy74Ol8kLCwMOTk5ePLkia5N4eBoEHDi+QZofJ2HDh3C9OnT64SvszIURcHDwwN2dna4ffu2rs3h4GgQcOL5BjAMg23btul8Xue/IRKJ0LFjR0RFRXFTljg4agFOPN+AtLQ0doS9Lvk6K8Pj8dC5c2fcu3cPpaWlujaHg0Pv4cTzP9D4Outyq1NDcHAwFAoFF2WJg6MW4MTzXyCEsK3Ozz77rM75Ol/Ezs4Ofn5+XGI4Do5agBPPf4FhmHrT6gSeRVnq2rUrLly4wEVZ4uCoYTjx/BfS09PZyEl11df5ImFhYUhLS0Nubq6uTeHg0Gs48XwNlX2ddXFe56ugKApNmjSBsbExHjx4oGtzODj0GgNdG6At/s3HxzAMaJoGwzBgGAaEEFAUBR6PBx6PBz6fDx6v6nMkLS0Nhw4dwtq1a+u8r7MyJiYmaNu2Lc6dO4f+/fvXC9HnqMqb+qs1U9Jommb/J4RUmarG4/HYuq551bz/JnD15/XUO/EkhICmaahUKshkMhQXF6OoqAiFhYXIy8tDfn4+SktLUVJSgtLSUpSXl0OlUrHiqXmtLJp8Ph8CgQBmZmawtLSEpaUlkpKSAABisRg3btyAra0trK2tYWRkBIFAAD6fXycrFo/HQ9euXbFixQqUl5fD3Nxc1yZxPEcjbDRNs5tMJoNEIkF5eTkkEgm7lZaWQiwWo6KiAlKplH2VSqWQyWSQy+WsX1sjnjRNs/cH8Ez4+Hw+AFR5pSgKAoEAIpEIRkZGMDY2homJCYyNjdm/NfeBqalplc3MzAwikQh8Pp/dKIqqk/dCTUOROjosqzFLrVajuLgY2dnZiIuLQ3JyMpKTk5GamsqGYOPz+RAKhbCzs4OdnR0sLCzYzdzcHEKhEAKBgN0oigIhBCqVit2USiXKysogFoshFotRWlqKwsJC5OfnQ6FQsBXS2toaXl5e8Pb2hre3N/z9/eHs7AwbGxsYGDx7Fum6IqWmpqJXr144fPgwAgMDdWpLQ+DFW0gul7NimJeXh+zsbOTl5bFbQUEB+5BXq9VVWoZ8Ph8mJiZs3dUImkbkKr9qHvoURcHAwAA8Ho991aARaYZhoFar2VdN40OzVRbmiooKiMVilJWVQSqVVmnREkIgEAhgbW0Ne3t7dnNwcICjoyNcXFxga2vLCu2LYwW6vje0SZ0RT0IICCFQKBTIzMzEgwcPcPPmTcTExODp06dQqVRwdnaGm5sbmjRpAl9fX7i5ucHGxgZWVlYwNTWt8hTUVKC3uViaU1G5otA0DYlEgpKSEhQXFyMzMxMJCQlITExEZmYmsrKyIBAI4OrqiqCgILRu3RrNmjWDm5sbhEIhe1PUJnK5HP369cPYsWMxefJkvaqwukZTN1QqFaRSKbKzs5GZmYmUlBSkpaUhPT0dBQUFKC0thUQigYmJCaytrWFhYQFbW1s4OTmxm42NDczNzWFiYsK2/IyMjFh3UuUW3Yt/a/P3aF41G4Aq9V8jqJqtrKwMBQUFyMnJQU5ODnJzc1FUVITS0lIUFxdDoVDA3NwclpaWcHBwgKenJxo1aoRGjRrB1dUVjo6OEIlEEAgEOrk/tIVOxVNzsQoKCnDnzh1cvHgR0dHRyM3NhZWVFUJCQtC0aVMEBwejUaNGsLCwgJGRUZ042YQQyOVylJaWIisrC/fv38e9e/dw9+5dlJSUwNLSEmFhYejWrRtCQ0Nhb29faxWFEILvvvsOWVlZ2LJlC9si5nhzKotKeXk5CgoKkJCQgNjYWCQnJyMlJQU5OTkghMDIyAgeHh7w8PCAq6srXF1d4eHhAScnJ5iamsLIyAgikaheC8W/oRFZuVwOqVQKiUSC3NxcZGRkICMjA0+ePEF6ejqysrKgUqlAURTs7e3ZRlDTpk3RuHFjtsWqoa6fq1oXT82Tu6CgAFevXsWJEydw8+ZNGBgYoEWLFujatStCQkLg6elZryqc5ndVbjlfvHgR169fh1wuR0hICPr374/OnTvXuJASQnDq1Cl89dVXuHDhAiwtLWvkOPpE5euXnZ2NxMRExMTE4N69e0hLS0NRURFsbGzg7u4OHx8f+Pv7w8vLC87OznBwcIChoWGD9v+9jsp+XqVSiYKCAmRlZSE9PR2PHz9GfHw80tPTIRaLYW9vj8aNG6NFixYIDg6Gr68v7O3tYWhoWCfPa62JJyEEMpkMDx48wL59+3D27FkYGRmha9eu6NWrF5o1awYrK6s3HgWsDxBCUFJSgtjYWJw8eRJRUVGQSCR47733MGrUKLRo0QLGxsY1Uimys7PRrVs3/PXXX2jdurXWy6/vaKq9VCpFVlYWbt++jWvXruHOnTsoLS2FsbEx/Pz8EBwcjODgYDRp0gS2trYwMzPTqzqqa2iahlgsRkFBAeLi4vDw4UM8fPgQSUlJUCqVsLe3R6tWrdC+fXs0b94cTk5ObLZaXYtpjYsnIQSlpaU4deoU/vzzTzx58gRhYWEYPXo02rZtCzMzszr5VNEmGveERCLBjRs3cPDgQVy4cAEuLi6YMGEC+vfvDysrK62eA4VCgeHDh6NHjx6YOXOm1sqtz2i6l0VFRbh37x7OnTuH6OhoZGdnw9nZGaGhoWjfvj0CAgLg7u7Ojirrc92saxBCoFarIZVKkZaWhkePHuHKlSu4f/8+CgsL4enpiY4dO6JLly5o2rQpLCwsdNY7rTHx1PiKDh8+jA0bNkChUGDs2LEYOnQo3N3d2akTDRGapvH06VMcPnwYO3fuBEVRmDp1KoYMGQJLS0utVARCCJYsWYJbt27h77//btB+T5qmkZubiytXruDEiRO4ffs2BAIBWrVqhS5duqB169ZwdnausV4Ax7uh0ZLMzExcv34d58+fx4MHD2BgYICwsDD0798frVq1gq2tba32CrQunpopQBcvXsTixYtRXFyMqVOnYujQobCxseG6PJUghKC4uBiHDx/Gxo0bIRKJMH/+fHTv3p3187wLV69exccff4xz587BwcFBS1bXDxiGgVgsRnR0NPbv34/r16/DwsIC7733Hnr27IlmzZrB3Ny83vjUOZ6h6T0UFxfjzp07iIyMxKVLl0DTNLp27Yphw4YhJCQEJiYmNX5dtSqehBBkZWVh4cKFiIqKwoQJEzB58mQ4ODhwFfRfIISgsLAQ27dvx9atW9GxY0d89913cHd3f6fzVlBQgG7dumHNmjXo0qWL9gyuw9A0jbS0NBw8eBAHDhyAQqFAjx49MGTIEDRt2hTm5uZcXdQjNA2Q27dv48CBA7h69SpsbW0xZswYDBw4EE5OTjXWYNOaeDIMg/Pnz+Prr7+Gi4sL/ve//yEoKKhBd8/fFoZh8PjxY/z8889ISUnBokWL0K1bt2qfQ5qmMWbMGDRv3hxff/213oqGpjUSFxeHbdu24cSJE2jcuDHGjRuHbt26wcbGhquHeo6mDuTm5uLEiRPYs2cPCgoKMHjwYEyePBkeHh7a72UQLaBUKsnWrVuJt7c3WbRoESkvLycMw2ij6AYHwzBEIpGQJUuWEB8fH7Jx40aiVCqrXdbvv/9O+vXrRxQKhZYtrRswDEOSk5PJ3LlziY+PD3n//ffJxYsXiUwm4+pgA4VhGFJWVkZOnDhBBg4cSPz9/clPP/1EcnJytFon3lk8lUolWbVqFWnSpAk5cOAAUalU2rCrTsAwDLl79y45fvw4OXPmDJFIJLV2XJVKRSIiIoifnx9ZunRptcSPYRgSHR1N/P39SVZWVg1YqjsYhiHl5eVk/fr1JDAwkAwdOpRcvnyZKBQKvRJNuVxOoqKiyPHjx8m1a9f06rfVNAzDEKlUSk6cOEF69uxJWrZsSfbu3UvkcrlWzuM7iSdN02Tbtm2kSZMmJDIyktA0/c4G1QQMw5C4uDiybds2UlFR8cb70TRN9uzZQ4YOHUpsbGxIYmJiDVr5MgzDkKioKOLr60s2bNhA1Gr1W5dRXFxMmjZtSs6cOVMDFuoGTWtz6NChpHnz5mT//v2koqJCL4WlvLycLF68mAQHB5P27dvXqXusrKyMbNmyhSQnJ9fpc69pia5fv54EBASQqVOnkuzs7He2udriyTAMuXLlCtvirEsX9UU03dfGjRuTtLS0t97/77//fiPx/Ouvv8isWbPeSqD/C5qmyeHDh4mPjw+5cOHCW19wlUpF3n//ffK///2vTlfwN4VhGHLt2jUSGhpKxo0bR1JTU/Xid/0barWaTJgwQSfiKZVKyaxZs8j27dtf+iw+Pp54eHiQbdu21YtrQNM0iY2NJX379iXvvfceSUhIeCe7qz0MVVZWhh9++AEjRozAoEGD6vwUpMmTJ+PChQtwc3OrsWPExsYiKipKqykweDwe+vfvjw8++AA//PDDW2fG5PP56NChA6Kjo6FUKrVmly4ghODGjRv48MMP0a9fP6xfvx6enp56OxBWF1Cr1YiKikJMTMxLn3l7e+Py5csYPXq0Dix7e3g8Hvz9/REeHg4fHx9MmDABSUlJ1c73Va2Z04QQHD16FGKxGJ999tk7j2QyDIOYmBjk5eUBeJaDvE2bNjA0NERqaiqkUimCgoJACMHDhw+Rn58PiqIQEhICGxsbdl7piRMnUFJSAk9PTwwfPhz+/v7g8XhITk5GWloaKIqCsbExrK2tAQAymQxHjhxBVFQUjI2NMWjQILi5uSE1NRUURaFZs2awt7dn7SwoKMDx48fx4MEDuLm5saN4AHD79m2kpaVBIpHg3LlzMDExYUPXvevNzePx8Omnn+L48eM4dOjQW0VKoigKbdu2xYoVK1BQUABXV9d3skVXEEKQkZGBmTNnYvjw4fj6668hFAprTDhlMhkuX76MqKgo5OXlwd7eHgMGDEBYWBi74IA8X3J88uRJnD9/HhUVFXB3d8d7772Htm3bQigUgmEYPHr0CIcOHcKTJ09gZmaGVq1aoUePHuzc25KSEhw6dAg3b94EALRq1QpDhw6FtbX1a38fIQRisRj//PMPoqOjQQhBSEgIhg8fDhsbG9A0jTt37kAsFsPY2BiNGjXCzp078eDBAzRv3hxTp04Fj8fDhQsXcOHCBRQUFMDR0RFDhgxBy5YtwefzUVFRgYsXL0IikeDJkyc4ffo0+Hw+QkNDAQB37twBTdNwd3eHr68va1daWhoOHDiA+Ph4mJiYoFu3bujZsyeMjY1RVlaG27dvQ61Ww8XFBUqlEjt37kRZWRn69u2L/v37QyAQ1Mg1BZ7dD9bW1li6dClmzZqF2bNnY/fu3dWK/1Ct5qJMJsOOHTswfvx4rczhJITg0aNHmDlzJj788ENcvnwZSqUSarUa3377LT7++GNIJBIQQhATE4P58+dj+/btKCkpAU3TWL16NT777DOEhIRgxowZUKvVGDp0KK5evQpCCFJTU7F7924MGjSITU+hUqmwePFifP311+jQoQPGjRuH27dvY8aMGRg9ejROnDiBoqIi1ka5XI7t27cjMDAQkydPRlRUFD777DPI5XIQQnD37l1kZGRAIpHg8uXLOH/+PFJTU9/pvGigKAq2traYNGkSdu3aBalU+lb7e3h4wNzcHA8fPtSKPbqAYRgsWbIEbm5umDdvXo0KJwCcPXsWc+bMQUhICObMmQMPDw9MnjwZERERbEtFJpPh888/x5IlS9C7d2/MmDEDfD4fo0aNYuteZGQkRowYAYFAgJkzZ6Jbt25YsWIFvv32W6jVahQWFmLChAn4559/8P7772Ps2LE4dOgQJk2ahJKSktfaV1JSgilTpmDPnj0YPXo0PvjgA5w8eRLjxo1DQUEBaJrG7du3sWDBArz//vuYN28e4uPjQQjB6tWrkZOTg6NHj+Lrr79Gu3btMHv2bDg4OOD999/H6dOnQQiBVCrF1atXUVFRgYyMDJw/fx4XL15kY95GRUVh4sSJWL9+PbsE+e7duxgyZAiePn2KTz/9FN27d8eCBQvw9ddfQyaToby8HOfOncOUKVMwZ84cXL16FWPHjoWfnx8++eQTnDt3rlYyv5qammLRokUoKyvD1q1bq0Tff2Oq09ePj48nTZo0IfHx8dX2F7wIwzDkt99+I25ubiQzM5MwDEPS09OJj48PMTMzIzdv3iSEECIWi8nAgQNJeno6IYSQhw8fEnt7e7J48WLWH1RRUUG6d+9O+vTpQ2QyGSGEkJs3bxJzc3Ny7tw5QgghDx48ILa2tuSXX355aT9vb2+Sn5/P2vb3338TQ0NDsnfvXsIwDGEYhmzYsIHY29uT5ORk9nvz5s0jQUFBpLS0VGvnpTLJycnEx8eHPHr06K32o2maTJgwgXz33Xd12jf9byQkJBAfHx8SHR1dK/61CxcukK1bt7LHUqvVZMqUKaRHjx7szIeDBw8Sc3NzcuzYMfZ7MpmMDB06lJw4cYIUFRWRFi1akBEjRrD7MAxDDhw4QMaOHUvkcjlZsmQJsbOzIw8ePGDr1t27d4mtrS3ZtGkTYRjmJZ8nwzBkzZo1xNramty6dYvd79GjR8Te3p6sWrWKfe/nn38mQqGQhIeHE5VKRcrLy8nXX39NMjMzycmTJ8muXbtY21UqFRk5ciQZPHgwOzhZVlZGgoKCyOeff/7SOaqoqCCtWrUiM2fOJDRNE7lcTgYMGEBat27N3gMMw5BDhw4Rc3NzcvToUXYEvEOHDqRFixakuLiYPU5gYCCZOXNmrflPGYYhBw8eJM2aNSMFBQVvvX+1Wp6JiYmwsLDQuv+wZ8+e7NMOAK5cuYKuXbvC0tISkZGRbBfI0tISLi4uIITg4sWLKCsrg6+vL54+fYqMjAwUFBTA29sbt2/fZl0BlSGEIDo6GuXl5ejYsSPrrxWJRGjVqtUrbTM2NkZAQAAbxMTBwQEKhQIymUyr5+DfcHZ2hp2dHRISEt5qP4qi0LFjR1y/fr3epiS+fv063N3d0bRp01rxcXbo0AHt2rXDX3/9haVLl2LZsmVIT09Heno61Go1CCE4ceIETE1N0aJFC9YmoVCItWvXomPHjoiPj0dcXBw6derEdkUpikLfvn2xdOlSUBSF48ePs5GCMjMzkZmZCZFIBHNzc5w6deqVtjEMg+PHj8POzg4mJibsfgKBAFZWVmzLUYOdnR26du0KAwMDmJiY4Ndff4WLiwt69OiB4OBg/Pnnn1i6dCmWL1+OrKwspKWlsZkT3obc3Fxcv36dDfij+b2hoaEQiUQ4ffp0lRaev78/+z2hUAhHR0fk5OS89XGrC0VR6Ny5M9ujfVuq5fMsKSmBqakpGxpKG2gyPwYGBiIiIgKDBw/G2bNn8eGHH6K8vBwnTpzAnDlzEBkZiZ49e8LAwIANpKxUKvHHH3+wFwJ4FlUoNDT0tc3xoqIiEEKq+Dooinptzh9Nqo/K/wNvnqxLG4hEIpiZmVVxJ7wpzZs3x7Jly5Cfn1+jg2Y1RXp6Ojw8PGBkZFTjx2IYBvv378e3336L3r17IywsDIaGhrC0tER6ejpbp/Ly8mBoaAgTExN2X4qi4OjoCOBZ/iu5XM762DUYGRnByMgIcrkcBQUFyMvLw/z581kBJoSgcePGcHFxeWX9ZRgG+fn5yMvLw1dffcU+/AkhcHd3h7u7O2iaZn2zmlQeGvs0Zfz1119YsGABBg0ahJYtW8LAwAAWFhYQi8XVqtdSqRTl5eUvBbcRCoUwMTFBfn5+ld/z4vpzQ0NDqNXqtz7uu2BpaQkrKytkZWW99b7VEk+BQMA+fbWJkZER+vXrh7Vr1+L27dsQi8Vo2rQpBg0ahE8//RQ3b97EvXv3MGXKFHYfGxsbCIVCLF68mHVkA898mkVFRVUGfCqjCQFXVlZW5X2FQqHV36RNNPln3jaHPEVR8Pb2hlAoxOPHj+uleBoZGUEmk1URhZpCLpdj2bJl8PHxwYoVK9jz/ejRI9y/f5/9nq2tLZuOw8LCgn2/qKgIAoGAzZ8lFourlK9QKFBSUgIrKyvY2NjAzMwMe/bsqZKltaysDDRNg8fjvSSgPB4PNjY2YBgGu3fvZoURAJvw8L/OUXl5OZYtW4bQ0FD89ttvbMs4OjoaGRkZb3fCnmNkZARTU1OUlZWxGWoBQKlUQiqVvhQYqC7MklCr1VAqldXKkFutbruLiwubJE2bUBSFXr16oaKiAr/99htCQkJgZmaG9u3bw9TUFMuXL4ednR2cnZ3Z73fo0AEmJibsiKPmghw7dgyTJ09+Zbeaoii0bt0axsbGiI6OZiunSqV6p3znPB6PfaCUlZXh1q1bWu0mi8ViFBUVVUv8TExMEBwcjOvXr9dqa1lbNG/eHLGxsf86iKItGIZBeXk5jI2NYWBgwNYpTcJB4P/ranl5OR49elQluPLkyZNx8uRJ+Pr6wsfHB1evXmW7wYQQHDx4EFOnTgXDMOjZsyebrkJTrkqlwty5c/Hnn3++0j4ej4devXohJycHaWlp7H40TeOrr77Chg0b/vM3anJzVc79RZ4H2aiMJh8YeT4glJaWhsTExFfWIQcHB7Rs2RK3bt1iBzU1XWKpVIr33nuvzk1pTE9PR1FREfz8/N5632r9El9fX6hUKsTGxlZn939F03W/ePEievbsyfoXO3XqhLNnz+K9996r8lQNDg7GjBkzsG7dOhw8eBApKSk4efIkVqxYgcmTJ8PExARisZjtMmiScwUFBWHy5MnYtGkTjh49iqSkJGzbtg2ZmZls2eR5JPji4mIwDIPc3FzIZDKUlZWhqKgIDMMgLy8PFRUVbFerqKgIDx48wJ9//onvv/++eqN4ryE+Ph4ymaxaF5rP5yMsLAw3btyol/M9W7ZsCZFIhMOHD9e4+ItEIgwcOBDXrl3Dzp07kZKSgkOHDiEyMhJqtRo5OTlQKpXo378/Bg4ciAULFuDKlStITEzEypUroVAo2IAkP/74I6Kjo7FhwwYkJyfj9OnTWL9+PSZNmgSRSIQPP/wQAQEB+Prrr3Hz5k0kJiZi9erVSElJwfDhw9l6J5VKoVQqkZOTA7VajfHjxyM0NBRff/01oqOjkZSUhLVr1+LRo0fsvMvCwkKUlZVBrVYjOzu7Snfc1NQU/fr1w5kzZ7B//36kpKRg7969OH/+PFQqFXJycqBSqSAQCODp6Yn4+Hg8fvwYX3zxBU6ePAmlUons7GwolUo2S6hQKMQPP/yAwsJCLF68GPHx8bh48SIWLFiAESNGoHfv3lCr1cjNzYVCoUBFRQXy8/OhVquRl5cHuVwOmUyG3Nxcrd43r4OmaYSHh8Pf3x+NGzd+6/2rFVVJrVZj5syZUKvVWLt2rVbnZRFCsG3bNly+fBlr166FiYkJ65zfvHkz1q5dCxcXlyr7yOVynDx5EsePH0dpaSk7X61z584wMDDAzp078ffff6OiogLGxsYYMmQIpkyZAolEgl27duHcuXMwNjZGjx49kJiYiL///hvXrl2DlZUVNmzYgGPHjkEul8PMzAzffvst0tLSsGPHDkilUpiammLGjBno0aMHSkpKsGzZMsTFxcHW1haffPIJQkNDtdI9UavVmD17NuRyOTZs2FCtruvdu3cxZswYnDt37qVzWNchhGDXrl1YtGgR9u7di8DAwBrNAVVWVoY///wTly9fhlAoRGhoKNRqNU6fPg0rKyssXboUnp6eKCsrw759+3Dp0iUoFAoEBgZi4sSJbDhBmqYRHR2Nffv2ISsrC9bW1hg2bBi6devG+u3z8vKwa9cu3L59GwzDICAgAOPGjYOXlxfEYjHmzJmDrKwsMAwDBwcHLFq0CG5ubigsLMSuXbtw8+ZN0DQNX19fjBs3Dt7e3lCpVPj1119x48YNqFQqmJiYYOjQoZgwYUKVVubWrVsRHR0NIyMjtG7dGmKxGBcvXoSdnR2WL18OZ2dn3Lt3D2vWrEFZWRmCgoIwa9YsFBQU4Mcff0RRURH4fD58fHywaNEimJiY4PHjx9i1axdSUlJgZGSEzp07Y/jw4TA3N0d2djbmz5+PnJwc8Hg8NGvWDF988QV++OEHdmqfp6cnVq9eXcUdURPXOCoqCtOmTcOWLVvQsWPHt69Pbz0+T54N8d+5c4d4e3uTy5cva31qgWaaReVyX/Xe6/b5t30rb0VFRUSpVLL/q9Vq8vHHH5NOnTqxwQPeddPW+YiOjibe3t7vNFWnsLCQNG/evF6uc2cYhshkMjJ79mzSvn17Eh8fX+NTWt702v7Xda/O55rvaPuzN7kv3qYsbdpVE/fOq9DcT0FBQWTp0qXVihlBSDWnKmlW3wwfPpxtphMtdqU004EqPwle9d7r9vm3fTUbwzCYPXs2duzYgfLyckilUly4cAFRUVEYP358lYx977K9K+R5C+H777/HoEGD3qkla2VlBT8/P9Y/XJ+gKAoikQg//vgj/Pz8MH78eNy8ebNGu3dvem3/67pX53PNd7T92X/Z/bZladMubd87r4KmaURGRmLKlCkYMmQIpk+fXu0VktUOhkwIQVFREcaNGwdnZ2esXLmSTeZWH2AYBmvWrMHx48dhaGgIhmFgYGCAYcOGYcyYMVpJg/GuEEJQUVGBL774AsnJydi9ezfs7OyqbRchBOvWrcOJEyfwzz//vPWofV2APE+kt3TpUuzduxezZ8/GuHHjaiXtAkf9hTwfv1i3bh127NiBmTNn4uOPP4ZAIKh+vXnX5m9iYiJp06YNmTZtGhGLxbW2OkAbqNVqIpFISGlpKSkpKalTYc0Y5lkYrdmzZ5PQ0FDy+PFjrdh2/fp14u/vT7Kzs7Vgpe5QKpVk//79pHnz5mTw4MEkOjqaqFSqOnP9OOoGDMMQuVxOTp8+Tbp06ULatWtHzp07p5W4w+8cDJlhGBIbG0s6dOhARo8eTTIyMrgK/I4wDEOePn1KPvjgAxIWFsYu3dMGRUVFJCgoiERFRWmlPF3CMAzJyMggn3/+OfHx8SEfffQRuXfvXrUj73PoDxrRvHLlChk1ahTx9fUlv/76K8nPz9favfTOk64oioK/vz927twJhUKBESNG4NKlSzUyiV7fIc/zsFy9ehUjR45EWVkZdu3apdUliWZmZggICMCNGzfq/fWhKAqurq5YtGgR9uzZA6VSiREjRmDq1Km4cuUKZDJZvf+NHG8HeZ6m+NSpUxg3bhwmT54MR0dH/PPPP5g/f/47ub1eRGsJ4Mjz6R2///47duzYgZEjR2L69OlwdHTkfFFvACEE+fn5WLduHXbv3o0PPvgAs2bNgoWFhVbPH3keVefcuXM4ePBgjYb/qk0IIVCr1YiJicHWrVsRFRUFd3d3jBo1Cj169ICzszM7GZxD/1AqlXjy5AlOnDiB/fv3o7S0FIMGDcK4cePg4+NTIymmtZ63Xa1W49q1a1iwYAFKSkrw2WefYciQIfVqMKk2Ic8HQCIiIrBmzRqYmZnhu+++Q8eOHWtsGeL169cxZcoUnDt3jl2HrS9oWu8ZGRk4fPgw/vnnHxQUFCAsLAyDBw9GmzZtYGdnx+Vrr+dornN2djYuX76MiIgI3L9/H15eXhg5ciT69OkDBweHGs2aqnXxBP5fEPbt24d169bBxMQEH330Efr27fuvAV4bEuT56N/JkyexefNmlJWVYerUqRg9enSNP2jy8/PRrVs3rF27Fp06daqx4+gSTbWWSqW4f/8+jhw5grNnz0KhUKB58+bo1asXwsLC4OzsDCMjI65O1gM0upKRkYErV64gMjIS8fHxsLa2Rq9evTBgwAD4+/vXeKxXDTUinhrI89UT+/btQ3h4OCiKwogRIzBgwAA0bty4yrrhhoDmafnkyRNERERg7969UKlUGDduHEaPHl1rLg6apjFy5Ei0adMGX375ZYO4BgzDQCwW4+HDhzhz5gwuXryI3NxceHh4oF27dmjXrh38/f3h5ORUJXwch24gz9fSKxQKZGVlITY2FpcvX8aNGzeQl5cHd3d3dO/eHV27dkVAQABMTU1r/XrVqHgC/98CKCkpQWRkJHbt2oWkpCQ0b94cI0eORLt27WBnZ6c3vrdXoYkYfu3aNezbt4/tXowZMwZ9+vSBra0tgNq7WQkhWLlyJS5fvox9+/bp9bl/EU19lMlkSE9Px/Xr13H58mU8fPgQMpkMjo6OaN26NVq1aoXAwEA4OjrCxMTk3eYDcvwnhBAolUpUVFQgMzMTjx49QnR0NO7evYvCwkJYWlqiRYsW6Ny5M1q1agU3Nzd2nrKurkuNi2dlCCGQy+VISEjA4cOHceLECZSWlqJly5bo3bs3OnToABcXF52flHdBczpVKhWysrJw584dHDt2DLdu3YJIJEKPHj0wdOhQNG3aFCKRSCe/kRCCK1eu4NNPP8WFCxdY8W6IaHoDmpv27t27uHbtGh4+fIiioiIIhUL4+PggICAAzZo1g5+fHxwcHGBpaVllAKo+1tXaRnNvaAb3ioqKkJ+fj+TkZNy9exexsbFISUmBWq2GjY0NWrRogbCwMLRo0QKurq4wNjauUR/m21Kr4qlBc8iysjLExsbi1KlTOHv2LIqKiuDg4ICwsDB06NABTZs2hbW1dZ07aS/CMAxkMhmKiooQExODmzdv4urVq8jMzISNjQ26dOmCvn37IigoiI37qOubLT8/H127dsXmzZvRrl07ndpSl9B0F+VyOfLy8pCZmYkHDx7g3r17iIuLQ1FREYyMjGBubo5GjRrB19cXvr6+8PLygqOjI4yMjCASiWBoaNhgB6UIIWAYBkqlEkqlEuXl5WyE+tTUVCQmJiI5ORmlpaVQKBRwdnaGn58fmjVrhmbNmsHd3R329vZ1vhGlE/F8EY0jODMzE7du3cKFCxcQExMDsVgMGxsbBAQEICQkBE2bNoWTkxNsbW1hbm5epXLW5Amu/MRkGAZlZWUoLCxEbm4uYmJi8ODBAyQkJCA3NxempqZo2rQpOnTogJYtW6Jx48YwMTGpc3EMlUolhg4dij59+mD69Om6NqdOo7numkjpGRkZSE1NRUJCAuLj45GRkYHy8nLIZDIYGxvDyckJrq6u8PDwgKenJ9zc3GBtbQ0zMzOYmprC1NS0Sq/jxfXmdY3KEqH5m2EYyOVylJeXQyKRoLy8HIWFhcjIyEB6ejqePn2KnJwcFBQUQCKRQCgUwsLCAl5eXvDz80Pjxo3h4eEBDw8PWFhYwMjIqM7dI/9FnRDPymie/BKJBE+fPkVCQgLu3LmDR48eITU1FXK5nE0f7OXlBTc3Nzg7O8PBwQH29vZsJRUKheDz+eyglGarfIEYhmGPp+lK0DQNhUKB8vJylJSUsOkOsrOzkZmZidTUVJSUlKCiogKlpaXg8/n44IMPEBYWBl9fX7i6urKj5XXxRtBACMEvv/yChIQEhIeH17uKq2sqP1CVSiWKi4vZ+qLJdZSZmYns7Gzk5+ejvLwcPB6PbZFaWVnBwcEBdnZ2sLKygpWVFSwtLWFubs5upqamL7Vk+Xw+eDwe23B4UYA115GiqCp1+0WbGYZ5aVMoFGxMzfLycpSVlbFbaWlpld9YWFiIiooKKBQKNvuChYUFHBwc4OzsDHd3d3h6esLDwwO2trawsrKCtbV1lUHiunx/vAl1TjxfhaaCymQylJaW4smTJ0hPT0daWhpbQUtKSiCTyaBUKqFSqUBRFAwNDdlUCAYGBjAwMIBAIACfzwdN01CpVFCr1WwofolEArlcDoZhIBAIYGhoCJFIBGtrazg7O8PV1RWNGjVin5iJiYmYNWsWpkyZglmzZtW7QBunTp3CN998g7Nnz8LKykrX5ugdGkFSqVRs8OBff/0VFy9exNSpU2FmZobCwkJWlMRiMcrLy9k6rHmY0zQNQgjbGBAKhRCJRGydpijqpVdNHdc0Ciq/asqWy+VQKBRQq9VgGIbdj8/nQyAQQCAQQCgUwszMjM31Y2VlBTs7O9jb28PW1hY2NjawtbWFqakpe89ohF7fqdlkMFqCoigIhUIIhUJYWlrC09OTnZ+oebKqVCqUl5ejoqICMpkMsbGxmDVrFr788kuYmZmxFVKpVIJhGLYVoLngmm6FpkslEolgYmICc3NzdqT1xSemp6cn1q9fj88++4xNnVCdXCi6IiAgAGVlZXj69CknnjUAj8djW44pKSn45ZdfkJGRgd27d6Nz585VErdpXjXdYZlMBoVCwdZbzabJ2KqJLM88z2ulEVq1Wo2kpCTs2LED8+fPh5mZGSu6GlHU3E+axHCae0AjmJpGg5GRETtnsr64GGqTeiGer+LFi8nn8yESiWBnZwdCCO7evQtvb2+MHDmyxiJSUxSFLl26YMOGDfj000+hUqkwf/78Wpuk+67Y2trC3d0dd+7cQVBQUL2wuT6hEUNNCz84OBj79++Hm5vba0VII3CVM8G+LefOncOZM2cwadKk12aD5Xh39LJtzTAMoqOj0aJFixpPVUtRz5LQbdq0CYcOHcKCBQvqTUAKkUiEkJAQ3Lhxo1ZyxjQkNLEeFi5ciDlz5mDKlCnYsGHDS8JZE2iS19XlGSr6gF6Kp1KpxO3bt9G+fftaOR5FUQgLC8PmzZtx7Ngx/PTTT/VCQDV23717t06nXK5vEEKQnJyMSZMm4fjx49i0aROmTZsGY2PjWmnda8SzIfgddYlent2nT5+itLRUq6Hc/guKotCqVSts27YNUVFR+O677yCRSOq8gAYGBqKsrKxK1lCO6qNSqXDkyBEMHz4c1tbWOHjwIDp16lSrrUCxWMymFOaoOfRSPBMTE2FsbAxXV9daPS5FUWjRogWb/fObb75h0xLXVdzc3GBubo7Hjx/XaTvrOoQQiMViLFy4EF9++SU+/vhjrFmzBs7OzrXuSy4pKYGZmVmNReXieIbeiSchBDdv3kRwcLBORr4pikLTpk2xfft23LlzB1988UWVfNl1DaFQiJCQEFy7dk3XptRbCCGIi4vDuHHjcObMGWzfvh2ffvpprXXTX7SlpKRE63FgOV5G78RTrVbj3r17CAkJ0Vm3haIoBAQEYNu2bYiJicHnn39eZwWUx+OhdevWuHfvHuf3fEs0cycPHz6MUaNGwd7eHvv27UNYWJhO/Y1isRiWlpaceNYweieeJSUlSE1NfacUvdqAoij4+vrir7/+QkpKCmbNmoXi4uI6J6AURaFly5bIyMhAfn6+rs2pN2haeN9//z3mz5+PWbNm4Y8//oCTk5NO651arUZZWRmsra11ZkNDQe/EMycnByqVCh4eHro2BRRFoXHjxti2bRsyMjIwY8aMOimgmiWl8fHxdc62ugghBI8fP8b48eNx5coV/PXXX5g8ebLOomRVRqVSoaSkpEFHyqot9Eo8CSF49OgRnJyc6syTl6IoeHl5Yfv27SgqKsK0adOQn59fp0TKwsICfn5+uHHjhq5NqfMolUrs378fI0eOhLu7O/bv34+2bdvWmWlBarUaJSUlsLe317Upek/duOJaghCChw8fwtfXt04tk6QoCu7u7ti6dSubbiMvL6/OCCiPx0NYWBhu3rwJlUqla3PqJIQQFBcX4/vvv8cPP/yAuXPnYsWKFXUuwaFmmXJdaTzoM3olnprsiSEhIbo25SUoioKLiwu2bNkChmHw0UcfISsrq84IaGhoKFJTU1FaWqprU+ocDMPg0aNHGDt2LG7cuIHw8HBMmjSpTj2gNchkMjAMA1NTU12bovfolXjKZDJkZmbC19dX16a8Eoqi4OzsjE2bNsHAwKBOCai3tzcAICkpqU7YUxfQBJzZu3cvRo0ahSZNmmDv3r1o2bJlnemmv0hxcTEMDQ1hYmKia1P0nrpZA6pJdnY2aJqGu7t7nepKVYaiKNjb22Pjxo2wsLDA5MmTkZ6ernPBsrCwQKNGjXDv3j2d2lFXIISgqKgIX3/9NX7++WfMmzcPS5cuhYODQ52tW8CzDAEikeidAotwvBl6JZ6ZmZkQCoV13lmuEdA//vgDdnZ2mDJlis4FVCAQoGXLloiOjta5kOsaQggePHiA0aNH4+7du9i1axfGjx8PoVCoa9P+FUII8vPzYWJiwrU8awG9Es/4+Hh4eXnVm6DENjY2+P333+Hh4YEJEyYgMTFRZ8KlWZufkJCAsrIyndigazSpbsPDwzF27FgEBwdj7969aNGiRZ3tpr9IXl4e7O3t64299Rm9OcOauXe+vr71Zk0vRVGwtrbGypUr0aRJE0yePFmnAhoQEICSkhJkZ2fr5Pi6hBCCwsJCzJ8/H4sWLcI333yDRYsWwc7Ork53018kOztbJ+vpGyJ6I55qtRrp6enw9vaudxXHwsICy5cvR7NmzTBhwgQ8evRIJwJqZ2cHV1dX3L9/v0F13RmGwZ07dzBq1CjExcXh77//xtixY+t8N/1FCCHIzMys9YA4DRW9EU+JRIKCggJ4eXnVO/GkKAoWFhb47bff0Lp1a0yaNAkxMTG1LmDGxsZo2rQpbt261SDEU9NN37FjB95//32EhoZi9+7dCA4OrpfdXoZhkJWVBTc3N12b0iCofzXkNZSXl6O0tLReVxxTU1MsXLgQXbp0waRJk3D37t1aFTFNcOQ7d+5AqVTW2nF1ASEEeXl5+Pzzz7Fs2TL8/PPP+PXXX2FjY1PvHr4aNGmAuW577aA34pmbmwsjIyNYWFjo2pRqQ1EUTE1N8fPPP6N79+6YPHlyrbcCAwMDUVBQoNdBQhiGwa1btzBq1CgkJydjz549GDlyZL0ZaHwdmgyyTk5OujalQaA34pmWlgZbW1u9mN9mZGSEH3/8EYMGDcKHH36Ia9eu1ZqAenl5QSgUIi4uTu+67oQQyOVybNmyBePGjUOHDh2we/duvUl+V1JSAkIIbGxsdG1Kg6B+DEv/B4QQPH36FLa2tnVyydzbQlEUjI2N8c0334DP5+Pjjz/G+vXr0bFjxxq/yY2NjREQEIDbt2+jZ8+eNXqs2oQQgtzcXPz888+4cuUKfv31VwwaNAgCgUDXpmmNjIwM2Nvb17uBrvqKXrQ8CSHIzs7Wu1FGoVCI+fPn44MPPsCnn36K8+fP13iWSz6fj1atWuHWrVugabpGj1Vb0DSN6OhojBgxApmZmdi7dy+GDRumV8IJPEs/4+7urhcNiPqAXognTdPIzs6u14NFr4KiKIhEInz++eeYNGkSpk2bhrNnz9aogGqCI6ekpKCkpKTGjlNbyGQybN68GRMnTkTXrl0RHh4Of39/veimV4ZhGKSkpKBRo0Zc4rdaQi+67QzD6GXLU4NAIMDMmTNhaGiImTNnYtmyZejbt2+NTafx9vaGSqXCkydPYGdnBwBV/J/1QXg0vZEffvgBt27dwuLFizFgwIB6s4DibVEoFHjy5Ak6dOhQL66PPqAXNUmlUqG4uBj29vZ6WXEoioKhoSGmTZsGPp+PuXPngmEY9O/fv0YE1NraGl5eXrhx4wY8PDyQnZ2Nu3fvws7ODv369dP68bQNwzC4du0a5s2bB3t7e+zfvx9NmjTRy7qhQSaTISsrC40bN9a1KQ0GvRBPiUQChmFgaWmpa1NqFM3gkaGhIb788ksoFAoMHTq0SjeNEAKlUglDQ8O3EguGYaBQKJCbm4uEhAQwDIOVK1di9erVyMrKglKpxM8//1ynxZMQAplMhm3btuH333/H2LFjMXv2bJibm+u1cAJAUVERlEolHB0ddW1Kg0EvxLO8vBwA9GKa0r9BURQEAgEmT54MAwMDfPPNN2AYBsOHDwefzwchBOnp6Vi0aBF+/fVXtsv9Jly7dg3z589HSkoKiouLX4ooz+fz4erqqlMR+jfXgWbGxffff4979+5h2bJl6NOnj952018kOTkZ5ubmb3XNOd4NvahZmihA5ubmOrakduDz+Rg3bhwMDQ3x/fffQ6FQYOzYscjOzsbkyZNx+fJltGjRAlOnTn1jsWvSpAlUKhXy8vJe+TmPx9OpT5kQgrKyMuzcuRMTJ05kQ64RQsAwDK5cuYKvvvoKTk5OOHDgQL2McVBdCCFISkqCs7MzF0G+FtEL8SwvLwePx2tQMQwNDAwwevRoGBgY4LvvvkNBQQFOnTqFCxcuAAA2bNiAYcOGvXFsUzs7O/zwww8YM2YMJBLJS58LBAKddgkJIdi8eTN++OEHyOVyzJ49G3w+HzKZDBs3bsS6deswadIkfPbZZzAzM2swwgn8f+LDwMDABvW7dQ7RAyIiIkibNm2ITCbTtSm1jlqtJps3byYikYhQFEUAEADEwMCArFu3jjAM88ZlyeVy8uGHH7JlVN5cXFzI06dPa/CXvB6GYcitW7eIg4MDAUBsbW3JmTNnSFpaGhk3bhwJCQkhx48fJyqVSif26RqlUkk6d+5MduzY8VbXm+Pd0It5nmKxuEEMCrwIeR6D8tixY1AoFFV8gmq1GuvXr0dhYeEbl2doaIj58+ejUaNGL31mbW2ts5a9WCzGt99+y7oUCgsL8emnn2LIkCFQKBTYv39/g/JvvkhxcTGKiorg4+PT4O4BXaIX4llRUQFjY+N6GUasumiEc9q0aTh69Ogr16E/fvwYBw8efOM16hRFoVGjRpg/f/5Lq29sbGx0Ip4Mw2DDhg04d+5clfeTk5PB4/GwZs2aehmGUJtkZmZCqVTCy8tL16Y0KPRCbTTi2ZBuIIZhsH79ehw/fvy1K45omsaGDRveqvXJ4/EwZswYdOvWrcr7zs7Otd6yI4Tg5s2bWL58OdRq9UufP3r0CHv27KnxJat1nUePHsHDw6PBDJjWFfRCPKVSKYyMjBqUePJ4PMyYMQPbtm1Dly5dXrueOTY29q1an8CzuKI//vhjleg8tb30lRCCkpISfPvtt68Vf6VSiV9//RVXr17VuwhQbwohBHfv3kVgYCC3pr2W0QvxbIgtT4qiYGVlhTFjxuDYsWOIiIjA0KFDX2p9aHyfRUVFb1V2q1atMHXqVNYV4uHhoVX7/wuGYfDHH3/g4sWL//o9mUyGP//8E3K5vJYsq1vIZDI8fvwYISEhDar+1wX0QjxlMlmDfepSFAUTExP06NEDu3btwokTJzBhwgRYW1uz36lO65PH42H69Olo1qwZeDwenJyc2DmVL26EkJe2d4EQguvXr2P16tUvRXaiKApmZmYICwvDDz/8gMjISKxatarBXn+xWIyMjAwEBQXp2pQGh14MTxJCwOPxGvSTVxOBqV27dmjTpg0ePXqEP//8E/v27UNubi7WrVuHbt26wdjYGAqFAmKxGBUVFZBKpZDJZJDJZFX+lsvloGkatra24PF42Lt3L65evQq1Ws36GAUCAXg8HgQCAbv6icfjwdDQEEZGRjAyMoKxsTH7t5GREUxMTGBubg4TExMIBAIIBAIYGhqyf/N4PBQWFuKbb75BcXExgGdCbm1tjdDQUHTv3h3du3eHj48PjI2N2d/eUElISICRkZHeRRSrD+iNeDYUNC07TatPKpWipKQEpaWlKC0tRV5eHnJycpCdnY3CwkLY2dmhqKgI8fHx6N69O7sOXigUQigUsqKl2UQiEYyNjSEUCsHn8+Hp6YmOHTvCyMgISqUSAoGALUOzHr6iogIqlQoMw0CtVkOlUrFCrFQqoVKpqmxyuRxqtRoCgQDGxsYwNTWFqakpzMzMYGtri5ycHFy7dg3AM3fByJEj0a9fPzRv3hzGxsbg8/mgKKpBiybwrC7cvn0bjRs3hpWVla7NaXDojXjq441Enge60GQGzcjIQGZmJjIyMpCeno6MjAyIxWKo1WrQNA1DQ0PY2NjA3t4e9vb28Pf3R8eOHWFlZQVzc3MUFBQgNDQUJiYmEAqFMDQ0hIGBAbtpWpAvUlRUBFNT02pFKFer1eymUqmgVquhUCggl8shlUpRWlrKin9RURHi4uKgVqvRs2dP5OfnQyKR4OjRozhx4gSMjIzg5OQET09PeHh4wN3dHW5ubnB1dYWZmRlMTEwa1FxPhmFw/fp1hIWFNahpenWFhlPT6iiaVjNN05BIJMjMzMTTp08RFxeHx48fIzU1FdnZ2SCEwNLSEtbW1nB1dUWTJk3Qp08fuLq6wt7eHjY2NmyrzMDA4JWtM82x3vZBY2trW+3fp2nRvimaB4Hmb5VKhdLSUhQUFCA3NxdZWVlITU1FdHQ0IiIiUFpaioqKCtja2sLNzQ1eXl4ICAiAr68v3N3dYWdnBwMDA71064jFYqSkpGD69Om6NqVBwomnDqBpGuXl5SgoKEBMTAxiYmJw//59pKWlQSaTwdjYGI0bN0aTJk3QsWNH+Pn5wdnZGRYWFjA1Na0iAm8jCPVBPDStYABsS9fS0hKenp4vuWcUCgXKyspQXFyMjIwMxMfHIyEhAXv27EFWVhYIIbCwsEBQUBBatmyJoKAgtov7tiH76iKpqamQyWR6GRm/PqAX4ikQCKBWq+tk913jn6yoqEBKSgpu3ryJ69ev49GjRygrK4OtrS28vb3RtWtXfPbZZ/Dx8YG1tTU7iFLXfo8uefFciEQiiEQi2Nvbw8/PDz169GDjmUqlUqSlpSEhIQF3797FwYMH8fvvv0OtVsPb2xstW7ZEu3btEBgYCHt7exgYGNSrc61ZQODt7c35O3WEXoinSCR6ZSQgXUEIgUKhQE5ODqKjo3H+/HncuXMHEokEjRo1QsuWLTFy5Ej4+fnBwcGBHTUG6kfrsK6icVNoRNXa2hohISEYM2YM1Go120K9desWbty4gX/++QcqlQpeXl7o0qULOnfujCZNmsDCwqLOXwe1Wo2LFy+iQ4cOXLZMHUERPRiq/umnn5CZmYmNGzfqLPkVIQQqlQopKSk4d+4cIiMjER8fD3t7e7Rr1w5dunRBcHAw7OzsIBQK6/zNqc8QQlgfc1JSEqKjoxEVFYWEhASYmZmhU6dO6Nu3L0JCQtiAM3XteuXn56NLly7YvHkz2rdvr2tzGiR60fI0NzdnU3HUtnhqMneePn0a//zzDxITE+Hl5YXevXtjwYIF8Pb25uYj1jEoioKBgQEsLS3RqlUrtGzZEp9++ilyc3Nx8+ZNnDhxAjNnzoRIJEKPHj0wZMgQBAUF1ZklwIQQxMTEQCAQwNfXV9fmNFj0RjzLy8trbb6nplt+//59hIeH49y5c7Czs8PAgQOxePFiNG7cGCKRqE7caBz/jUZMXV1d4eLigoEDB6KoqAhXr17FoUOHMG7cOHh6euKDDz5A7969YWNjo/OpQVeuXEFQUFCVlWQctYteiKelpSXKyspqPLoOIQRSqRRXrlzB2rVrER8fj06dOmHjxo0ICQlhQ7Zxoll/0Qipg4MDhgwZgkGDBiE9PR1Hjx7FunXrsGLFCowaNQpjxoyBm5ubTkRUqVTi4sWLGDt2LFfXdIheiKeFhUWNiichBGq1GlevXsWKFSuQkpKCoUOHYtmyZfDy8qp3I7UcbwZFUeDz+WjcuDFmzZqFiRMnIioqCps2bcLOnTsxadIkTJgwATY2NrV6/dPS0vD06VO0b9+eq3c6RC/E09zcHGq1mp0jqU3I84yUv/32G86dO4eRI0dizZo1bJSh6lZehUKBkpISEELY5YncjVB3oSgKlpaWGDp0KHr37o0zZ85gxYoVOHDgAL7++mv07t0bhoaGNW4HIQSXLl2Ch4cHPD09a/x4HK9HL9Z0afK1l5aWarVctVqNI0eOYMiQISgqKsLevXvx008/wdPT851HYOPj4zF16lS0atUKq1at0p7RHDWKJorVoEGDcPjwYYwYMQLz5s3D/PnzUVBQUON+d6VSiVOnTqF79+4NNpJUXUEvxFMzSVgThUcbyGQyrFixAl9++SU++ugj/PXXX2jevLnWRvODg4Px119/wcrKCjKZTCtlctQemniqs2fPxp49e/Do0SO8//77SE5OrlEBzcnJQUxMDHr06MH1VHSMXoinJmhFUVGRViquQqHA4sWLER4ejvXr12Pq1KlaD7ZMUZTOR2w53g3NNWzevDl27doFNzc3TJw4EUlJSTUioIQQXLt2Dba2tmjSpInWy+d4O/TC58nn8+Hs7IyMjIx3LothGGzfvh0HDhzA1q1b0aZNmxp/wmv8qteuXQNN0wgLC4O3tzd7XM2SwwcPHiA2NhZ8Ph/NmzeHv78/BAIBaJpGcXExGIZhl3VevnwZWVlZCA4ORmhoKGiaxv379xEbGwsACAgIQFBQUJWHAk3TSEpKwu3bt6FQKODr64uQkBAYGRkBeNayV6vV4PF4MDExwY0bN5CamgpXV1e0b98eJiYmVWzOzc3FjRs3UFBQACcnJ7Rt25ZN7VFaWgqlUgng2fWztrYGRVHsSjEzMzM2FYdKpQLwLIOngYEB5HI57t27h/j4eBgaGiIkJARNmjSBgYHBS+fCwMAAly5dQk5ODpo3b44WLVpofS4wRVGws7PDqlWrMGfOHMyYMQO7d++uksZEG9A0jaNHj6Jbt246y2TK8f/oxQojmqYxc+ZMmJmZYdGiRdUWO0IIHj9+jGHDhmHhwoUYMmRIjQpneXk52rVrh8aNG8PPzw/u7u44f/48G/nd398fACCRSPDtt9/i1q1bGDx4MJRKJQ4fPoxBgwZh3rx5qKiowNy5c3Hjxg24u7vD29sbt2/fRmFhIUxMTHDmzBls2bIFkZGRGDx4MAwMDHD8+HHY2dnhzz//hKGhIdRqNbZu3Yr169djwIABsLKyQkREBBo3boyVK1fC2NgYX3zxBS5dugSFQoHRo0dDIBDAwMAAe/fuRZMmTbB27VpYWVmBEILLly/jiy++QLNmzdCsWTPcuHEDT548werVqxEQEID//e9/2LNnD4RCIbp27Yrly5fD0NAQn3zyCQQCAf744w8wDIMff/wRhw8fhqurKzZu3Ag7OzvMmzcPjx8/xuDBg1FaWoqIiAh8+OGHmDZtGkpKSjBnzhzcunUL3t7ecHFxwf3791FQUAArKyucPXu2xtaCE0JQUFCAkSNHolu3bvjmm2+0KtQZGRno1asXtm3bhrZt23Lddl2jlezvOoZhGLJ06VIyfPhwQtN0tctRq9Vk1qxZZNy4cUSpVGrRwldTVlZGgoKCSGhoKCkqKiIMw5DMzEzi6upKFi1aRAghhKZpsmrVKmJvb09u3LhBGIYhDMOQY8eOEWtra7J//37CMAxRKpVk0qRJxNLSkmzYsIGUl5eTx48fkwEDBpDY2Fji7e1NNm7cyO6v+UwmkxFCCLl69SqxtbUlGzZsIDRNE4ZhyMOHD4mzszNZuXIloWma0DRNFi5cSIRCIQkPD2e/d/36dWJjY0OWLVtGaJomOTk5JDg4mEycOJHIZDLCMAyRSCSkf//+pGPHjkQsFhOVSkUmTpxIWrduTcrKygjDMCQ9PZ24u7sTd3d38vTpU8IwDBGLxaR///4kLS2N0DRNfvvtN+Lk5ETu3btHGIYhNE2TTZs2ETs7O3Lr1i3CMAxRKBRk7NixxNrammzdupVIJBISExNDBg4cSIqLi2v0mjIMQ06fPk38/f1Jenq6Vsv966+/SPv27UlZWZnWyuWoPnrhdKMoCj4+PsjKykJFRUW1yykrK8PFixcxZsyYWg2q26pVK1haWrLTYRwdHVkXhEwmw969e+Hv74+goCB2lL99+/aws7PD33//DbVazb7v5OSEYcOGwdTUFL6+vti5cyccHR1haWmJ7du3IzIyEgUFBfDx8UF4eDiEQiEIITh48CB4PB66devGRoJq3LgxfH198c8//0CpVLI+WgsLC3Ts2JGNkRkUFIQmTZrgyJEjUCgUuHr1KhITEzFo0CB2pZWxsTH69++P27dvIyYmBnw+HwMGDEBSUhISEhIAAJcvX0aLFi1QVlaGq1evAniWf8nGxgbOzs6oqKjA/v37ERwcDB8fHzZ/UpcuXcAwDI4fPw4ArF2urq4YMmQITExMEBAQgPDwcFhYWNTotaQoCu3atYOVlRWuX7+uNd+nQqHAoUOHMGDAAJiammqlTI53Qy98ngDg7e2NgoICiMVimJmZVauM/Px8yOVy+Pn51WqXSCOcANhcQJqAwEqlEhkZGQgLC6sSPUcoFMLOzg6ZmZmQy+WsX9Le3p71h/F4PJibm4MQgvXr12Pp0qX45JNPYGxsjLCwMHz22Wdo0aIFKIpCcnIyysrK8Omnn1YJXpyZmQkzMzMolUp2aoxQKGSnh2n+t7GxQWxsLFQqFZ48eQK1Wg0XFxf2OxRFwdHRkfXvtm/fnhWZEydOoHnz5jh37hw+++wzZGdn48iRIxg6dChOnjyJHj16QCAQQCwW4+nTp8jOzsaIESPYstVqNQwNDZGXl1dFrBwcHNjzojkXtYFIJEJAQADi4uK0VmZKSgpiY2OxcOFCrrteR9Ab8dREK8rIyICrq2u1ytDceLVdOV88XuX/eTwehEIhVCpVFWEgz6M4CYXCKqP2r7M9JCQEO3bsQE5ODs6ePYvff/8do0ePRmRkJBo1agQjIyPY2NiwfsvKx6Eoqkprh7yQIbOyLZqQcBRFsQNClb9DCGFF2NbWFp07d0ZkZCSGDx+O0tJStGrVCn369MGOHTuQnJyMBw8eYMqUKezItqGhIVq2bIm1a9dW8ScyDPNSPAFdRo/n8XhaW/FGCMGRI0fg7+8Pb29vrZTJ8e7oRbcdeNZ6c3d3R0xMTLW7Svb29jA0NKzxuXpvg5GREUJDQ5GamoqysjIAz26moqIiZGZmVhkNfx25ubn4/PPPQdM0PD09MWXKFCxbtgw5OTlISkpiu5pSqRQSiQR2dnaws7ODra0toqKisHz58iopgKVSKZsaBHiWDuLJkycIDg6GUChkE7U9fPiwynmMjY2FqakpmyaXz+dj0KBBiI+Px6ZNm9CiRQuYm5ujT58+KC0txcaNG2Ftbc22YE1MTNCiRQtkZWXB2NiYtdPc3BxLlizB2bNn60SrTKlUIi4uTmsRj8rKynD48GF2kI6jbqA34ikQCBAQEICHDx9W+4lvYWGBsLAw7Nu376V84dpG41es/LemRafZGIaBQCDAZ599hpKSEoSHh0MikUAsFmP9+vUwNjbGRx99BIqiqrQGX2wZKpVKHDt2DFFRUWyK4cTERNjY2LBL/IYPHw5vb2+sXr0aOTk5UCqVePjwIf744w+0bt26ig+4oqICf//9N0pLSyGRSLBz504UFRXhww8/hEAgQIsWLTB06FD8+eefiI+PZyNQ7d27FxMnTkTjxo0BPGslt27dGpaWlti1axd69eoFiqLYHERbt27Fe++9VyXj54wZM5CVlYXw8HCUl5dDKpUiIiICly9fRkhISJVzCaDK37UBeZ7RMj8/H2FhYVop79q1a5BKpejWrVudeDhwPKdGh6Nqmf3795O2bduSioqKau3PMAy5ffs28fHxIadOnSIMw2jZwv8nMTGRDBkyhLi6upKmTZuS7777jmRmZpIxY8YQDw8P4u/vT6ZNm0aUSiWhaZqcPXuWDBkyhPTp04f07t2bjB49mh19Ly8vJ1OnTiV+fn7Ey8uL9O7dmxw/fpw9VkVFBVm+fDnp27cv6devH+nTpw/p378/OXr0KDs7gWEYkpCQQKZMmUK6d+9O+vXrRwYNGkR27NhRZebBwoULiaurKwkPDyfjx48nvXr1Ih07diR79uwhKpWKLauoqIh8//33pGfPnqRv376kZ8+e5LfffiNisbjKeVWr1eSTTz4hXbt2JRKJhN3/119/Jf7+/uTJkydVzhtN0yQyMpIMGjSI9OrVi/Tv35+MHTuWXL9+nR2d//DDD4mvry9p1KgR6dOnDzl9+nSNXccXKS4uJr179ybz588narX6nctTKBRkzJgx5KuvvtJKeRzaQy/meWrQzNE8evRotX1DNE1j1apV2LlzJ3bs2MGOcGsblUrFBgYBAENDQ5iZmaGkpIRtkRoYGLCTxwkhkMvl7GwCMzMzNokZwzAoKSmBWq1myzczM6sSJIU8D6cnlUoBPOsCvyq4r0qlQnl5OWiahpGRUZWJ7wCwaNEibNiwATExMaAoCnK5HEKhEGZmZi+VpUl0p1Kp2N/34qoqQgib973ywJmmhWxlZfXKfSqfC80KM825KC4urtJzMDc3/0/XhjaQSqX49ttvcefOHezbtw+Ojo7vVB4hBLGxsRg6dCj279+PZs2aaclSDm2gNwNGAODu7g5TU1PExMSgcePG1RI9Pp+PadOm4enTp5g0aRLbbdX2UkqBQAB7e/uX3rezs3vl9ymKgpGR0StFgMfj/edqFk1Ai/9amSIQCN4owC5FUTAzM/vXmQ18Pr/KqPzrynnV1JvX/VbNPv92Lt4lVXJ1IIRALBbjp59+wsWLF7F9+3Y4ODhopdzdu3ejefPmCAgI0IKlHNpEb3yewLMbrnXr1rh48eI7lSMSifDLL7+gV69emDRpEvbu3QulUllnBpF0gVqtxpIlS3Ds2DGUlpZi/vz5Wp2KU18hhCA5ORmTJ0/GrVu38Oeff6Jp06Za6a3k5OTgyJEjmDhxYq3OO+Z4M/TqivB4PHTq1AmrV6+GRCKp9nxPTWvoxx9/hK+vLxYsWIBz587hiy++gI+PT4MM6MHj8dCrVy906NABwP/P22yoEEIgkUhw4MABrFixAi1btsSaNWvg4uKiFeEkhODAgQOwt7dHx44duYGiuoguHK01SWpqKvHx8SH379/XSnk0TZOYmBgyatQoEhAQQJYvX07y8vLYZY4cDQuGYYhcLifnzp0j/fr1I8HBwWT79u1EKpVqtT4UFBSQli1bkvDwcK6e1VH0rgnl4uICPz8/REVFaaWbzePxEBgYiO3bt2PhwoU4cuQIevXqhZUrVyIrK6vGpzRx1A3I84GtqKgojBs3Dp9++imaN2+O48ePY/z48VrNrEkIweHDhyEQCNC/f3+u1VlH0avRdg1r167FkSNHEBERodVo2+T5wMCJEyewefNm5OfnY+DAgRg1ahT8/f3ZNAxcZdcPyPP5snl5eThz5gx27NiB7OxsDBw4EJMmTYK3t3eNpLouLi5Gv379MHnyZHz44Ydcfaqj6KV4JiQkYODAgThw4ECNTDXStEKuXr2K7du3486dO2jSpAmGDRuG9957D05OThAIBFylr4doBLO8vBx37tzB4cOHce7cOZiZmWHUqFEYMmRIjWbNJIRg8+bN2Lp1K06cOMFOVeOoe+ileCoUCgwbNgydO3fGF198UWOVjzxfr52amoojR47g6NGjKCgoQPPmzdG3b1+0b98ebm5u7JI67iaom2gEs6SkBDExMTh58iTOnTsHmUyGsLAwjBgxAq1bt4aFhUWNXkPyPB5o3759MX36dEycOJGrM3UYvRRPQgj++usvbNmyBSdOnKjxaDqaUyiTyfDo0SNERkYiKioKOTk5aNSoEbp27Yp27drBz88PFhYWXKtUx5DnSzhlMhkyMzNx9+5dnD17Fvfu3YNarUbr1q3Rr18/tGvXDvb29rUWYIRhGCxfvhzHjh3DkSNHajx8Hse7oZfiCQBZWVno2bMnfv/9d3Tt2rVWxUrTrU9NTcWlS5dw7tw5JCYmgmEYBAYGok2bNmjXrh0aNWoEGxsbdg4fJ6jaR1O9NV3xnJwc3L17F9euXcPt27dRWloKW1tbtG/fHu+99x6aN28OW1vbGvFl/hfp6eno378/fvnlFwwePJirD3UcvRVPhmEwd+5ciMVibNq0SWfRaAghoGkaRUVFSE5Oxs2bN3Ht2jV2grmjoyP8/f3RunVr+Pv7w8vLCyYmJuzSS+4Gejs0rhSlUom8vDwkJSUhJiYG9+7dQ1JSEkpKSuDk5ITmzZujc+fOCA4Ohru7u87Pt1qtxvz585Gamopdu3ZVWVrLUTfRW/EEgNu3b+P999/H4cOHaz3A8esghECtVqO0tBSpqamIiYlBTEwMHjx4gIKCAjAMA1dXV/j4+MDb2xv+/v5sC9Xc3Pylh0Bd+E21SeXqqmnhFxcXIy8vD4mJiYiPj0dCQgJSU1NRUVEBIyMjeHl5oWXLlmjevDn8/PzYgNF15dwRQhAdHY3x48cjPDy8VpIOcrw7ei2eSqUSY8aMgZ+fH3755Zc6uTJIM1ihVqtRUFCAJ0+eIDU1FY8fP0Z8fDwyMjJQUlICMzMzWFlZwdHREV5eXmjUqBFcXV3h5OQEe3t7mJqawsDAAHw+H3w+X6eBgN8FTXWkaRpqtRo0TUOhUKCoqAi5ubnIyclBRkYGMjMzkZaWhry8PJSUlMDAwAAuLi5wc3ODn58fAgIC2ARwRkZGbDe8Lp4TiUTC1tPFixfrxGXA8fbotXgSQnD69GnMmTMHJ06cgIeHR528eV6FprsvkUhQVlaGJ0+e4MmTJ8jIyGD/zs/Ph0KhAE3TMDAwgJWVFezt7WFvbw8HBwc4ODjAzs4OVlZWsLS0hKmpKUQiEYRCIYRCIZuatzYGsNRqNdRqNVQqFRQKBbvJZDKUlpaipKSEbUHm5uaioKAAeXl5KCwshFQqBY/Hg4GBAczNzeHu7g4PDw94eHjAzc0NjRo1gq2tLfv76ss1Bp5d5y1btmDdunU4cuQIXF1d65X9DRm9Fk/gWZiwUaNGoWXLlvjuu+/q9VNdc6kYhgHDMFCpVCguLkZxcTHEYjEKCgqQnZ2NnJwc5OTkoKioCGVlZZBIJJBIJFAqlWyaDI2ICgQCCAQCiEQiGBkZwdjYGCYmJuxnfD6fbdEKBALweDwIBAKo1WrWhhdfVSoVpFIpKioqIJVKIZfLoVQqWV+kXC6HXC6HSqUCn8+HiYkJTE1NYWpqCisrKzg4OMDJyQnOzs5wdHRkxd/GxgYmJibg8Xhsy7o+Cw0hBElJSRgyZAh++OEHjBw5sl7/noaG3osnAJw8eRJz587FkSNH4O3t3SAqqMYVoBGtysJVWloKsVgMiUQCqVQKmUzGxs+s/KoRQ0IIG1VKoVDg1KlTCA4OhpubGyuslV0GhoaGbCxQTeg4jTAbGxvDwsICFhYWMDMzg0AggKGhYZXXuuheqQmkUik++ugj8Pl8bNq0Saur4ThqHr2KqvQ6unbtiqZNm+KPP/7AihUr6nXr803RZOF8m1kGlaf1vPieBoVCgY4dO2Lu3Lno27fvS8d88e+G8KCqDgzDYNeuXXj06BEOHTpUJTMqR/2gQTzihUIh5syZg5MnT+LevXsNOi7nv6HpBmu6xTwej21NVt4033nx/cr71fcudU1CCMHDhw+xYsUKfPfdd2jUqBF3ruohDUI8KYpCy5Yt0bdvXyxcuJBNRcHBoQuKi4sxf/589OzZE4MGDeKEs57SIMQTeJZeYvbs2UhOTsY///zDtT45dIJKpcKSJUugVCrx7bffcqmE6zENRjwBwMPDA7Nnz8ayZcuQkZHBCShHrcIwDPbu3YuIiAgsXboUdnZ2XKuzHtOgxJOiKIwcORLe3t5YuHAhlEqlrk3iaCAQQnDr1i0sWLAA3333HUJCQjjhrOc0KPEEnqXc/emnn3Dp0iVERERwrU+OGocQgoyMDMyePRvDhw/HyJEjG8x0LH2mwV1BiqLg7++POXPmYMGCBUhKSuIElKNGKS0txezZs+Hh4YF58+axGQc46jcNTjyBZ3mJxo0bh5YtW+Lrr79GeXk5J6AcNYJMJsOPP/6IkpISLFu2rNoZXTnqHg1SPIFnOd5/+uknZGZm4o8//uASuXFoHaVSiRUrVuDSpUtYu3at1tISc9QNGqx4AoCrqyuWLFmCv/76C0ePHgXDMLo2iUNPUKvV2LJlC3bu3Ik//vgDAQEBnHDqGQ1aPCmKQqdOnfD555/j22+/xcOHD7nuO8c7Q9M09u7di1WrVmH58uVo164dJ5x6SIMWT+CZ/3PChAno3bs3Zs2ahaysLE5AOaoNwzA4fPgw/ve//+Gnn35C7969uZF1PYW7qni29v3777+Hvb09Zs+ejdLSUk5AOd4ahmFw4sQJfP311/jmm2+4KUl6Dndln2NpaYmVK1eioKAA33//PWQyma5N4qhHaITz888/x+eff45x48Y1iOhdDRlOPJ9DURRcXFywbt06XL9+HYsWLYJcLte1WRz1AIZhcPToUcydOxdz587F5MmT2YyoHPoLJ56VoCgKAQEBWL9+PQ4dOoTff/8dKpVK12Zx1GFomsbBgwfx5Zdf4ssvv8SUKVO4YB8NBE48X4CiKLRq1Qpr1qzB1q1bsX79ek5AOV6JWq1GeHg4vvnmG3z77beYNGkS1+JsQHBX+hVQFIWuXbti9erVmDlzJvh8Pj7++GOuRcEBAGxakk2bNuH333/HokWLMGTIEM7H2cDgxPM18Hg89OjRA6tWrcLs2bPBMAw++eQTbl0yB6RSKRYvXoyDBw9izZo16NmzJzeq3gDhxPNf4PF46NWrF1atWoU5c+ZALpdj5syZXL6ZBgohBCUlJfjuu+9w48YNbN26FW3btuUmwDdQOPH8D3g8Hnr37g2hUIgZM2agoqICX375JYyNjbmbpgFBCMGTJ08wZ84clJaWYteuXfD19eXqQAOG62u8ARof6JYtWxAREYGvvvoKZWVl3ET6BgLDMLh37x7ef/99CIVC7Ny5kxNODk483xSKotC2bVvs2LED9+/fx/Tp05Gbm8sJqJ5D0zSOHDmCDz74AO3bt8emTZvg7OzMCScHJ55vA0VRCAoKQnh4OEpLSzF+/HgkJiZyAqqHEEIglUqxevVqzJs3DzNmzMAvv/wCc3NzTjg5AHDi+dZQFAUPDw9s374djRs3xpgxY3D58mUunJ0eQQhBbm4uZs+ejR07dmDdunXcTAuOl+DEsxpQFAVbW1ssX74cQ4cOxUcffYRdu3ZBqVTqXSuUEAKGYdhN8/te9b4+/HZCCO7du4cxY8YgKysLf//9N7p16wYej8e1ODmqQBF9qPE6ghACmqZx+PBhfPfddxg6dCjmzZsHCwsLvbnRlEolVq1ahadPnwJ45gM8cOAA2rRpA09PTwAAn8/HlClTEBgYWG9/t2bi+/79+7FgwQL0798f3377LSwtLevtb+KoYQjHO0PTNLl+/Tpp3749GTx4MElISCAMw+jaLK2gVqvJtGnTCIDXbk5OTiQtLU3XplYbhmFIfn4+mTVrFvHz8yM7d+4kcrlc12Zx1HG4brsW4PF4aNOmDfbt2wcLCwuMGDECkZGRUKvVujbtneHxeBg8eDBEItFrv9O5c2e4uLjUolXag2EY3Lx5EyNHjkRsbCx2796NsWPHcgshOP4TTjy1BEVRcHJywtq1azFp0iTMnDkTCxcuhFgsfq0vkNQDPyFFUQgNDYWPj88rP+fz+Rg0aFCdDIhBnrtVXnWOCSGoqKjAhg0bMH78eLRu3Rp79uxB8+bNuW46x5uhy2avvkLTNLl48SIJCwsjAwYMIA8ePCA0TVf5DsMw5M6dO+Tx48d1vovPMAyZP3/+K7vsnp6eJCsrS9cmvgTDMCQ3N5d8++23pKSk5KXP4uPjyahRo0hwcDCJiIggKpWqzl8HjroF1/KsAXg8Hjp27IgDBw7AyckJo0ePRnh4OGQyGdvaFIvF+PLLLzFt2jTk5eXV6RYoRVEYMGAAjI2NX/qsa9eucHR01IFV/45cLsf333+PpUuXIjw8nJ0RoFAosHPnTgwbNgxCoRAHDx7EgAEDYGBgwLU4Od4O3Wq3fsMwDJHL5WTPnj0kMDCQjB8/niQnJxOapsnq1auJgYEBoSiKjBs3jpSXl+va3H+lvLyctGrVqkqr09DQkBw9erTOtdhUKhVZunQpMTQ0JACIu7s7iY2NJcnJyWTixIkkMDCQ7Nixg8hksjpnO0f9gRPPWoBhGBIXF0dGjx5NgoODyYoVK4iHhwcrQgYGBuSnn34iSqVS16a+FpqmyU8//UQoimLt9vX1JQUFBbo2rQoMw5CIiAhiZWVVReg7d+5MgoODyahRo0h8fPxLbhQOjreFE89agmEYIpVKyYYNG4ilpeVLvkNTU1MSHh5eZ29qjY/W3NyctXnWrFlErVbr2jQWhmHI/fv3iZeX10vnl6IoMn36dCKRSLjWJodW4HyetQRFURCJRPDw8HhlWg+JRIJ58+bh2rVrddL/SVEUfH190aJFCwDP0jUPHDiwzkRPJ8+XVM6YMQNpaWmv/Dw6OhoSiUQH1nHoI5x41iIlJSX4+eefUVFR8crPc3JyMH36dCQnJ9dJATU2NsbgwYMBAH5+fggJCdGtQZWoqKjAvHnzcOXKldd+5969e1i7di0Xh4BDK9S9yXl6CsMw2L59O27evPmv33v48CFmz56N8PBwWFlZVWsEuLLwkkpr0QFAoVBAoVBApVL950YIeemVpmmIRCI4OTnh8uXL4PF4MDAwAJ/Pr7IJBIJ/3QwNDSESiV5aM/66v/8NlUqF1atXY+/evf/60GEYBps3b8aoUaMQGBj4VueUg+NFuLXttYRKpUJ4eDiioqLw6NEjZGZmQiKRvLILz+Px8Omnn2Lp0qUwMjKq8plGwCqLXEVFBYqLi1FUVMS+lpSUQCwWo7S0FKWlpRCLxSgvL4dSqYRarQZN0+zGMAxomgZFUeDz+TAwMGBFUfMej8djXzMyMuDg4AChUMjar1arQQiBWq1my9P8rSlDs2nKFggEMDY2hrm5OSwtLats1tbWsLa2ho2NDaytrWFpaQlDQ8MqAkxRFBiGwb59+/Dxxx+jvLy8yrni8/kwMTGBo6Mj/P39ERoaijZt2qB169awtLSssWvN0TDgxLMW0QhfRUUFcnNz8fjxY9y6dQt37txBcnIycnJyIJfLQQiBSCTCzz//jMGDB0MsFiM7OxsZGRnIyMhAdnY28vPzUVxcjPLycjAMA6FQCKFQCJFIxIqPhYUFK0YWFhYwMzODmZkZTE1NYWRkxH5fJBJBKBSyoqlJZkZRFLtp/geA+/fvw8/PDyKR6KWWLXk+j5U8j7pE0zSUSiXkcjnkcjkUCgXkcjmkUinKy8tRXl6OsrIyVuQ1W3FxMSoqKtiWslqthpGREaysrGBrawtHR0e4ubnB2NgYS5cuRVZWFiiKgrW1NXx8fNCyZUu0atUKTZs2hYeHB0xMTGBoaMjN5eTQGpx46gjyPIqPVCpFaWkp7t+/j6tXr+L06dOIj48HIQSmpqawsLCAQCCAra0tHBwc4OzsDHd3d7i6usLBwQE2NjYwNTWFiYkJTE1NYWxsXGUQpzrd4DexXVvlvVj9KouwQqGARCJBRUUFJBIJxGIx8vPzkZOTg8zMTCQkJCAmJgZ8Ph9isRhyuRympqYICAiAv78/mjRpAjc3N3h4eMDZ2RnGxsYwMjKq8kDg4KgunHjWMJrTq1arUVRUhJycHCQkJODhw4d4/PgxUlNTIZPJ2O6rl5cXfH194e3tDUdHRxgaGsLb25ttHWq6qw0djbhWVFSAx+NBLpcjPz8fWVlZyMjIQEpKCpKSkpCdnY2Kigqo1Wo4OTnB29sbAQEBaNq0KTw9PeHg4ABTU9OXWtccHP8FJ55aRjO4Ul5ejtTUVMTExODOnTt49OgRSkpKoFQq4ezsjCZNmiAoKAhBQUFwdHSEra0tLCwswOfzuRv5HancepXL5SguLkZ+fj4SExPx8OFDxMfHIyUlBVKpFObm5mjUqBFatmyJZs2awd/fH3Z2duxgFgfH6+DE8x2ofJMWFxcjKSkJ165dw82bNxEbGwtCCBwcHNCiRQu0aNECTZo0gYeHB+tz5G7O2kfzcJNKpcjPz0dSUhIePXqE27dvIyUlBRKJBK6urggJCUGHDh0QHBwMFxcXNgUH90Dj0MCJZzUgz5ODPXnyBNeuXUNUVBQeP34MpVKJgIAAtGnTBm3btkXjxo1hb2/Ptia5G6/uoan+DMNAIpEgIyMD9+/fx/Xr13H37l2UlJTA2dkZnTp1QufOnREcHAwrK6s6sziAQ3dw4vkGaE6RTCbD48ePcfr0aZw5cwbZ2dlwcXFBly5d0LFjRwQEBMDKyorzS+oBGjHNzMzEjRs3EBUVhZiYGBBC0K5dO/Tt2xdt27aFnZ0d92BsoHDi+S9ounhpaWk4evQojh07huzsbAQHB6NPnz7o0KEDPD09uS6dnqOZdlVUVIQHDx7gxIkTuHTpEpRKJdq3b49hw4ahdevWXFriBgYnnq+API8yfvnyZezYsQO3b9+Gj48PhgwZgu7du8PFxYVrXTZgGIZBaWkp7t69i8OHD+PixYswNTXFiBEjMHToULi7u3Ot0QYAJ56VIISgtLQUx48fx+bNm1FYWIhBgwZh+PDhCAwM5CZZc1RBsxggPz8fZ86cwe7du5GWloZ+/fph8uTJ8PX1rTJ7gkO/4MQTz24CmUyGkydPYuXKlZDL5ZgwYQKGDBkCZ2dnrY+Kv3jKa/rmqu3jNUQ0dSg6OhqbNm3C3bt3MXjwYEybNg0eHh7cOddDGrx4MgyDhw8fYsGCBUhISMBHH32EsWPHwsbGpsYq/JUrV/Dbb7+hrKwMc+bMYSMVMQyDiooKGBkZaTWhWm5uLmbPno38/Hy0adMGixYt0lrZHFXR+Mlv3ryJFStWIDExEbNmzcLYsWNhbGzMiag+Ub0woPUfTYqMbdu2ET8/PzJ16lSSnJxcK4FypVIpefjwIbG1tSXr1q1j34+PjyehoaEkIiJCq3aoVCry5MkT0rNnTzJo0CCtlVsfYRiGpKenk5SUlBq/1hKJhOzatYsEBweT999/nzx58oQLxKxHNMhZ2uT5gNBPP/2EpUuX4qeffsLq1avRqFGjWmkZGBkZwcHB4SV3gKWlJd577z24u7tr9XgGBgZwdHT819zrDYmvvvoK06ZNg1qtrtHjmJiYYMyYMfjnn3+gUqkwatQoPHjwoE7GauV4expkPE+FQoFffvkFUVFR2LFjB0JDQ2tUNMnzqS7Z2dmQSCSwtrZ+5Xfs7e3x22+/vfS+QqFAVlYWFAoFLCws4ODg8MpJ2jRNIysrC1KpFA4ODv8ZD5Q8H/AoLi5GQUEBeDweHBwcYGFhUWU/jf25ubkQi8UwNDSEo6MjTExMADzzoZLnGUHz8vIAoEo5L4pF5XOhsVOtVuPp06dQKBRwdnaGmZnZSzaUl5cjNzcXDMPA3t6e/X2vEqO8vDwUFxfD1taWnYup+Z4mXJ6mXM1vqAkoioKXlxc2b96Mn376CVOmTMHOnTvh5+fHdeHrOQ1OPAkh2L17N44fP44dO3agRYsWNV6JZTIZfvvtNxw5cgS+vr4wMTFBs2bNqkQ0f/ToEX7++WcUFxdj5MiR+Pjjj0EIQXp6OubNmwelUgkLCwsUFxfD0tISixcvBo/Hw9y5c1FUVISQkBDY2NggKSkJWVlZKC4uxvfff48+ffq8dsBLqVRiyZIluHjxIhwdHdm4oF9++SX69u0LHo8HQghKSkqwaNEi3L59Gy4uLigrK0NJSQmmTp2KMWPGgGEYRERE4Pfff4etrS0IISgoKMDMmTMxePBgyOVyfPvtt4iPj4e9vT1atWqF2NhYJCYmoqKiAsuWLcPNmzcRFxeHhIQEiEQibNq0CZ6enmzMzlOnTmHZsmWwtLQEn89Hbm4uPv74Y4wePRpqtRo//vgjHjx4AGtrawwdOhQXLlxAWloasrKysHTpUnTv3h1yuRyff/45rl69CqVSiWHDhoGiKEybNg29evWqsetPURTMzc3x888/44svvsDcuXOxZ88eLqZofae2/QS6JjMzkzRt2pTs3r27VvxPDMOQzZs3ExsbG3L06FGiVCpJeXk5+eqrr4hAIGB9nnK5nCQkJBB/f38yb948QtM0YRiGfPHFF6RLly6kpKSE0DRNnj59Sjp06EAuXbpElEolSU1NJV27diUuLi7kxIkTbPkzZswgnp6eJCEhgRBCiEKhIAMHDqzi8ywqKiIdO3Ykly5dIiqVikilUrJ8+XLi4+NDnjx5QgghRKlUkhkzZpCAgAASFxdH1Go1KSsrI7NmzSLDhg0jCoWCXLp0iTg5OZF169YRuVxOZDIZ+f3334mLiwu5desWoWma5OTkkM8++4yYmJiQXbt2EYVCQbKzs0mLFi2Ir68vOXbsGFGpVCQtLY14eXmRn3/+mTAMQxiGIbdv3yZubm5kyZIlRCqVErlcTrZv304cHR3JhQsXCE3TJC8vj3zzzTfE3NycbNq0ichkMiIWi8nAgQNJjx49SEVFBWtH//79SYcOHUhaWhrJzMys1bTPOTk5pE2bNmTjxo2c/7Oe06B8noQQREZGwtraGgMHDqyVbpNUKsVff/2FwMBAdO3aFQKBACYmJhgxYkSVKPFCoRBOTk4QCAQv7Z+VlYW4uDjI5XI4OTlhy5YtaNq0KQQCAZydnSESieDu7o6OHTuy5Y8fPx7FxcU4fPjwa20zMzPDunXr0KJFC0ilUiiVSoSFhaG4uJgNbJKWloa///4bgwYNYuctmpmZ4ZNPPkHnzp1BCMHWrVthamqKYcOGsQGWhw0bBj6fjz179oCiKDg4OMDMzAw2Njbo0qULDA0N4eDgAH9/f/D5fLRv3x4GBgZwc3NDo0aN2KWQhBBs374dhBCMGTOGDeI8YMAAWFhYIDw8HABgZ2fHxj7t1KkTRCIRzMzM0LZtWyQmJkIikbBuCU0ZLi4ucHV1hampaY1c+1fh4OCAjz/+GOHh4ZBKpbV2XA7t06C67QzD4NatW2jfvj2MjY1r5ZhSqRQpKSno1q0bO2BDURScnJwgFAr/c/9p06YhMTERw4cPh7e3N9577z0MHz4c5ubmVb7n6OjI/iaKouDi4gJTU1PExMS8tmyKovD48WN88803kMvloCgKFRUVKCsrY2/sJ0+eoKioCL6+vlX29ff3h7+/PxQKBR48eICKigosXryY9cWq1WpUVFTg/v37IISwDyozM7MqvlJDQ0PY2NiwDw1NllGFQgHg2QPv3r17kMvlWL58OTuFi2EYiMViPHz4EDRNs++bmZnBysqKLcvc3BwKhQI0Tf/nua4NKIpCWFgYli5divz8fHh5eenaJI5q0qDEkzwfdPDx8anVY2ry+FRu6b6Y+OxVUBSFgIAAHD58GA8fPsSpU6ewb98+bN68GX/99Re6dev22vI0f/9bpsgLFy7g008/xfz58/Hhhx/CxMQECQkJ6Nq160tpNf5toQDDMLCxsUHv3r2rDGT1798fFhYWL/2myvFKKYr6z3PBMAwsLCzQq1evKi3zvn37wsTEpIptldOIaP4ndWx029jYGDweDzKZTNemcLwDDarbzuPx4ObmhsTExFo7ppGRETw8PJCdnV2lNVVUVPTK5G+VIYRg7969KCkpQVhYGH788UccPnwYIpEIf//9d5XvlpaWsuUDz0abpVLpSy3GymVfu3YNNE1j2LBhsLa2ZvMYVcbV1RVWVlZITU2t8n5iYiJWr14Nmqbh7+8PhmHQqlUrdOvWDd26dcN7770HuVzO5haqLhRFITAwEAzDICQkpEr5hBA8efLknVaAaR4OtSmwubm5IITAxsam1o7JoX0alHhSFIXu3bvj6tWryMzMrJUbxsTEBKNGjcLDhw9x584dMAwDlUqFI0eOvJTt8VUcPHgQhw8fZoXWzMwMIpEIDg4OVb4XGxvLdmGVSiUOHjwIkUiEQYMGvbZsV1dXqFQqxMbGstN37t69W8Uub29v9O/fH0ePHkV2djYYhoFUKsXatWuRlpYGQ0NDTJw4EQUFBYiMjIRKpQLDMHjy5AkWLFjwzktbKYrCuHHjIJPJEBERAaVSCYZhkJOTgwULFlSrO25iYgK5XA6apnH+/Hl89913NT7nUwNN0zhw4ABCQkJeOWWNo/7QoLrtFEWhXbt2aNy4MZYvX44lS5a8kd/xXeDxeJgyZQoSEhIwY8YMdOzYkc12aWpqioiICBgYGKBr167YsmULcnNzcenSJfzxxx/46KOP0L59e2zfvh0PHjyApaUl4uLi0KhRI3z88cdVjtOkSRP8/fffOHDgAHJycnD37l0sWrQIQUFBKC4uxurVqxEXFwcAWLhwIaZNm4ZBgwbh1KlTmDdvHiIjIyESiZCWlgYDAwPs3r0bQqEQ/fv3x8KFC/HVV19h0qRJaNq0KfLy8qBUKrFixQoYGBigW7du+OWXX7By5UpERUXB3NwccXFxGDhwIHr27AmVSoU///wTFy5cQF5eHn777TdMnz4d+/fvx+3bt1FaWoply5bho48+ws6dOxEfHw8ej4fFixdj1qxZaNeuHZYuXYo1a9bg6tWrsLGxQXx8PDp16oTBgweDpmns3LkTJ0+eRHFxMZYsWYKZM2ciOjoahw8fhkQiwcKFCzFr1iw0btwYffv2xfz58zF79mwkJiZixIgRWl0O+zoIIbh+/ToiIiKwdevWWjkmR83R4Na2E0Lw8OFDjB07Fh9//DGmTZv20gh3TRxTqVQiPj4eRUVFcHBwgKenJ27dugWlUglra2t4eXnh/v37bEvKzMwMLVu2BI/HQ0FBAZsoztraGk2aNGHXSSsUCgwZMgQmJib4888/ERcXh4qKCnh5ecHNzQ08Hg9SqRTR0dFs60ooFKJ169YQiUSQyWSIi4tDaWkpbG1t4erqiocPH0KlUsHd3Z3t9iuVSiQlJSE/Px/m5ubw9/evslZbM4k+JSUFNE3D3d0dHh4e4PP5oGmajcoOAAKBAKGhoYiNjWVbuUKhECEhIXjw4AE7WCUUChEWFgZDQ0MwDIP8/HwkJydDpVLB1dUVXl5eMDAwAMMwuH//PgoLCwE8y9fesmVLPH36FFlZWex1CA0NhbW1NWiaRnx8PPLy8mBra4uAgIBaqQNxcXGYMGECBgwYgG+++YYTz3pOgxNP4FlFPn36NGbNmoXx48dj5syZMDExqZcrPiqL5/79+3VtDscrYBgGN27cwMyZM9GmTRssXry43tY3jv+nQfk8NVAUhR49emDz5s04cOAAPvroI6SkpPzryHRdRCKR4Pjx48jLy0NWVhZOnjzJjeDWIcjzGApbtmzBxIkT0atXL0449YgG2fLUoJkE/sMPP+D+/fuYNWsWRo4cWW/SKRQXF2Pr1q3sKLu5uTkmTZoEMzMzHVvWsNFMT7t37x4WLlyIlJQU/PDDDxgwYACbsoWj/tOgxRP4/9ze//zzD1asWAFTU1PMmDEDPXr0eCk4BQfHv0EIAU3TSEhIwMaNGxEZGYlevXph7ty57Dp9Dv2hwYunBvI8ncLOnTsRHh4OS0tLjB8/Hv369YO9vT1X8TleC3ke+er+/fvYvn07zp07h9DQUMyaNQuhoaE1PhjFoRs48XwBhmGQl5eHAwcOYPfu3ZDJZOjTpw+GDRuGwMBAiEQiTkg52FZmXl4ezpw5g7179yI1NRVdu3bFpEmT0KJFCy5JoJ7DiedrIM/jU166dAl///037ty5AxcXFwwcOBA9evRAo0aNOCFtgNA0jYKCAty4cQMRERGIjo6GlZUVhg4dikGDBsHLy+uVsVY59A9OPP8DQgjUajXS09MRFRWFiIgIJCUlwcvLC926dUPnzp3h7+8PMzOzN1qvzlG/YBgGSqUST58+xc2bNxEZGYk7d+5AJBKha9euGDjw/9q796gozvMP4N+9sbAsLLsuF7mKIqCgASwRrYr1Rqm3NsS7JsaYk5zU2HNsmthqtPYP29QGc6qeqm01QetpqqWxpq13vBDUSEREUOQmV2GXhWXZ+2Xe3x/pzA+qScwKgvH5nDNn3WXPzrszznefeWfmnXlITU2FUqmkdf+UofD8Bvi+rfr6epw7dw6nTp1CRUUF5HI5vvOd72DSpEl49tlnhZHQ+/qum6T/8evYYDCgoqIChYWFKCwsRHNzM4YMGYLMzExkZWVhzJgxXztSP/l2o/D0El+R6vV6lJaW4ty5c7h69SoaGhqg0WiQmJiI8ePHIzU1FSNGjIBarYZUKr1vdCUycPh+S7vdjoaGBlRUVODKlSu4fv06GhoaoFAokJycjKlTp2L8+PG9umpoHRIKzz7AL0K73Y579+6hoqICxcXFKCkpQU1NDYAvBuFISkoSxsGMiYlBUFAQnTD9mPA/diaTCe3t7aiqqsLNmzdRVlaGW7duwWq1IjAwEM888wwyMjKQlpaG6OhoobqkdUT+F4VnP2H/vX+3yWRCTU0NysrKUFpaijt37uDevXuw2WwICQlBXFwcEhISEB8fj/DwcAwdOhTBwcGQy+WQSCS04T4k/r+xx+OBx+OB2WxGa2srWlpaUF1djcrKStTU1KCxsRFmsxlarRbDhw/HmDFjMGbMGCQkJCAiIgJyuZz6rslDofB8DHouYrfbDaPRiNbWVty6dQu3bt3C3bt3UVNTg/b2djDGIJfLERUVhWHDhiEiIgIREREIDw9HREQEVCoVFAoF/Pz8nrpTYfgrd+x2O6xWK2w2Gzo6OtDY2IiWlhbU19ejoaEBtbW1MJlMYIxBKpUiMjISw4cPR1JSEpKSkoSKsudBnqdpOZK+QeE5wPh+N/62FS0tLWhpaUFdXR1qamrQ0NAAvV4Po9EIk8kEsVgMtVoNjUaDoKAghISEIDQ0VJiCgoIQGBgIpVIJhUIBhUIBHx8foZr63wl4PMHRc2R6/pHjOGEgYo/HIwSixWJBd3c3urq60N7ejtbWVrS1taGtrQ0GgwFGoxEdHR2wWCxQKBRQqVTQaDSIiIjAsGHDEBcXh8jISISHh0Oj0UAmk0EqlVJFSfoUhecg9L+rxOl0wmKxwGKxwGg0orm5GS0tLdDpdNDr9Whvb4der4fBYIDZbAbHcb3Ckr8pnEqlgkqlQmBgoFC9+vn5wdfXt9cj32XAV7b8gS7+uUwmg8fjAcdxcLvd4DhO2F3mB3t2uVyw2+2w2+2w2WzCxD/nw7Grqwtmsxl2u10IU/7R19cXarVauPc6/xgWFoaIiAiEhIRAqVTC39+/1/B4AFWSpP9ReD7B+KqtZ3i53W50d3fDbDbDbDYLocuHVWdnJ7q6umC1WoVKj5+cTidcLpcQiD2DzOPxCI/19fXQarW9zm3lTwznH6VSKWQyGWQymRDKfn5+QjWsVCqhVquFStnf318IQqVSKYyYL5FIIJFIhHsTUSiSwYLC8ynxMKuZD2G3233fbjU/2e12ZGdnY/369Zg1a5ZwLisfbPxziUQCqVT60FfbUCiSJw0NZf2UeJhw4qu8rxo2zeFwQCqVIiAggO7BQ55qdAkMIYR4gcKTEEK8QOFJCCFeoPAkhBAvUHgSQogXKDwJIcQLFJ6EEOIFCk9CCPEChSchhHiBwpMQQrxA4UkIIV6g8CSEEC9QeBJCiBcoPAkhxAsUnoQQ4gUKT0II8QKFJyGEeIHCkxBCvEDhSQghXqDwJIQQL1B4EkKIFyg8CSHECxSehBDiBQpPQgjxAoUnIYR4QTrQDSCDm9vtxtmzZ9Hd3S087+zsRFFREex2OwBAJBJh/PjxCA8Ph0gkGsjmEvLYiBhjbKAbQQYvl8uFFStW4PDhw8JrHMdBJBIJQalWq1FQUIDk5GQKT/LUoN128pWkUinmzZsHsVgMjuPAcRwAgDEmPE9JSUFcXBwFJ3mqUHiSryQSiZCZmYmIiIgH/l0sFuOHP/whfH19H3PLCBlYFJ7ka4WFheF73/veA/+m0Wgwa9YsqjrJU4fCk3wtiUSCnJwcyGSy+/42ceJExMbGDkCrCBlYFJ7koYwfPx7Dhg3r9Rq/yy6V0kkb5OlD4Ukeikajwfe///1erw0dOhTTpk0boBYRMrAoPMlDEYvFmDdvXq8DQ5mZmXRuJ3lqUXiShyISiTBu3DgkJCQA+OIUJtplJ08zCk/y0IKCgpCdnQ0AiIqKwqRJk6jqJE8tKhuecvzJ7h6Pp9eJ7/zkdrvh8Xjg8XjgdruRlpYGuVyOlJQUOJ1ONDc3QyKRQCqVQiKRQCKRQCwWP3DqeVUSIU86ujzzW6jnKmWMwWazobu7G93d3ejo6IBerxem9vZ2GAwGmEwmWCwWWCwWmM1mOBwOuFwuABACTyQSgeM4NDU1Qa1WIyAgoNf8GGMQi8WQy+VQKBTw9/eHUqmEv78/1Go1tFotgoODERISAq1WC61WC5VKhYCAACiVSkgkEqHdFLJksKPwfMIxxuDxeOB0OmGxWNDU1IT6+npUVVWhrq4OjY2NQjharVYoFAoEBgZCpVJBpVJBq9UiJCRECEN+8vPzg6+vr1BN9qwoCwsLkZaWBj8/P6Fq5R+dTifsdjvMZjO6u7thMplgMpnQ3t4OnU6Hzs5OmEwmdHV1wWQyQSwWC+0JDw9HTEwMRo4cidjYWERHR2PIkCGQy+WQyWQUqGRQofB8gvCryuFwQK/Xo7q6GiUlJSgrK0NVVRXa29shEokQEBCA2NhYDBs2DFFRUYiMjERERARCQ0OhUCjg4+MjBJJY/M27vd1uNyQSyTcOM8YY3G43nE6nELJGoxHNzc1oampCU1MTGhoaUF1dDYPBAJfLBR8fH8TGxmLUqFFITU3F6NGjERYWhqCgIKHtFKpkIFB4DmJ8H6TNZkN9fT2uXbuGixcvorKyEq2trZDJZIiLi0NKSgqSk5MRHR2NsLAwBAcHC8H4pPQz8v8N+b5Wi8WC1tZWNDU14fbt2ygtLUVVVRWam5uhVCoRExODjIwMpKenIzk5GUFBQfDx8Xkiviv5dqDwHGT43fCWlhZcvnwZ58+fR3FxMbq6uhAaGoqMjAykpqYiOTkZYWFhCAwMhI+Pz0A3u98xxmC1WmE0GlFdXY1r166hqKgIlZWVcLlciIuLQ2ZmJqZNm4a4uDihP5bClPQXCs9BgDEGp9OJuro6XLhwASdOnEB5eTnUajUmTpyIyZMnIykpCVFRUUJ19bSHAv8jYzKZcPv2bVy5cgXnz59HRUUFhgwZgqlTpyIrKwspKSkIDAz0qnuCkK9C4TlAGGNgjKG1tRWnT5/Gxx9/jPLyckRGRmLGjBmYNm0aRo0ahYCAgKc+KB8GYwwulwutra0oKirC8ePHUVxcDB8fH2RnZyMnJwdJSUm0a0/6DIXnY8Zv5GVlZTh06BCOHz+OoKAgzJ8/H9nZ2Rg5ciTkcjlt4I+Ar0rb29vx6aef4siRI/j888+RkJCAFStWYMaMGVCr1bSMySOh8HxM+NC8fPkydu/ejeLiYowfPx4vvvgi0tPTERgYSBtzP+CP8NfV1eHvf/87jhw5AqlUipUrV+L555+HVqsFQH2j5Juj8HwMPB4PSkpK8P777+Pq1av4wQ9+gJdffhkJCQmQSqW04T4GfDdJR0cHPvnkE/zpT3+C0+nEa6+9hueff566R8g3RuHZjxhj0Ov12LFjB/76179i5syZWLNmDRISEnpdTUMeL8YYurq68I9//AM7d+6EVqvFO++8gwkTJgindxHydSg8+4nH40FRURHWr18PPz8/bN68GRkZGVRpDiKMMbS1tWHHjh3429/+hpUrV+KNN96gKpQ8FArPfuByufDBBx9g27ZtWLZsGdauXYugoKAB3SBdLhf27t0LnU4HjUaD119//YG31XjUeRw8eBB3796FRqPB6tWr4e/v36fz6A9utxsXL17E+vXrERMTg9zcXERGRg50s8ggRye/9TGHw4Ht27cjNzcXv/71r7Fhw4ZBcWRXLBYjOTkZlZWV2LlzpzDoh8PhwObNm/Hhhx/iUX9HxWIxEhMT0djYiB07dsBisfRF0/udVCrF1KlTcfjwYTDG8MILL6CmpuaRlwf5dqPw7EMejwe7d+/G/v37sWfPHvzoRz8aNIMFSyQSTJkyBSNHjuz1usfjQWVlJerq6vpkHhkZGUhMTHzkz3rcRCIRoqOjsWfPHkRFReHVV19Fa2vrQDeLDGIUnn2EMYZz585h165dyM3NxeTJk/v8qhb+dCebzQa73S6Mwfko/Pz8kJeXh40bNz6wOu45T5fLdd/8+HMq7XY77Hb7V7aH4zg4HA7YbDY4nc4vfe+D5tlzPl/Wlr6gVqvx3nvvQaFQYNOmTbDb7X0+D/LtMDjKom8Bo9GILVu24OWXX+6X+5i73W6cOXMGeXl56OjogEQiQWRkJBYvXgyLxYLi4mIAgEwmw0svvQStVou//OUvqK+vh1gsxrJly+67RbDFYsG+ffvQ0dGBqKgorFixAmKxGB999BGqqqqgVCoxffp0HDx4ENevX0dQUBDeeecdjB07Vvh+er0e27dvx2effSZcTmo2m+9rv9lsxocffohTp07B4XBAoVAgJycHOTk5AIC8vDy0tLRAq9UiPT0dv/vd71BeXo60tDRs374dVqsV27dvR1VVFQBAq9Vi7ty5mDdvXp/23YpEIgwZMgTvvvsucnJycOLECcybN2/Au13IIMTII+M4jh06dIiNGzeO6fX6fvn8I0eOsOjoaPbnP/+Ztbe3s9raWrZy5Uo2ZcoUVlRUxBYvXsw0Gg3bv38/6+zsZG63mxUUFLCMjAz229/+lul0OsZxHNu4cSOLi4tjFouF2e12duLECZadnc0mTJjALBYL83g87NKlS+yNN95ggYGBbPPmzayuro7dvXuXzZw5k2VlZTGr1coYY8xqtbLly5ezsWPHsitXrjCDwcCOHDnCxowZw0aMGMHa2toYY4w5HA72s5/9jI0ZM4YVFhYyg8HAjh49ymJiYtiePXuY0+lkBQUFbNGiRSwsLIwtWLCA7dq1i7377rtsxIgRrLy8nC1ZsoQtXbqUNTY2MoPBwA4ePMgSExOZTqfr8+XNL/OtW7eyrKwsZrPZ+mUe5MlG4dkH3G43W7hwIfvVr37FOI7r88/v6upi6enpbM6cOczhcAivl5eXsxUrVjCz2cw+++wzNmTIEHbw4EHh77du3WJz585lXV1djDF2X3jybX/99deF8OTt27eP+fr6sjNnzjCO4xjHcez3v/89Cw8PZw0NDYwxxgoLC1lAQADbtWuX8L2dTidbuHBhr/C8du0a02g0LDc3V3if2+1mq1atYsnJycxgMDCO49imTZuYQqFgZ8+eZRzHMYfDwQ4cOMDq6upYamoqe/XVV1l3dzfjOI7Z7Xa2f/9+1t3d3efLm19Wd+7cYfHx8aysrKxf5kGebNTn2QesViuqq6vx7LPP9svnt7S04NatW0hJSem1i5qYmIi9e/dCoVBg7NixmDJlCg4cOACbzQaO45Cfn4/Zs2cLw7N9UwEBAYiOjhZGcdJqtbDZbHA4HGCMoaSkBA6HA88884ywWyuVSpGUlCR8BmMMn3/+OUwmE5xOJ44fP47//Oc/OHnyJEQiEWpqatDc3Cy8PywsDElJSRCJRPDx8cHy5csRFRWFpUuXIj8/H3PnzsW2bdtQWlqKJUuW9NupUCKRCJGRkdBqtbhz506/zIM82Sg8+4DVaoXL5YJGo+mXvjGHwyH0E/YkFovh6+srBM1LL72E4uJiXL9+HR0dHbhy5Qrmzp3rdZvEYnGvsUL5q6LYfw/UWCwWMMbua1fPe7sDX/R3chyHyspKFBYWClNoaCjWrVsHlUolvNfHx+e+8UnFYjF+8pOf4NixY5g8eTIOHz6M2bNn47XXXoPRaPTquz0MiUQCjUaDjo6OfpsHeXLRAaM+4OvrC6lUCpPJBMZYnweoSqWCWq2GTqfr9flmsxklJSVIT0+Hr68vMjMzERcXh0OHDmHSpEkYO3YswsLC+rQtPYWFhUEsFkOn0/V63WQy9XoeHh4OHx8fLFq0CFlZWcLrZrMZ169fR3Bw8FfOx+12o6ysDGlpaUhPT8dPf/pT5OXlYf369cjKysLixYv77kv1wHEcurq6EBgY2C+fT55sVHn2AaVSiejoaJSUlPTL54eHh2PatGm4cOECOjs7AXxR/X3yySfYtGmTcMJ7QEAAXnjhBRw9ehT79u3DwoUL++0osUgkwne/+10EBwfj1KlTcLvdAL6oRgsLC+97X0xMDP71r38JbWWMIT8/H5s2bYLH4/nKeZnNZqxduxZ1dXUQi8VQqVSYOXMm/P39hfn2h7a2Nuh0uvvOjSUEoPDsE2KxGHPmzMHHH398X9XVF2QyGbZs2QKlUom1a9ciPz8ff/jDH7Bz5068/fbbUCqVwnvnz58PmUwGrVaLxMREITw9Hg8uXbqE2tpaWK1WFBQUoLW1FZ9++ikaGxthNBpx/vx5dHV1oaysDOXl5XA6nSgsLITBYEBVVRVu3LgBl8uFwsJC3Lt3D7GxsdiwYQOOHDmCrVu34ujRo/jlL38Jj8cDm82G8+fPQ6fTITw8HNu2bcOZM2ewYcMG/POf/8T777+PvXv34he/+AX8/PxQXFyMmpoaWCwWFBQUoKqqSugekEqlkMvlWLduHT766CPk5+djy5YtSE5OxrRp0/p8eQP//+MUGhqK+Pj4fpkHebLRte19gDEGnU6H2bNn45VXXsErr7zSLyfIGwwGnDp1Crdv34ZKpcKsWbMwevToXvOy2WzIycnBunXrMH36dCE8nU4ndu3ahba2NgBf9OctXrwYx48fh8FgAADI5XKsXr0aRUVFQhUtkUiwcuVKVFdX4/z588J8lixZgrFjx8Lj8eDKlSs4d+4cxGIxMjMzYbfbcfLkSYjFYixfvhyjR48GYwzV1dU4ffo0WlpaEBYWhlmzZmHEiBHweDz44IMPUFNTI3w+fxsNkUgkjE5VVFSEmzdvwuVyISEhATNnzoRWq+2X6rq+vh7z58/Hm2++iWXLltF5nuQ+FJ59hN8N3bBhA/bv34+MjIzHtsHZbDbU1tZi1KhRKCkpwZYtW3Do0KFeFSl5OIwxmM1m/PjHP4bNZsP+/ftpOZIHot32PiISiTBv3jwsWLAAa9aswc2bNx/bwBI6nQ5r1qzB1atX8cc//hHPPffcEzGa0WBktVqxZcsW3L59G7/5zW9oOZIvReHZh6RSKd5++21MnToVL774IgoLC8FxXL/PV6PRYPLkycjNzUVcXBwWLFhAu5nfEN8t8tZbb+HcuXPYs2cPhg8fTsuRfCnabe9jjDHY7Xa89957yMvLw5tvvonly5fDz8+v3zbEB61C2ugfHsdxuHnzJt566y2hb7jnwTZCHoTCs584nU4cO3ZMOCq8ceNGYYOkjXJwYIyhu7sbBw4cwM6dOzF9+nRs3LgRoaGhtI7I16Lw7EeMMdTW1mLr1q0oLCzEihUrsGrVKgwdOpQ2zgHE7x0UFBQgNzcXJpMJP//5zzF79mzIZDJaN+ShUHj2M8YYnE4nzp49i9zcXOj1eixfvhxLliwRQpQ21seDMQabzYaLFy9i9+7dqKysxNKlS7F69WqqNsk3RuH5mDDGYLFY8O9//xt79+5Fa2sr5syZg6VLlyI+Ph5yuZw23n7CcRz0ej1OnDiBAwcOoLm5Gc899xxWrVqFYcOG0Q8Y8QqF52PGh+iFCxeQl5eHa9euYfTo0Vi0aBGmTJkiXC9OG7P32H9Hnrdarbhx4wby8/Nx4sQJ+Pv7Y+HChcjJyUFkZCTd/pk8EgrPAcIYg9vtRlVVFY4ePYpjx46hq6sLaWlpmDlzJiZPniwMqEFB+nA4joPRaERFRQVOnjyJ06dPw2AwYMKECVi0aBEmTpwoDPJBy5Q8KgrPQYA/6nv9+nWcPHkS586dg06nw6hRozBt2jSMHz8ecXFxUKvVVJX+F19dOp1ONDU1obS0FGfOnMGlS5fgdDqRmpqK7OxsoZqXSqW03EifovAcRPhVYbPZUF1djbNnz+Ls2bOorKyEr68v4uPjMWXKFKSmpmLEiBEIDAyEQqF4KkKBr9QtFguam5tRXl6O4uJiXL58GXq9Hmq1Gunp6ZgxYwbGjRuH0NBQ+qEh/YrCcxDjKyt+V7SoqAhFRUVobm6G2WxGREQExo4di7S0NMTHxyM0NBShoaFCoD5pB0L4/4ocx8Hj8cBoNEKn06G2thalpaW4ceMGqqurYbFYoNVqkZKSgokTJ2LcuHGIioqCQqHo8wFZCPkyFJ5PiJ7B0tnZicbGRpSVleHatWu4desW6uvrwRiDUqlEREQEEhISEBsbi/DwcISHhyMsLAxKpRJyuRwymQxSqXRAgob99xbCLpcLTqcTdrsd7e3taGlpQUtLC5qamlBZWYna2lp0d3fDbrdDrVZj5MiRSElJQWpqKmJjYxEaGgo/Pz8A1H9JBgaF5xOM7/fj74Xe1taGu3fvoqamBpWVlbh79y7a29thsVhgtVohl8uh1WqhVquhVquh1WoREhKCkJAQBAUFISAgAP7+/pDL5cIkkUggFouFR/7fHMcJk8fjER5dLpdw2xCbzQaz2QyTyYT29na0tbVBr9ejo6MDRqMRBoMBRqMRMpkM/v7+CAwMREREBOLj4xEfH49hw4YhOjoaAQEB8PX1hUQioaAkgwaF57dMz9XJB6vJZEJXVxcMBgNaWlqg1+uh0+mg1+thMBjQ2dmJ7u5uWK1W2O12uFwuiEQiIaxEIpHQf8hPfHD3nHoGqkQiEULR398fQUFB0Gg00Gq1CA4ORkhICMLCwhAaGgqVSgWVSgWlUtmrGqagJIMZhedTjN+FdrvdcLvdvSpJu90Oq9Uq/K3n+3qO8C6RSIRHiUQCPz8/+Pn5QSaT9apUpVKpcMSbQpF8G1B4EkKIF+jQJCGEeIHCkxBCvEDhSQghXqDwJIQQL1B4EkKIFyg8CSHECxSehBDiBQpPQgjxAoUnIYR4gcKTEEK8QOFJCCFeoPAkhBAv/B8RoV2J6CVjiAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
- "for method, graph in graphs.items():\n",
- " if method != \"LiNGAM\":\n",
- " continue\n",
- " print('\\n*****************************************************************************\\n')\n",
- " print(\"Causal Discovery Method : %s\"%(method))\n",
- " \n",
- " # Obtain valid dot format\n",
- " graph_dot = str_to_dot(graph.source)\n",
- "\n",
- " # Define Causal Model\n",
- " model=CausalModel(\n",
- " data = data_mpg,\n",
- " treatment='mpg',\n",
- " outcome='weight',\n",
- " graph=graph_dot)\n",
- "\n",
- " # Identification\n",
- " identified_estimand = model.identify_effect(proceed_when_unidentifiable=True)\n",
- " print(identified_estimand)\n",
- " \n",
- " # Estimation\n",
- " estimate = model.estimate_effect(identified_estimand,\n",
- " method_name=\"backdoor.linear_regression\",\n",
- " control_value=0,\n",
- " treatment_value=1,\n",
- " confidence_intervals=True,\n",
- " test_significance=True)\n",
- " print(\"Causal Estimate is \" + str(estimate.value))"
+ "from causallearn.search.ConstraintBased.PC import pc\n",
+ "\n",
+ "labels = [f'{col}' for i, col in enumerate(data_mpg.columns)]\n",
+ "data = data_mpg.to_numpy()\n",
+ "\n",
+ "cg = pc(data)\n",
+ "\n",
+ "# Visualization using pydot\n",
+ "from causallearn.utils.GraphUtils import GraphUtils\n",
+ "import matplotlib.image as mpimg\n",
+ "import matplotlib.pyplot as plt\n",
+ "import io\n",
+ "\n",
+ "pyd = GraphUtils.to_pydot(cg.G, labels=labels)\n",
+ "tmp_png = pyd.create_png(f=\"png\")\n",
+ "fp = io.BytesIO(tmp_png)\n",
+ "img = mpimg.imread(fp, format='png')\n",
+ "plt.axis('off')\n",
+ "plt.imshow(img)\n",
+ "plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "As mentioned earlier, due to the absence of directed edges, no backdoor, instrmental or frontdoor variables can be found out for PC and GES. Thus, causal effect estimation is not possible for these methods. However, LiNGAM does discover a DAG and hence, its possible to output a causal estimate for LiNGAM. The estimate is still pretty far from the original estimate of -70.466 (which can be calculated from the graph)."
+ "Then we have a causal graph discovered by PC. Let us also try GES to see its result."
]
},
{
- "cell_type": "markdown",
+ "cell_type": "code",
+ "execution_count": 5,
"metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAGFCAYAAAAxeL6dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAADLoElEQVR4nOyddXhUR9vG791sNq4bV0KMBAgJGoK7u1OKU94WaJG6e4u0uNNCgQItVjRYkeIuCQkxiMsm2chusn6e74+y58tipSXO/K7rXJuszMyZMzP3zDwzzwiIiMBgMBgMRiUirOkEMBgMBqP+wcSFwWAwGJUOExcGg8FgVDpMXBgMBoNR6TBxYTAYDEalw8SFwWAwGJUOExcGg8FgVDpMXBgMBoNR6TBxYTAYDEalw8SFwWAwGJUOExcGg8FgVDpMXBgMBoNR6YhqOgGMJ2PwJ0pERn9XfOU4DjqdzuhVq9WCiKDVagEAAoEApqam/KtQKIRIJIJQKISpqSn/ned5ZTAYjOeFiUs186hocBwHhUKBkpISo6u4uBgFBQWQyWRQKBSQy+WQy+X83wqFAuXl5dDr9QD+FhpDeIb/gb+FwXAJhX8PVIVCIS82VlZWsLGxgZWVFWxtbWFtbQ0bGxvY2NhAIpHAyckJdnZ2j13m5uZGYRviYjAYDAAQMJf7lU9FAeE4DjKZDFKpFPn5+cjPz0dGRgbS0tKQlpaGzMxMyOVyqNVq/tLr9TAzM4ONjQ2sra1hYWEBMzMzWFhYwNzcHFZWVrwIiEQimJmZQSgUQiwWG70a0Gq10Ov10Gq10Ol00Ol00Gq1UKvVKC0tRVlZGcrLy6FSqaBSqaBUKqFUKnkR0+l0EIvFMDMzg5mZGczNzeHo6AhfX1/+8vDwgLOzM5ycnODq6gpra2sjsWHCw2C8XDBxeQEqZp1Op4NUKkVOTg6ysrKQmJiI+Ph4JCQkQCqVQi6XQ6lUQiQSwd7enh8VuLu7w9PTE87OznBxcYGLiwscHR15ITEzM4OpqSlEIhHEYjFEIhFMTEwqtbEmIl5wKl4GsSkrK0NBQQEvkHl5ecjMzERubi4KCwshk8lQWloKoVAIa2tr2NrawsfHB40aNUJISAj8/Pzg4eEBd3d32Nvbs5EOg/ESwMTlOamYTRzH8SOQ+Ph4XL9+HTdv3kR2djaKioqg0WggkUjg5uaGBg0aoFGjRggMDISPjw8cHR2Npp5EIlGdbGSJCCqVip+uk8vlyMvLw4MHD5CYmIjExETk5OTwwmphYQFHR0f4+/ujefPmCA8Ph6+vL7y9veHo6MgEh8GoZzBxeQ60Wi0yMjJw7949nD9/HleuXEF6ejry8/MhEong4eGBwMBAREREIDQ0FF5eXpBIJHB0dIStre1L2WDq9XqUlJRAJpMhPz8fSUlJiImJQUxMDDIyMpCVlQWRSARXV1eEhISgffv2aNmyJRo2bAhXV1eYmJjU9C0wGIwXgInLE9Dr9cjMzERCQgIuXLiA8+fPIykpCcXFxXB3d0fDhg0RHh6OFi1aICgoCO7u7nBwcDCyczCejF6vR35+PjIzM5GYmIgbN27gxo0bSE5ORklJCdzd3RESEoLOnTsjMjISgYGBcHBweCkFmsGoyzBxeYhSqURaWhquXr2Kw4cP4+rVqygoKICrqysCAwPRsWNHtG3bFgEBAXB1dWXTOC9IxWKn0WiQkZGBhIQEXLx4EefOnUNKSgoUCgUaNmyIyMhI9O/fH2FhYXBzc2OjGgajDvBSi4tKpUJKSgqOHTuGI0eO4M6dO9BoNAgODkbPnj3RuXNnBAcHMzGpJgxFUaPRIC0tDTExMThy5AguXLiA7OxsuLq6onXr1hg4cCBatWoFLy8vJjQMRi3lpRMXvV6P7OxsnDp1Cjt37sS1a9cgEAgQHh6OPn36IDIyEqGhobC0tATAxKQmMRTNwsJC3L59G8ePH8eJEyeQkpICiUSCbt26YdSoUYiIiDBahcZgMGqel0JcDCub4uPj8euvv+LgwYMoKChA06ZNMWzYMHTr1g2BgYEQif7eU8oaqdqHoZgqFApcv34dhw4dwuHDh5GdnY3GjRtj9OjR6N+/P7y9vdlohsGoBdRrcSEilJWV4dKlS1i/fj1OnjwJW1tbDBw4EMOGDUOLFi1gbm4OgAlKXcLg3aCwsBCnTp3C9u3bcf78edja2mL48OEYP348AgMDefc2DAaj+qmX4kJEKC8vx/nz57FixQqcO3cODRo0wMSJEzFo0CB4eXnxLlAYdRuDH7Vbt25h27Zt2Lt3L/R6PUaMGIHXXnsNgYGBlb7plMFg/DP1Tly0Wi1u376NRYsW4fjx4wgICMD06dMxaNAgtly4HkNE0Ov1SElJwZYtW7B161YQEaZMmYIpU6bA3d2dPXsGoxqpN+JCRMjLy8OqVavw008/wcHBAW+88QZGjRpltAOcUb8x+HO7f/8+Vq1ahe3bt8PNzQ0ffvghBgwYwDvcZDAYVUu9EBedToe//voLn376KZKSkjB+/HjMmDEDPj4+rLf6kmLwl3b16lV88803uHjxIoYNG4ZPPvkE3t7eTGAYjCqmTouLwbayYcMGzJ8/H35+fvjiiy/QsWNH/gyT2goRobS0lHeZLxaLYW1tXW3xG1z963Q6Pn4rK6tanWf/BSJCSUkJNm3ahB9++AHu7u744YcfEBUVxVaVMRhVSJ3t1hMRioqK8OGHH+KLL77AkCFDsHPnTnTr1g1isbjWN5IajQajR49GREQEgoODMWvWrCd+R6FQ8GezVCZlZWWYNm0amjdvjqCgIMyZM4c/YKw+IRAIYG9vj1mzZuH333+HSCTCK6+8gp07d9bL+2Uwagt1UlyICDKZDHPmzMH27dvx8ccfY+HChXB3d6/1omJALBZjy5Yt2LBhA/R6PeRyudHner0eX375JTp27Ig7d+6gsgeYVlZWWL16NbZt28Z7Na7PmJiYIDIyEtu3b0fr1q3x1ltvYevWrUxgGIwqok6Ki0KhwIcffojo6GjMnz8fM2fOhKWlZZ0RFuDvHrWTkxMcHR2faBcy7OMoLCxEeXl5pccvFArh6OgIJyenSg+7tiIQCODj44PVq1ejT58+eP/99/mlywwGo3Kpc+Ki0+mwevVq7Ny5E59//jnGjRsHsVhc08mqdEQiERYsWIBLly6hdevWdUo4azMCgQDOzs5YuHAh2rdvj/feew/Xrl2r9JEhg/GyI6rpBPwbiAiXL1/G4sWLMX78eEyePLnadmEbdoVnZ2fjzp07KCoqgqWlJfz9/REUFASxWPxYD7ji5j29Xs83YAKB4Jkb+wx7NszNzWFubg6hUMj/tmI4hhHP3bt3ERcXBwsLCzRv3hxeXl6PhW1YQHD16lXk5+fDwcEBzZs3f2ajalgwcefOHaSnp0MgEMDX1xdhYWFGS3r1ej1vFzLcm0wmw5UrV1BUVAQ/Pz9ERETAzMwMRIT09HTExsaipKQENjY2CAkJQYMGDar14DQnJycsXLgQw4YNw6efforffvsN9vb21RI3g/EyUKfEpby8HIsWLYKbmxveffddmJmZVUu8RAS1Wo2ffvoJK1as4I8nLi0tRWJiIvz8/NC7d29s2rSJb2SFQiHeeustTJ06FXK5HJMmTcK9e/cAAA4ODvjjjz/g7Oz8xPhSU1MxefJk5OXlgYjw7rvvYuLEiZDJZJgyZQqSkpLAcRyGDRsGHx8f/PXXXygvL8fNmzdhbW2NdevWITIykm+oiQgxMTGYM2cOEhMTERYWBhsbG6xZswZDhgx56j3HxMTggw8+wIMHDxAcHAy9Xo+EhASEhIRg/vz5CAoKgkAgwNq1a7Fq1Sro9Xq4uLjgk08+wddff43r169DqVTC0dERq1atwpAhQ7B+/XosW7YM7u7ucHJyQnl5OZKTk9G8eXMsWLAAnp6eVfAEH0cgEKBBgwb47LPPMGXKFOzevRuTJk1iS9cZjMqC6hDnzp0jBwcHWr9+PXEcV23x6nQ6Wr58OdnY2NDMmTMpNzeXdDodyeVy2rhxI1lbW9PHH39Mp06dosDAQHJzc6MjR45QXl4ecRxHWq2W7t27R1OmTKFBgwbRrVu3SKPREBHRtWvXSCKR0LBhw/j4VCoVxcXF0cKFCwkALVq0iA8nMTGRtm7dSmKxmFq3bk1r166l0tJSUqvVdPDgQbKzs6MhQ4ZQWVkZH55UKqUOHTqQo6Mj7d27l8rLy0mtVtOVK1eoU6dOJBAIaNSoUaRWq4mIiOM4Sk1NpZYtW5Kfnx+dPXuWVCoVKZVKOnbsGLm7u1O3bt2ooKCAiIhyc3Pp8uXLFBkZSXZ2dtSjRw/68ssv6cKFC7Ru3TpydXWljRs30q1bt8jd3Z1ee+01kslkpNfrSaFQ0JYtW8jBwYHOnz9fbc/UgEKhoEGDBlFUVBQVFxdXe/wMRn2lznTTiAh//PEHnJyc0Ldv32q1QWRnZ2Px4sWwt7fHnDlz+GN4ra2tMXr0aLRq1Qo2Njbo2LEjhg0bhsLCQmRmZsLZ2RkCgQAikQgSiQR3797FpEmTEBYW9szpPDMzM4SEhMDHx8fofZFIhMDAQDRs2BBCoRByuRxDhw6FjY0NxGIxunTpAh8fH9y8eROFhYUA/s63Q4cO4cKFC+jTpw/69+8PCwsLiMVitGjRAv369XssLzmOw6ZNm3Dr1i1MmDABUVFRMDMzg7m5Obp164ahQ4fizJkzOHr0KIgIrq6uaNy4MaytraFQKBAVFYX3338fbdu2xauvvor//e9/8PLyQkpKCkpKSuDi4sIf/2xlZYVBgwbh1VdfhYODQ+U/vH/A0tISo0ePRkJCAmJiYqo9fgajvlJnxEWpVOLatWto3rw5XF1dqy1eIsKlS5eQlZWFJk2aPBa3mZkZ1q1bh3HjxkEgEGDMmDGws7PD1q1boVQq+TBOnjwJc3NzdOrUqdKE0dCgGxCJRPDw8EBRURFUKhX//rFjx6DX69GhQwejjYNCofCJmwlVKhWOHDkCoVCILl26QCAQ8DYngUCAqKgo6HQ6HD169LE02draonfv3rx4mpub4/PPP0f37t0RFBQER0dHrF27Fl988QWuXLmCkpISWFtbY8mSJQgJCamUfPk3CAQCtGvXDmKxGFeuXGGGfQajkqgzNpfS0lLk5+ejU6dO1T4vnpmZCbVaDYlEwrvoNyAQCBAQEMD/36hRI/Tq1QsHDhzApUuX0KVLFyiVSuzatQsjRoyAra1tpaXLwcHBSBgEAgEsLCyg0+l42w8RIS0tDQDg7u7+WBhP8rum1WqRnp4OrVaLOXPm8AenGZDJZACAlJQUcBxnlAZzc/On2pJCQkKwevVqLFq0CEuWLMHy5cvRsGFDdO/eHePHj0doaGiNrIqzs7ODq6sr0tLSeAFlMBgvRp0RF51OB61WCwsLi5pOyjMRi8WYNGkS9uzZg+3bt6Njx46Ij4/H/fv3sXjx4koVxieF9aSG8VmN5bPSIxKJ8NZbb8Hb2/uJn9vY2DwWtmG12JMwMTFBv3790LFjR8TFxeHkyZP4448/sHjxYuzatQubNm1C+/btq71xN4iyWq0Gx3HMqM9gVAJ1RlzMzc1hZWWF/Pz8au9denl5wczMDIWFhVCpVLCysuI/IyIkJiaCiBAcHAyBQIBWrVqhXbt2OHLkCJKTk/Hbb7+hV69e1TqdZ8CwfPj8+fPIzs5+7PPi4uLHpoJMTU3h4+ODgoICNGzYEO3btzf6XK/XIz4+HtbW1v/qORQUFKCoqAj+/v5o06YN2rRpg9dffx2LFi3C/PnzsXr16sfiqg70ej1kMhns7OyYvzEGo5KoM100e3t7+Pr64ubNm7yzxepAIBAgMjISXl5eiI2NRW5urtHnxcXFeOWVV7Bq1Sr+PRsbG4wfPx75+flYs2YN/vrrL4waNarGGq6ePXvCxMQEZ8+eNdqLQw/3DT26P8fc3Bx9+vQBEeHMmTNGvs2ICMnJyRgwYAAOHDjwr9IRHR2NN954A3K5HAKBAAKBAA4ODhg+fDjs7e1RVFT0Yjf6H0lPT0dhYSFCQ0NrJH4Goz5SZ8TFxMQE3bp14zcMVqfh1cPDA3PnzkVxcTGWLFmCvLw86PV6lJSUYP369ZDJZBg/fjz/fYFAgB49eiAoKAjr169HYGAgGjVqVCNz+QKBAH379uVHUgcOHIBSqYRGo8GtW7ewY8eOxxxjCoVCTJo0CREREdiwYQNOnz4NpVIJnU6H7OxsfPfdd5BIJE/dI/Msrl+/joMHD/IOOeVyOc6ePYvy8nL06NGjsm77ueE4DtHR0TA1NUXbtm2ZvYXBqCyqe+3zi5CUlEQ+Pj40d+5c0mq11RYvx3GkVCppxYoVFBISQu3bt6cRI0ZQjx49KDw8nH777TfS6/VGv9Hr9fTFF1+Qra0tHTly5LF9OWq1mt555x3q2bMnicVi8vLyotGjR9OZM2coKyuLXn/9dYqKiiIAFB4eTlOmTKFbt27R559/Tt27dyehUEj+/v40fvx4SkhIoOvXr9Orr75KXl5eJBKJqG/fvrRgwQLS6/XEcRzduXOHunbtSl5eXtS3b18aNWoU9erVixYvXkympqbk4+NDo0ePpqNHj/L3HBsbSwMHDqTAwEDq168fjRgxgqKioqhr1650+fJl/p6OHz9OI0aMIFdXV7KwsKABAwbQ1KlTKS0tzeieY2NjacCAARQYGEh9+vShkSNHUs+ePcnf35/efPNNKioqqrqH+BSys7MpLCyMxo0bR0qlstrjZzDqK3XqPBe9Xo/PPvsMGzZswM6dO6vV+EtPcP9ia2uLiIgIeHp6PtHdyg8//IDo6Gjs27fvsbNa9Ho9Dh069NhUULt27eDs7Ixjx44ZOawUi8Xo2LEjYmJikJeXx78vEonQo0cPqNVq/PXXX0ZTht7e3kZLiQ3uX6RSKZ92a2trHDhwAHq9HgKBAK1bt0ajRo34e1CpVIiJiUFqair0ej08PT0RHh5uZMxPSEjApUuXjO7DzMwMvXr1Mtq7Qg/Pu09KSkJycjLkcjksLS0RHByMoKCganX/Avx9pMHXX3+NtWvXYs+ePYiKimIjFwajkqhT4gIAWVlZGDp0KExNTbF9+/Yn+tGqKQoLC2FmZgYrKysUFRVh6NChmDBhAiZOnFhr0sj4G47jcODAAbz22muYMmUKPv/883rpAJXBqCnqjM3FgIeHB+bPn4+0tDS8/fbbKCgoqDUb3z7//HOsXbsWOp0O586dQ0lJSbV7E2D8MxzH4cKFC5g3bx5atmyJOXPmVJsDVAbjZaHOiYtAIECHDh0wf/58nD59Gm+99RZyc3NrhcCYmppi9erVmDFjBr766iu89tprT91QyKgZOI7DuXPnMG3aNDg7O2Px4sVwcnJiHQAGo5Kpc9NiBrRaLXbs2IH33nsPTZs2xZIlSxAcHFyjG+Cys7Px559/oqCgAE2bNkXHjh1hamrKGq5agkajwf79+/HOO+/A09MT69atQ0hICHs+DEYVUGfFBQDv38owrfHtt9+id+/eEIvFrMFg8NDDY7GXLVuG1atXIyoqCj/++CP8/PxYOWEwqog6LS7A39McMTEx/ImCY8eO5XumzI0HQ6fT4fLly/jss89w69YtTJ8+HfPmzYODgwMTFgajCqnz4gL83TMtKirC2rVrsXz5cjg6OuKdd97B0KFD/7WLEkbdx7BsPCsrC6tWrcKmTZvg4eGBTz/9FH369GFTlQxGNVAvxMWAVqvF9evXMX/+fJw5cwatWrXCm2++iS5dusDCwoI1KPUcg6gUFBRg+/btWLt2LYqLizFp0iS8/vrrT9yPxGAwqoZ6JS7A3w2MQqFAdHQ0li1bhvj4eLRt2xbTpk1Dt27dYGVlxRqYeoZBVHJycrBr1y78/PPPyMrKQr9+/fDmm28iLCys2jdoMhgvO/VOXAwYjLj79+/Hhg0bEB8fjyZNmmDChAno27cvXF1deeeJjLoJEUGn0yEuLg67du3C77//jsLCQvTo0QP/+9//0Lp161p/RAODUV+pt+JiwGCP+fPPP/HLL7/gwoULcHZ2Rv/+/TF06FBERETwDRATmtqPYZSSn5+Pv/76C7/99hvOnz8PU1NT9OvXDxMnTkRYWBgTFQajhqn34mKAiFBeXo7bt29jx44dOHLkCAoLCxESEoLBgweja9euCAkJ4U+aZEJTezAISmFhIW7evImDBw/i+PHjyM3NRWhoKIYOHYqBAwfCz88PIlGdOaKIwajXvDTiUhG9Xo+srCycP38eu3btwqVLl6DVahEQEIDu3buje/fuaNKkiZHTRSY21YehSHIch4yMDNy4cQPHjh3D2bNnkZWVBU9PT3Tu3BlDhgxBixYtYG9vz54Pg1HLeCnFpSJqtRoPHjzAxYsXcfjwYdy6dQsFBQXw8fFBu3bt0KlTJzRq1Ah+fn6wsbEBwISmsqlYBGUyGZKTk3H16lWcPHkSN2/ehEwmQ8OGDdGhQwf07dsXYWFhcHNzY/uYGIxazEsvLhUxHIYVExOD6OhonD9/Hunp6TAxMYGvry9atmyJDh06ICwsDB4eHrC3t2cN3H/EYIyXSqXIysrC7du3cerUKcTGxiIrKwsWFhbw9/dH586d0aNHDzRq1AgSiYQJO4NRR2Di8gQMWVJUVIQHDx7g7t27OH36NK5fv47MzEyIRCJ4eHjA398fzZs3R4sWLdCgQQO4uLjAzs6OCc4jGM5xkclkyMvLw4MHD3D9+nVcvXoVqampyM3NhZWVFS/gXbp0QePGjeHj4wMzMzMAbLTIYNQ1mLj8AxWzp6ioCPfv38e9e/dw8+ZNXL9+Henp6ZDJZLCwsICXlxc8PT0RGBiI0NBQBAcHw8XFBfb29rCzs6v3ey2ICEqlEsXFxSgqKoJUKkVCQgLi4uKQkJCAzMxM5OTkwMTEBM7OzvDx8UFERARatWqF0NBQNGjQgIkJg1FPYOLyL6mYXTqdDjk5OUhLS0N8fDxu376N+Ph4ZGdno6SkBGVlZbCxsYGbmxtcXFzg6ekJX19f+Pr6wsfHB87OzrC2toalpSXMzc1hbm5eawWIiKBWq6FSqaBSqVBWVga5XI7s7GykpaXxV15eHnJzcyGVSqHT6WBrawsHBwf4+fmhcePGaNasGfz9/dGgQQMj/1618Z4ZDMZ/h4lLJVAxCzmOQ0lJCbKzs5GdnY0HDx4gISEB9+/fR0ZGBkpKSlBeXo7y8nIIBALY2dnBwcEBtra2sLW1haOjI5ydneHq6goXFxc4OjrC1tYW1tbWsLCwgKmpKUQiEX8JhUIIhUIIBILHXgUCATiOA/D3CrlHXzmOg06ng1ar5V8VCgXkcjlKS0tRUFAAqVSK/Px85Ofno7i4GKWlpSgpKYFMJoNCoYCpqSksLS1hZWUFJycn+Pr6IjAwEEFBQfD29oanpyfc3Nxgbm7OhITBeIlg4lKFGLLWsE9Dr9ejuLiYb6ylUimys7ORk5PD/29oxNVqNTQaDbRaLfR6PXQ6HQBALBZDLBbDwsIC5ubmMDEx4UXm0VcTExPodDpeRAy2D8OrVquFUqmESqWCRqOBXq+HQCDghcvU1JSPSyKRwMXFBc7OznBxcYGHhwfc3d35/52dnWFlZQUARp4PmJAwGC8nTFxqkEfFx3BptVqUlJSguLgYcrkcSqUSSqUS5eXlUCqVKCsr46elDKOOiiMQnU6H+Ph4XL16Ff3794eTkxNMTEwgFoshFAohFothYmICc3Nz2NjYwMrKCpaWlvz0nOFvW1tb2Nvbw8bGxmg0VPFiMBiMJ8HEpQ5SUZQqvlb8fMuWLfjggw9w+vRpBAYGGn1eURTYCIPBYFQFzFdGHeSfBIGI+JGGiYkJTExMqjN5DAaDAbYhg8FgMBiVDhMXBoPBYFQ6TFwYDAaDUekwcWEwGAxGpcPEhcFgMBiVDhMXBoPBYFQ6TFwYDAaDUekwcWEwGAxGpcPEhcFgMBiVDhMXBoPBYFQ6TFwYDAaDUekwcWEwGAxGpcPEhcFgMBiVDhMXBoPBYFQ6TFwYDAaDUekwcWEwGAxGpcPEhcFgMBiVDhMXBoPBYFQ6TFwYDAaDUekwcWEwGAxGpcPEhcFgMBiVDhMXBoPBYFQ6TFwYDAaDUekwcWEwGAxGpcPEhcFgMBiVDhMXBoPBYFQ6TFwYDAaDUekwcWEwGAxGpcPEhcFgMBiVDhMXBoPBYFQ6TFwYDAaDUekwcWEwGAxGpcPEhcFgMBiVDhMXBoPBYFQ6TFwYDAaDUekwcWEwGAxGpcPEhcFgMBiVDhMXBoPBYFQ6TFwYDAaDUekwcWEwGAxGpcPEhcFgMBiVDhMXBoPBYFQ6TFwYDAaDUekwcWEwGAxGpcPEhcFgMBiVDhMXBoPBYFQ6oppOAOPfQUTP9T4RgYjAcRw4juPfFwgETw37WZ8xGFVNxTL8aHmuWDZZOa0bMHGpYgyV5Gmver0eZWVlKCsrg1qthlqthkaj4f9+9H+NRgONRsOLhkajARFBr9dDq9UCALRaLW7cuAGFQoEVK1bAzc0NQqEQAoEAYrEYQqEQQqEQYrEYACASiSAWi2FmZsa/Pvq34X8LCwtYWVnB3NwcQuHfA19DZX/aK+PlpmKZN3R4iouLUVhYiJKSEhQXF6OkpASlpaVQqVRG5d1QTs3MzGBubg5zc3PY2dnBzs4O9vb2sLe3h5OTE6ysrCAQCIwuRs0ioKd1hRlP5UlCQURQKBQoKSnhr+LiYqOrYkUyvMrlcmg0Guh0Ouj1euj1enAcZ/Q3x3EwMTGBSCSCiYkJTExMIBAIYGpqCgAQCoUQif7uJxg+fzS9Op2OT2fFvw2CpNPp+DRwHAehUMiHZWJiYvS/qakpzMzMHqvk9vb2T/zf8J6dnR3MzMwAMCGqzxjKFhGhsLAQKSkpSE5ORnJyMpKSkpCSkoL8/HxeQLRaLYRCIczNzWFqaspfIpGIL69arRZarRYajQYqlYrvKInFYlhaWsLDwwMBAQFGV8OGDWFlZfVYJ4hRPTBxeYQnTS9pNBrIZDIUFhaisLAQ+fn5yMrKQlZWFqRSKfLy8pCfnw+FQgGVSgW1Wg2VSgUigpmZGaysrGBpaWl0WVlZwdbW1qgRtrKygoWFBSwsLPjvWVhYwNzcnBcWkUjE98wqVpon/V0RjuOMRkuGezNMmXEcx4uLVquFUqlEeXk5lEol/3d5eTnKysqMBFMul6OsrIz/vOKl1WphamoKc3Nzvudpb28PFxcXuLi4wM3NDZ6envDw8IBEIoGTkxMkEgns7Oz4kZYB1jDUXgzliuM4ZGZmIiYmBhcvXsTVq1dx//59FBUVQSAQwM3NDa6urvDy8kJAQAC8vb3h4uICZ2dn2NjYwMzMjO/EGEbXAIw6WTqdDmq1GsXFxZBKpZBKpUhNTUVKSgqys7ORm5uL/Px8mJmZQSKRICQkBG3atEGbNm3QuHFjODo6sg5NNfHSisuj87vFxcXIy8uDVCpFZmYmHjx4gPT0dKSnpyMnJwcKhQJlZWVQKpUwMTHhRcHW1hZ2dnZwdnbmK4+LiwtcXV3h6OjIN6yGXpbhMjU1faII1DX0ej0/VVfxUqvVKCsrQ35+Pp+vubm5kEqlKCwsRGlpKUpKSlBUVAS5XA6hUAgrKytYWVnBzs4OXl5e8PHxga+vL/z8/ODu7g5XV1c4OzvD0tLSKA2skah+DPVHo9EgLi4OZ86cwYkTJ3D37l3IZDJ4enoiICAA4eHhaNWqFQICAuDg4ABbW1tYWFhU+jMzTC+XlpaisLAQsbGxuHbtGmJiYpCcnIySkhK4ubmhZcuW6NGjB9q1a4cGDRo81olhVB71Xlwq3p5Wq4VUKkVOTg5yc3P54Xp8fDxyc3P5nri5uTkkEgkcHBzg4OAALy8veHp6ws/PD97e3nBycoK1tTWsra1haWlpZH9gPBuDfcgwulEoFFAoFCgqKkJqaiqysrLw4MEDZGRkQCaTQSaT8T1fw/Sam5sbgoKCEBgYiMDAQHh4eMDd3d2oVwow0akKDKPdpKQknDlzBrt378bt27chEokQEhKCDh06oEuXLggICICzszM/dVtTaVWpVMjJyUFSUhJOnTqFv/76CwkJCbCxsUGrVq0wZMgQdO7cGe7u7gBYmalM6qW4GOwfubm5yM7Oxr1793Dr1i3cvXsX2dnZKCwsBMdxcHR0hJOTE7y8vODv74/g4GAEBgbCxcWFH5VYWloy4agBtFotb8MqLi7mOwP37t1DSkoKcnNzUVhYiOLiYpibm8PJyQne3t4IDQ1Fs2bNEBgYCDc3N7i7u8Pc3Jw1GpVAWVkZrl69iq1bt+Lo0aPQarWIiIjAgAED0LVrVzRo0ABmZma1Nq+JCHK5HElJSTh69CgOHjyIe/fuwcXFBYMHD8aYMWMQGhpao4JYn6jz4kJEKCsrQ3Z2NtLS0nDjxg1cu3YNqampyM3NhVwuh62tLVxcXBAQEIBmzZqhSZMmfE/XyckJNjY2tbZCMB5Hr9ejtLQUMpkM+fn5SElJwZ07dxATE4P09HTk5+dDqVRCIpHAw8MDjRs3RuvWrdG0aVN4enrC1dWVt10x/hmFQoHjx49j1apVuHbtGjw9PTFy5EgMHjwYQUFBtVpQngYRobS0FLdv38b27dtx5MgRqFQqdO/eHa+//jpatmzJr6Zk/DfqnLgYljEaDIfnz5/HrVu3kJ6eDrlcDolEAm9vbzRt2hTNmjVDcHAw3N3d4e7uDisrKz6culYZGE/mUduZTCZDTk4OMjMzERsbi9u3byM+Ph45OTkoKyuDq6sr/P390bp1a0RFRcHf3x+enp5sdPMIhiml06dPY9myZbh06RIiIiIwefJkdOvWDW5ubgDqfj0yrGp78OAB9u7di19++QW5ubkYMGAAZs6cibCwMH4lJuPfUevFxTDFlZGRgZs3b+L06dO4efMmHjx4ABMTE7i7uyM8PByRkZFo0qQJfH194e7ublQg6noFYPx7KhbrsrIyZGRk4P79+7hx4wYuXryIpKQk5Ofnw8bGBkFBQYiMjESnTp34zsjL3GvlOA5xcXGYP38+Dh48iNDQUMycORP9+/eHtbU1gPpXpwzlJScnB7/99hvWrVuH4uJiTJw4EbNmzYK7u3u9u+eqplaKi16vR0FBAe7du4fjx4/j3LlziIuLAxHB09MTbdq0QceOHREaGgp/f3/Y2Njwv2UFgPE0Ki6ZzcvLQ1JSEm7evIkzZ84gNjYW+fn5kEgkaNasGbp27YqOHTuiQYMGL820qWGqaMuWLfjhhx9gamqKuXPnYtSoUbC3t38p8gD4Ox/S09Oxbt06bNiwAb6+vvj444/Rq1cvfp8W45+pNeKi1+uRl5eH69ev49ChQzh//jwyMjIgkUjQvHlz9OjRAy1atEBwcDAsLS3ZWnXGC1NRbPLz83H37l1cuHABJ06cQFJSEtRqNZo0aYKuXbuid+/eCA4Ohp2dXb0sc0SEe/fu4cMPP8SZM2cwaNAgfPDBBwgMDKyX9/tPGFY1Xrx4EV999RWuX7+OSZMm4b333oOTk9NLmSf/lhoVF47jUFRUhBs3buCPP/7AyZMnkZeXB3d3d3Tt2hU9evRAy5Yt4erqynbZMqqcil4LUlJScPHiRURHR+Pq1asoLS1FkyZN0KdPH/Tv3x8BAQFVsl+jJtDr9Thx4gTmzp0LjUaDL7/8EkOHDoVYLK4X9/ciGPbArVq1CkuXLkWLFi3w448/olGjRi993vwT1S4uhh3vKSkp2LNnDw4cOIDExES4ubmhd+/e6NOnD1q1agVbW1u2wYlRY1T0ZpCVlYWzZ89i3759uHjxItRqNdq1a4cRI0agW7ducHZ2fszlTl1Bo9Fgx44deP/99xEaGooff/wRTZo0YcvvH0Gn0yE6OhrvvPMOLCwssHLlSkRGRrJ8egbVJi4Gw/y1a9ewadMmHDt2DEKhEB07dsSIESPQsWNHODg4MEFh1DoMVUSn0yE1NRVHjx7F3r17cevWLbi7u2PIkCEYM2YMAgMD69QSZ41Gg02bNuGjjz5Cz549sWjRIri5udWZ9Fc3RISbN2/ijTfeQFFREdatW4cOHTowgXkKVS4uho1LZ86cwdq1a3Hx4kW4u7tjzJgxGD58OPz8/GBqasoKNKPOwHEclEolrly5gu3bt+Pw4cMAgGHDhmHSpEn8RrzaXKZ1Oh22b9+OuXPnYuDAgVi4cCEcHBxqdZprA0SEhIQETJs2DQUFBdiyZQtatGjB8u0JVKm4qFQqnD9/Hj/++CMuXryIRo0aYdq0aejfvz8cHR3ZKIVRpzF47E1OTsbWrVuxY8cOKJVKjBo1CtOnT0dgYGCtnC4jIvz555+YMGECOnXqhBUrVjBh+RcQEeLj4/Hqq69CJBJhx44daNCgAcu/R6gScTH4HlqwYAH27dsHf39/vPnmm+jXrx9vS6lOiouLsXHjRhQXFwMAv8y0pgqDRqPBunXrkJ+fDwBo2rQphg8fXiNpYVQOOp0O6enp2LRpE3755ReIRCLMmDEDkyZNqlXLeA0bBocOHQoHBwf8+uuvbA/Hf4CIcPHiRYwdOxbt2rXD2rVr+T1AjIdQJVNeXk6bNm2igIAA8vX1pR9//JGkUilxHFfZUT03RUVFNH/+fBo+fDgBoC+//NIoPWVlZfTrr7/SyZMnSa/XV3l61Go1/fDDDzR+/HgyNzenMWPGVHmcjOpBq9VSTEwMTZkyhRwdHalXr1505coV0ul0NZ00Ivq7rE+dOpV8fHzo6tWrNVov6zo6nY5++ukncnBwoLVr11ZL21GXqDRx4TiOpFIpzZgxgxwcHGjUqFEUExNTayoVx3G0f//+J4rLjRs3yMbGhsLDw6m8vLza0nTp0iVycHBg4lJJcBxHu3fvplWrVlFBQUGNpqO8vJz27t1LzZo1I19fX9q4cSOpVKoaS5MhXQcPHiRHR0dasmRJrambdRmFQkFjx46l4OBgSklJqenk1CoqZX6KHu5onTJlCnbu3ImPP/4Y69evR+PGjWvlnPOj+Pv747PPPsMHH3zwUrv9qOsQEdatW4dPP/0UUqm0xtIhEAhgYWGBQYMGYc+ePWjfvj3mzZuHBQsWoLy8vMbSJZfLsWzZMoSGhuLVV1+tE3WztmNpaYl33nkHcrkcGzduhE6nq+kk1Rpe2CMbESE3Nxf/+9//EBcXhzVr1mDAgAE16uyNHm6G0+v1ICL+dLunYWtri3nz5j01LMNJeAD4sJ41R/1o/IaT9f7NvPajYRhOmHxWOE9Ka8UT/SpiONmP47jnDhsAf0RyxXyoGK9AIOCf/ZPCetJ9GcL5pzw1HP/8vL+paQQCAfz8/LBy5Up8//33WLx4MQDgnXfegbm5ebWmhYhw+fJlXL16FcuWLYODg0OVxvWs+vfoUdrAszdH/5tn/2/KYmUgEAjQuHFjDBkyBDt27MD06dPh5eVVJXHVNV5IAYgI5eXlePfdd3Hnzh1s2LABvXr1qtF130SEkpISbNmyBX/88QdkMhkaNGiAV1555YkF7M6dO7h16xYAwMLCAr179+Z9lanVauzfvx87d+5EUlIShEIhgoOD0atXL/Tp0wcuLi4gIpw6dQqZmZkAAEdHR7Ro0QIbNmzA8ePHUVZWhmbNmmH69Olo1arVc+UNx3G4c+cO/vjjD5w7dw5SqRS2traIjIzExIkTERoaahQOPdxVfvToUfz++++Ij48Hx3Hw9vZGx44d0a9fPwQFBUEoFPI7jnfs2IGDBw8iKysLVlZWaN26NSZMmICwsDAIhUJkZWXhzJkz0Ol0EAgEaN++PS5duoTNmzcjOzsbQUFBmDFjBjp06ICzZ89i5cqVSExMhKurKyZMmICRI0c+di4GESEtLQ2bN2/GqVOnIJPJ4OTkhK5du2L8+PHw8vKCQCCAQqHAsWPHoFAoAPy94EEsFmPJkiW4evUq7O3tMXz4cEyePJk/lTItLQ1//fUXsrOzoVKpsG/fPly9ehUA0LJlS4SEhNSIEBkOOfvkk08gFAqxePFieHt7Y/z48dVaT3Q6HXbu3AlPT0/06dOnUvMiOTkZly5dAsdxEIlEaN++PY4ePYrffvsNBQUFaNq0KWbNmoUWLVrg6NGjWLt2LR48eABvb29Mnz4d/fr140WmvLwcBw8ehEqlAvD3sycirF27Fjdu3ICpqSm6deuG6dOnw9PT0+g+VCoVDhw4gM2bNyMzMxPu7u4YNWoU+vbti+PHj/NluXnz5mjcuHGl3b9IJMLYsWOxY8cOnDhxAhMmTKjVnZ5q40Xm1DiOo7Vr15K9vT1t2LChVszhyuVymjJlCtnY2NDMmTPp/Pnz9Oeff9LkyZNpxIgRj9lcdu/eTcOGDSM3NzdydXXl5011Oh2tWLGCXFxc6MMPP6SLFy/SlStX6OuvvyYXFxeaMWMGEf2dB/Pnz6f+/fuTtbU1+fv706xZs2jFihV09epV2rZtGzVp0oR8fX3pzz//NLL1PM3mkp6eTuHh4dSmTRvas2cP3bhxg7Zv306tW7em4OBgun79ulE4KpWKPv30U3JycqLXXnuNzpw5Q5cuXaIvv/ySJBIJtWvXjqRSKRERSaVSGjZsGLm7u9OCBQvo6tWrtGfPHmrXrh01bNiQjh8/ThzH0Y0bN2jcuHEUGhpKQqGQxo4dS1988QVdunSJfv/9d2rYsCH5+fnR6tWr6fXXX6eTJ0/Sn3/+SV27diUHBwc6ePCgURo5jqPbt29Ty5YtKTQ0lDZv3kzXrl2jdevWUUBAAEVFRVFycrKR7a5Dhw4EgCZMmEDvvfceHT16lP766y8aMWIEWVlZ0erVq3kj6qVLl2j06NHk5uZGYrGYevfuTSNHjqSRI0fSgQMHatxwzXEcyeVyGjt2LPn5+VFsbGy1xp+Tk0ONGjWit99+u9Lr6alTp2j06NHk5+dHZmZmNH78eFq4cCFduXKFNm3aRO7u7hQaGkorVqyg2bNn09mzZyk6OppatWpFbm5udOHCBf75FBQU0JQpUygqKoqEQiENGzaMJk6cSHv37qUrV67Qd999RxKJhLp27UqZmZl8GrRaLS1cuJBsbW1p8ODBdPz4cTp//jx98MEHNHfuXDIzMyNPT08aMWIE7d+/v1Lvn+hv20vbtm1pzJgxNW5bqy28kLjk5uZS06ZNadSoUVRWVlZZafrPcBxHmzdvJgsLCxo5ciTJ5XL+/fz8fIqKinrqarFevXoZiUtpaSm1a9eOwsPDqbCwkP+uRqOh2bNn09ixY43iTktLI39/fzI3N6effvqJb/Q4jqOTJ0+SjY0NtW3blmQyGf+bp4nL/fv3KSIigs6cOcOnk+M4unr1Kjk6OtLEiRNJo9Hw7+/du5dsbW1p+PDhVFpayoej1Wrps88+o9DQUMrOzia9Xk8ffvghmZqa0vz58/lGhuM4unPnDnl4eFCrVq14Y7her6ePP/6YANDQoUNJoVDw3//2228JAIWFhdH9+/f5dJ45c4bEYjFNnjyZTyPR35Wvb9++ZG1tTUeOHDG6r99++40sLCxo2rRppNVq+d8cPnyYhEIhNWnShBISEvjf3Lt3jyQSCXXp0oVKSkr47+v1eurVqxc5OTlRXFzc0wtKDcFxHN27d4/8/Pxo1qxZRvda1Vy+fJns7e1p7969VSK0Go2GpkyZQgKBgKZPn843sDqdjmbPnk0AqF27dpSdnc3/Zvfu3SQQCOiDDz54bKXV7t27yczMjHx9fSkmJoZPs1arpc8//5xMTEzo/fff53937do1cnZ2pmbNmlF2djb/fcPqOIFAQIMHDyalUlnp9264z3fffZdCQ0MpLy+vSuKoa/zncTkR4a+//kJGRgbeeOMNfnqiJlGr1di1axe0Wi2GDh1qdPaERCJBv379/lV4AoEAaWlpOH36NJRKJYgIIpEIH3zwAb766qsn/sbFxQVdu3Y1crTZokULNGvWDLdv3+anap6Fh4cHtm/fjjZt2gD4f3tHgwYN4Ovri0uXLkGr1fL3vHXrViiVSgwfPtzo+AETExMMGzYM3bt3h5mZGXJycrB79244OTlhwIABRvPdAQEBiIqKQmxsLC5duvRYPnTt2tXosLWwsDAAQFBQEHx9fflpAF9fX9jZ2eH+/fvQ6/X8969fv45z584hLCwMbdq0MfJq3bFjR/j4+ODYsWNIT09/LD+CgoLg5+fH/8bd3R0eHh64f/8+lErlP+ZnbUEgECAwMBCjR4/G4cOHkZ2dXW1xx8XFwdzcHEFBQVU6ZWOYtjK4phcKhWjatCmAv8uM4ZAxAAgICICVlRWSkpKeGl7r1q0REBDAp1kkEqF///6wt7fHgQMH+IUb+/fvR35+Pvr06WPkwsbS0hL9+/evchuwUChEkyZNkJ2dze+ne9n5zznOcRwuXLiAhg0bIiQkpDLT9J9Rq9W4c+cOTExMEBwc/NjnAQEBzx2WlZUVXn/9dbz99tuYNGkSwsPD0b17d3Tq1AkRERFwdnZ+4u9sbW2NKhAAmJubo2HDhrhw4QJiY2PRs2fPZ8YtFoshEomwdOlSXLhwAQUFBdDr9dDpdEhKSoKdnR2/KkWtVuPGjRswMTFBo0aNjMIRCARo2rQpli5dCgC4du0a0tLS4OzsjMTERGRkZPDfpYe7zVUqFW7duoW+ffsahfOokdLCwgIAeDuJARMTE5ibm0OlUvGiSESIiYmBQqGAubk5Ll68+JiBFwCys7ORkZFhJCQA4OfnZ2SfEAqFsLOzQ25uLr94oa4gEAjQvXt3rFy5EikpKfDx8amWeDMyMiAWi+Hu7l6l8ZiYmMDDw8PovaeVFZFIBLFYzNtXnkSDBg0eW8Hp7e0NOzs7/khrV1dXXL9+HQAQGhr6WBgBAQFVLi4CgQAeHh4QCoXIzc1FUFBQlcZXF/jPOU5EyMzMhIuLi1FvuSbR6XQoKyuDQCAw6mUbMBTy50EoFGLUqFEICQnBrl278Oeff2LRokWYP38+2rRpg6+++gpt27Z9rBdoqDCPhmVpaQmO4yCXy58ZLxHh9u3bGD9+PGQyGd544w20atUK5ubmKC0txTvvvIOSkhKj1VsKheKp91wRpVIJlUoFmUyGH3/88YkG5U6dOsHBwcHoJEcARsb5iit1HjXaP43S0lJwHIf4+HjMnz//sXwzHEX9pEbg0SOIDSuG6OGqpLqEQCCAq6srLC0tkZOTU23xKhQKiMXiKl+lVnGFluF/A08qK/80inrS8dPm5uYwMTFBeXk5NBoN778QwAvX+xfBysoKQqHwH+v4y8ILybm5uTlkMpnR9EdNYmpqCmtra5SWlqKsrOyxzzUazb8Kz8TEBBEREQgPD8d7772HmJgY/PTTT9i2bRtmzJiBw4cPP9YT5DgOOp3OSGA4jkN5eTmEQuFzCfGKFSsQExODFStW4I033uArl0wmg42NDUpKSvjvikQi2NjYQC6XP/GeK2JhYQFzc3P4+vri0KFD/+iuojJHBXZ2dhAKhejevTt+/vnnl/pcco1GA71eX63LkU1MTMBxXJ0T4yftG1EqldDpdLC0tOTPnLG1tQUAfoVhRQxTyFWNoR1k+4f+5j/bXIRCIRo1aoTU1FQUFBRUZpr+M2KxGGFhYdDr9bh3795jnz948OC5w1IoFJgxYwbu3bvHF96oqCgsX74cUVFRuHv3LnJzc5/4u0fzQ6lUIiUlBebm5vz889Ogh15XxWLxY8slDWv9K2JmZobmzZtDr9cjPj7+sbAuX76M4cOHIykpCe7u7mjQoAGKi4ufON+fkJCAkSNH4vz580bvv+gcvUAgQFhYGKytrZGWlvaYCBIRDh06hFdffRVZWVkvFFdth4iQlJQErVYLX1/faotXIpFAo9EYdUzqApmZmY91CjMyMlBaWgpfX184Ozvzdk0AuHv37mNhpKenV0sHuKioCDqdDhKJpMrjqgv8Z3ERCATo1KkTiouLceLEiVrRIzIzM+P3V+zevZsfntLDvR379u177rC0Wi1OnTqF48eP8z14w3SMmZkZ7O3tn7iIITs7G6dOnTKyN1y7dg23b99GREQEWrVq9cx4BQIBfHx8oNVqERsbaxROZmYm0tLSHrvnV199FZaWlti5cydKS0v5zzQaDX766Sfk5ORAIpHA3d0dI0eOREFBAfbu3WvUK1Sr1Vi/fj3u3r2LBg0aGMVRGc82IiICnTp1ws2bN3HhwgU+Tw3PZsmSJVAqlXBycnqheCwsLKDT6fjGZN++fXj99ddrTaOq0Wjw22+/oVGjRmjYsGG1xevv7w+VSvXEBRO1mXPnziE1NdVoGnj//v0oLi7GwIED4eLiAgAYNGgQXFxcEB0djZycHP77KpUKe/furfLRCxEhNTUVYrGYT9PLzn+emxAIBGjZsiU6duyI5cuXo3v37tXaE3tamgYNGoQzZ85g+/btePfddzF27FhoNBr8+uuv/DREXl4e7t69Cz8/P5SVlSEtLQ1yuRw6nQ4JCQkQCoWwt7eHvb09Fi5cCK1Wi/bt20Or1eLAgQO4evUqpkyZ8lgjDPzdQzxy5AhKSkrQsmVLJCYm4rvvvoOTkxO++uor2NnZgeM4JCcnIzk5GXq9HsXFxYiJieENldOmTcPp06fx/fffAwAiIyORlpaGtWvXoqysDEKhEHFxcWjQoAF/gue8efOwfPlyzJ07F+PGjYNIJMKePXtw6tQpLF26lHep/uabbyIpKQmLFy+GQqFA7969odfrsXfvXhw4cADffvst3N3dUV5ejvv37/OrcVJTU5GSkgJfX1+kpqbi/v37AID8/HzEx8fDz88PxcXFSEhIgFarRXl5Oe7evcv3Li0tLfH9999j6tSpePPNNzF79my0atUKhYWF+Omnn1BYWIiFCxdCLBZDp9PhwYMHSE1NBQBIpVLEx8fD398fSqUSycnJKCsrg06nw71798BxHL+hrnXr1jh06BD27duHwsJCLF68GC4uLv9oj6oOiAiHDx/GqVOn8P3338Pe3r7a4g4NDQUR4c6dO2jdunWlrhiTy+VISUlBUVEROI5DSkoKXF1d4eXlhZSUFH7hSE5ODu7du4eGDRsiLy8PSUlJ0Ol0KC0tRWxsLHx8fB7LkwYNGuCLL77AyJEj4e7ujuPHj2PlypXo3LkzZsyYwdsNw8LC8P777+OLL77A9OnTMXPmTFhbW+PQoUMoLS2t8mlYnU6Ha9euITAwEHZ2dlUaV13hhVzuG6ZdRowYgR49emDx4sU1nrFEhNLSUmzbtg179uxBYWEhvLy8MHz4cDg5OWHu3LkQCASwtLTE2rVrce3aNSxfvpyfjzacjrlkyRKkp6fj0KFD+Ouvv/geX8OGDTFo0CAMGTLEqMFKT09H165dYWNjg927d2P9+vU4e/YsVCoVwsPDMX36dLRo0QJCoRBKpRIjR45ESkoK76bCxMQE8+fPR79+/cBxHM6fP4+ffvoJMTExMDExQePGjdGvXz9s374dd+/ehYmJCSZPnow5c+ZAIBBAq9XixIkT+P333xEXFwciQlhYGCZNmoS2bdvy88CG/Nm9ezcOHDiAtLQ0mJmZITw8HOPGjUNkZCRMTEwQExODadOm8YsHhEIhwsPDsXLlSkyfPh2xsbF82p2cnLBhwwbs27cPv/zyi5GbjrfffhsTJ07k487KysK2bdtw4sQJSKVS2NnZoX379pgwYQICAwMhEAggk8kwbdo03tOAQCCAo6MjfvnlF8TGxuKzzz7jDbkmJiYYMmQIvzQ8Pz8fCxcuxJkzZ6DX69G8eXO899578Pf3r9Fd00SEuLg4jBo1Ct7e3ti2bVuVumB5lJKSEgwYMADu7u7YvHkzv1S4Mvjrr7/w1ltv8SsEhUIhunTpgq+++gpjxoxBRkYG7+7Fw8MDGzduxIoVK3DgwAEjNy3z58/nVynu2bMHY8eOxdtvv42ePXvi559/xt27d2FmZobu3btj2rRp8PDwMHqmarUahw8fxi+//IL09HQ4Oztj4MCBaNu2Ldq3b49+/fphy5YtVWLrkkqlaNeuHQYOHIgFCxYwuwvw4i739Xo9rVu3jhwdHWnOnDlGm/hqCo7jiOM40mq1pNFoSKvVEsdxpNfrSaPR8JderyedTmf0XsXvPxqORqMhnU73xE1ohk2U4eHhpNfrSa/X87979DePhlkxPRW/UzFthjCelRbDb54W76N5ZAhfq9U+Mayn5cuT0v5oep90T4ZwK+aNVqslvV7/XPnzpGf46H0+Gv6z8qC64DiOEhISqH379hQSEkK3bt2q9jRxHEdff/01eXh4UFxcXKXG/6Rn8rSyYnj/n8qKYRPlJ5988lhZfbS8PHqfj5at8+fPk5mZGc2YMaNKNq5yHEe//vorOTg40MmTJys9/LrKC48VBQIBJk6ciKKiIsyfPx8KhQJffvklXF1da6ynWHHD1aPvP2n57T/1Mv7LkPppDiMN6finMA09/0fT9qzfGX7zPDwt/IqfP22Z8dPS8KzwKob7tOdQ8TtPi+N5fvtP36lO9Ho9rl+/jlmzZkEmk2HDhg0ICwur9rohEAgwdOhQrFq1Clu3bsUXX3xRaVNFzyrrL1JWDPxTWQX+npZatmwZOnXqhObNm/P5q9PpcPToUZiamqJTp05VMqIweESOiIhA8+bNKz38usoL10BDQzB79mx88803OHDgAEaPHo2rV6/WmiXKVU1hYSHy8vKg0+mg1WqRnZ2N0tLSWrHIgVEzEBHKysqwdetWjB49GjqdDr/88gs6dOhQY52ugIAAjBgxAlu3bsW9e/dqZfnU6/XIycmBTCbj969kZ2dDrVY/83ccx+GPP/7AW2+9haNHjyI1NRVxcXFYsmQJNmzYgMGDB6N3796Vnvccx+HgwYO4fv06XnvtNX5JNAOVdxKlYegaHR1N4eHh5O3tTQsXLqSCgoIan5aoSjiOo6lTp1KDBg3I1dWV3NzcyM/Pj3788Ud2Mt1Lik6no7i4OJowYQJ/cJ7BKWdNYvBt5u/vT6+88grvK642kZOTQy1atCAfHx9ycXEhT09PCgkJocuXLz/zdzqdjlauXEkDBgygFi1aUKNGjSgkJIR69OhBS5YsIZlMVun5z3EcpaamUrNmzah///5Gfu4YRC9k0H+KWCE1NRULFizAzp070aRJE8yZMwfdu3eHpaVlvXRFbVi5VBEzMzOYmZnVy/tlPBmO4yCVSrFlyxasWbMGAoEA8+bNw7hx42BtbV0ryoJer8fPP/+M9957D99++y2mTp1aqza0chwHhULx2KjKysrqH9Op1+uh1Wqh1Wr534tEIpibm1fJNKlCocDs2bNx7Ngx7Nq1C61ataoVz7jWUFWqpVQq6eDBg9SlSxdydHSkQYMG0aFDh0ihUNR4D47BqEx0Oh3l5OTQ8uXLKSwsjJydnWnq1KkUHx9fK46heBS5XE6TJ08mT09POnLkCBth/wfUajUtWrSIHBwcaOXKldXq4bquUOkjl0eEC8XFxdi7dy/Wrl2L5ORkREZGYvz48ejRowfs7e1rjeGVwfg30ENHn5mZmdi1axc2b96MnJwcdOnSBW+99RZatmxZa0euRITs7GyMHz8eWVlZ2LhxIyIjI2tlWmsjWq0W27Ztw9tvv42xY8fiu+++qxVe4WsbVSouBjiOg0wmw8GDB7Fx40bcuXMHDRs2xOjRo9G/f3/4+/vD1NSUFW5GrcfgJ+7KlSvYtWsXDh06BLVajV69emHq1Klo0aIFLCwsan1ZJiLcu3cPEydOhEKhwNq1axEVFcU6e/+ARqPB1q1b8cEHH6Bnz55YtmwZ7O3ta/3zrgmqRVwM0MMjiC9evIgtW7bg1KlT/HkegwcPRseOHeHi4vKPZ9QzGNWFoXpoNBokJSXh+PHj2L17N+Lj4+Hq6oohQ4Zg9OjRCAwMrLUjladBDzd2Tp06FVKpFIsXL0bfvn1rlQ2mtkAPj3RftWoV5s+fj/79+2PRokWQSCR16plXJ9UqLgaICGq1Gvfv38e+fftw4MABxMfHQyKRoEuXLujduzciIyPh6urKhIZR7dBDV/5arRZJSUk4d+4cDhw4gBs3boCIEBUVhREjRqBz5858Z6iuQkRITk7GW2+9hRs3buC9997DtGnTYGVlxerdQ4gIOTk5+Pzzz7Fr1y5MnDgRn376Kezs7FgePYMaEZeKEBGKiooQFxeHffv24eTJk0hJSYGjoyMiIyPRs2dPtGzZEoGBgfzUGXugjMrEUAXooWucmJgYXLx4EUeOHEF8fDx0Oh0iIiLQr18/9OrVC76+vk88Z6SuQkTIz8/Hl19+iW3btqFXr1749NNPERwc/FJPkxnsamfOnMEnn3yCtLQ0fPTRR5g0aVKdmPqsaWpcXCrCcRwKCwuRmJiI6OhonD59GvHx8RCLxQgICECnTp0QFRWFxo0bw9PT0+iYXgbjealY5A2OMG/fvo2//voLFy9eRHZ2NqytrREeHo5evXqhS5cu8PHxqde9eSKCUqnEzp078fXXX4PjOMyZMwfjx4+HjY1Nvb3vp0EP/eAtXboUmzZtQmBgIL755ht06NCBTRs+J7VKXCpisM+kp6fjwoULOHHiBGJiYpCbmwtHR0cEBgYiMjISLVu2REBAAHx9fY1WbLxslYHxdCqOTAoLC/HgwQPEx8fj0qVLuHbtGjIyMqDVatGwYUO0atUKPXr0QLNmzeDh4VGtB3rVBjiOQ0JCAhYsWIB9+/ahdevWmDNnDjp16lTnbEr/FkM5KS0txZ49e7BkyRLk5eXhjTfewPTp0+Hi4lKv77+yqbXi8iharRZSqRT379/HuXPncOHCBSQnJyMnJweWlpbw8PBAs2bNEBkZicaNG8Pb2xuurq6PHc/LqN9ULM4KhQLZ2dlIS0vD9evXcenSJSQmJkIqlcLExAS+vr4IDQ1Fp06d0KJFC3h7e7Pl8fj/qeoPP/wQGzZsgKWlJXr06IFZs2YhMjKS96hcX+qTocyUlJQgOjoaK1euRFxcHLp06YJ33nkHLVu2ZKOV/0CdEZdH0Wq1yM/PR2ZmJu7evYtLly7hzp07yMjIQFlZGSQSCVxcXBAYGIjmzZujcePG8PDwgLu7O3/kLqN+oNfrIZPJkJubi7S0NMTFxeHGjRtISkpCXl4eSktLIZFI4Ofnh+bNmyMyMhIhISHw8PBgy0gfQavV4vLly1i0aBHOnDmDNm3aoGPHjti9ezdSU1MRGRmJCRMmoGvXrvVipRTHcUhLS0N0dDQ2b96MhIQEtGrVCm+99Ra6dOnCbCsvQJ0Vl0cxLBXMzMzE/fv3cefOHdy+fRspKSmQSqUoLCyElZUVXF1d4efnh0aNGiE4OBh+fn6QSCRwcHCARCKp90P/uorBJlBYWIiioiJkZ2cjMTERiYmJSEhIQE5ODqRSKdRqNVxcXODh4YHGjRujWbNmCA0NhZeXFzw8PPgz1xnGcByHe/fuYcWKFdi5cye8vb0xZ84cDBo0CDY2NpBKpTh48CA2b96MmJgY+Pn5YciQIejVqxcaNWpUa9zbPA+GkdnNmzexd+9eREdHQy6Xo0OHDpg8eTI6deoEa2vrmk5mnafeiEtFKt5SeXk5pFIpMjMzkZCQgNu3b+Pu3buQSqUoKiqCXC6HmZkZJBIJXF1d0bBhQwQFBcHf3x8eHh6wtbWFnZ0drK2tYWNjwzZ7VhGG5ellZWUoLS2FQqGAVCpFWloakpKSkJSUhJycHOTn50Mmk0Gn08HW1hYODg7w9fVFWFgYwsLC4OPjA09PTzYl+pwYdutv3LgRGzZsgFAoxNSpUzFp0iS4ubnx+WaoU2VlZbhw4QJ++eUXXLhwAaWlpWjatCkGDBiAjh07ws/PD46OjrVuZkCv1yM/Px8JCQmIjo7GiRMnkJycDDc3N/Tv3x+jRo1CWFgY63xUIvVSXJ5Exds0uKXJz8+HVCpFamoqEhMTkZSUhPv370Mmk0Eul6O8vBwmJiZwdHSEvb09JBIJPD094ePjA19fX3h6esLJyQmWlpawtLSEhYUFf4lEIlZI8f+ioVQqoVQqUV5eDqVSCblcDqlUivT0dGRkZCA9PR1SqRQlJSV8/nMcBysrK9ja2sLV1RWBgYEIDAxEQEAA3Nzc4OzsDBcXF9jY2BjFyfL9nzHUgT/++ANLlixBbm4uRo4ciZkzZ/Ingj4tH4kIHMchPT0dZ86cwZ49e3Dz5k3I5XI0bNgQLVu2RLdu3dC4cWO4uLjA0dGxWm0WhjJXUFCA3NxcXLt2DadOncLdu3eRlZUFJycndOzYEQMHDkSrVq14EWXlpnJ5acTlaTx6+1qtFgUFBSgoKEBhYSHy8/ORkZHBN4CZmZkoKSlBWVkZysvLodVqIRaLYW1tDVtbW/5ydHSEq6srX7ns7e35y9LSEmKxGGKxGKampvzfIpEIJiYm/GtNF3bDZkK9Xg+dTsd7ndVoNPyrRqOBWq2GXC5HcXExfxnOuJFKpSguLoZcLkdpaSlKS0tRVlYGjuOgVquh0Whgbm6OZs2aISAgAD4+PvzoQyKR8LazRzes1XTe1GXKy8tx5swZLFq0CDdu3EDXrl0xb948tG7d+l+VO0Pd0ev1uH//Pm7duoVTp07hwoULyM7OBsdx8PLygr+/P8LDwxEaGgo/Pz84ODjA1tYWlpaW/H6hf/s8DeVSpVJBoVBALpcjPz8fycnJiImJQUxMDB48eIDc3FxYWVnBz88PnTt3RocOHdC0aVO4u7szQaliXnpxeRaPZo2hx1ZSUoKCggIUFRWhpKSEHwUZGtOUlBRcuHABHMfBzc3NyBW4VqvlT3m0sLCAlZUVP/IxMzPjhcbMzIwfBRlGRYZXExMTmJqa8r1Bg51IKBTyw3rDd9RqNZ9uw4FLOp0OOp2O34Wu1+ufOLpQKpVQqVS8CGg0GqhUKpSXl/PiqlKpoNPpIBQKYWpqyl9isRiWlpZwcnKCi4sLXFxceLGVSCSws7NDRkYGli9fjgcPHmDIkCGYNWsWQkND+ftiFb9y0Wq1uH37NpYsWYLDhw8jNDQU8+bNQ+/evStlU6ihM6JQKHh72M2bN3H9+nWkpaVBLpdDpVLBxsYGbm5ukEgksLW1hbOzM5ydneHo6AgLCwv+uAozMzN+FGIoh2VlZSgsLIRUKoVMJkNxcTEKCgqQl5cHtVoNS0tL2NnZITg4GC1atECzZs0QGBiIhg0b1rtVbrUdJi6VQMV9FHl5eXj//fdx4MABzJs3D6+++io0Gg3KysqMLoVCgdLSUhQXF6OkpAQlJSV8o16xcTc08DqdDhzHQa/X8/FxHGf0tyENFe0XdnZ2MDEx4efAK/bWhEKh0d+G7xmEr+JlEDYrKyt+BGZnZwdbW1tYWVk9dtnY2MDGxuaxja6PVuz8/Hxs3rwZa9asgVqtxqRJkzB16lR4eXnVunn7ugrHcUhNTcW6deuwefNm2NnZYebMmRg7dmyVrZarWCcMm6OzsrKQnZ2N9PR0pKSkIDs7G1KpFAUFBVAoFNBqteA4jr+0Wi1KS0thY2MDCwsL/jhlsVgMOzs7flrU29sb/v7+8PLygru7O7y8vPiNn2x0UnMwcakkiAhpaWmYPXs2Ll26hC+//BKTJk16qu2lYuV71qvhb8P0k1qthlarBQBecIC/HSsCfzckOp0OBw4cwLJly/DTTz/B19eXT4dQKORHBiKRiBcYw6jJzMzMKM1PmoqqWGErq7f74MEDrFq1Ctu2bYODgwNmzJiBUaNG1YvlrjWFwa3Ltm3bsGrVKpSXl2PChAmYNm0afHx8aqzhNQiO4dkbVnrK5XKjadeEhARMmzYNH3/8MQYMGABTU1OYmZnB1taWH60/ejFqEU8+5oXxb+A4jmJjY6l9+/bk6+tLu3fvJp1OV2OHonEcR5s2bSI3NzdKTEyskTT8WziOI61WS1evXqVXXnmFHB0dqV27drRz506Sy+XsgLl/AcdxJJfLadeuXdS2bVuSSCQ0fvx4unXrVo2Wy39LQkICOTk50ZYtW2o6KYz/AJt3eEE4jsPFixcxduxYyGQy/PLLLxg8eHCtMMjXJQQCAUQiEVq0aIH169dj69atsLCwwGuvvYZXX30V586dg0qleswOxvh/6OEI9+LFi/wIxcrKCr/++ivWrVuHsLCwOlUuxWIxAPC2QkbdgonLC8BxHE6ePInx48fD0tIS27ZtQ8eOHZmt4AUQCASwsLBA7969sWvXLixevBipqakYNmwY3nrrLdy9exc6na6mk1mroIcrp5KTk/HOO+9gyJAhSE5OxqJFi7Br1y707NmzTm4ONoiLYcqXUbdgDnP+I3q9HocPH8bMmTMREBCAtWvXwt/fv85V4NqKQCCAnZ0dXn31VfTq1QubNm3C+vXrER0dzRv9PT09X3oh5zgOBQUF+OWXX7BmzRpotVq88cYbmDp1Ktzd3et0/hhWPrKRS92k7pa8GkSv12Pnzp343//+h6ZNm+Lnn39mwlJFCIVCuLm54Z133sGRI0cwbNgwrFu3Dr169cKaNWtQWFj4Uk6V0cMlvzt27EC/fv2wYMECdO3aFdHR0fjoo4/g4eFRp4UFAL9kn41c6iZ1u/TVAHq9Hjt27MCcOXMQFRWFtWvX8itvGFWHiYkJAgICMH/+fOzbtw/h4eH45JNPMGjQIOzZswdlZWUvhcgY7CpnzpzB6NGjMXPmTDg7O+O3337D8uXL0bhx43rjHcIgLmzkUjdh4vKc0MNT6bZu3Yq5c+eiS5cuWLFiBTw9PetFRa4LCAQCiMVitGrVChs2bMCWLVtgYWGBadOm4ZVXXsHZs2eh0WjqpcgY7CpxcXGYMWMGRowYgby8PCxfvhw7duxAly5d6t3ZM4Y9LWzkUjdhNpfnwFCxf/nlF3zwwQfo1asXfvjhB7i4uNR00l5KBAIBLC0t0adPH0RFRWHfvn1YunQphg8fjsGDB+PNN99ESEhInT7bviIcxyE7Oxs///wzfv75ZwiFQrzzzjsYP348XF1d623npuK0GBHV2/usrzBxeQ70ej02b96MDz74gJ/fdnZ2rulkvfQIBALY29tj/Pjx6NmzJ7Zs2YI1a9bgyJEjmDRpEqZNm1anR5b08DTWnTt3YtmyZZBKpbxzyYCAgHojnk/DMFJl4lI3YdNi/4Ber8e2bdvw/vvvo3fv3li4cCETllqGQCCAu7s75s2bhyNHjmD48OFYs2YNevXqhbVr16KoqIjfCV4XoIfuew4fPoyhQ4fivffeQ0hICPbt24cffvgBwcHB9V5YAPCeI+rrVGd9h4nLMzAY79955x307NkTixYtgpOTU00ni/EUTExMEBgYiPnz5+PgwYMICwvDhx9+iIEDB+KPP/6o9ZswDdOv169fx6RJk/Dqq69Cp9Nh48aN2LhxI9q0acPv/XgZqDhyMbg5YtQdmLg8Bb1ej/379+Odd95B586d8eOPPzIbSx3AME/fsmVL/Pzzz9i6dSvEYjEmT56MV155BefPn+c9QtcWDKOq1NRUXgxv3ryJr7/+Gnv27MHAgQNhZWX10k0LPTotxqhbMJvLE+A4Dn/++SfeeusttG7dGkuXLmXCUscw7PTv27cvoqKi8Mcff2Dp0qUYMmQIhg4dyrv3r2mHh0SEwsJCbN26FatXr0ZZWRkmTpyI1157Db6+vi+doFSEjVzqNkxcHoHjOJw7dw6vv/46GjVqhOXLl8PNza2mk8V4Aezt7TFhwgT07NkTW7duxdq1axEdHY2JEydi6tSp8Pb2rvZGnB56Ao6OjsaiRYuQlJSEgQMHYvbs2WjSpMlLYVP5J9jIpW7DpsUqQES4ffs2Xn/9dbi7u2P16tXw8vKq6WQxKgGBQAAPDw+8/fbbiI6OxvDhw7F+/Xr06dMHq1evRn5+frU1YBqNBufPn8crr7yCadOmwc7ODjt27MCaNWvQrFkzJiwPYQb9ug0Tl4cQEZKTkzF9+nSIRCKsXbsWDRs2fKmnJeojQqEQgYGBWLhwIfbv38/v9B88eDB2794NuVxeZXFzHIf4+HjMmTMHQ4YMQVpaGpYuXYpdu3ahe/fu/EmJjL9h02J1GyYuD8nKysLMmTNRVFSENWvW8PPxjPqH4Rhog9H/119/hZWVFb/T//Tp05XqcoSIkJ2djQULFqBfv344dOgQZs+ejejoaLz66qv8qYkMY9i0WN2G2VwAFBUV4b333kNsbCw2bNiANm3asMr+EmCYdunVqxfatWuHffv2YcmSJRg+fDgGDRqEN998k/fV9V8wbILcu3cvli5dipycHIwYMQIzZsxAcHBwjS8mqO1UnBZjI5e6x0svLiqVCgsXLsSRI0ewaNEi9OzZs857k2X8OwQCAaytrfHKK68Y7fQ/duwYxo8fzx8L/LzlgoigUqlw7tw5LFq0CFevXkXHjh2xYsUKtGnTpt44lqxqDCMXrVbLRi51kJe6FdXpdNi0aRPWrFmD2bNnY9y4cUxYXlIMowhnZ2fMmTMHR44cwejRo7Fx40b06dMHq1atei6jv1ar5ReFjB49GqWlpVi7di22bduGdu3awdTUlAnLc8Kmxeo2L21LSkQ4fvw4Pv/8cwwbNgxz585lPUoGBAIBhEIhGjZsiO+//x4HDhxAy5Yt8fnnn2PgwIG80f/Rxo7jOKSmpuLzzz9H//79cfHiRXz66ac4ePAghg8fDktLS1a2/iUVvSKzabG6x0spLkSEu3fvYu7cuWjWrBm++eYbVvkZRhiM/s2bN8eGDRuwbds22Nra4rXXXuPd+6vVahARCgoKsGrVKvTu3RsbN27E2LFjER0djVmzZkEikbBy9QKwkUvd5aW0uUilUrz99tsAgB9++AHOzs6sAWA8EYNRuUePHoiMjMQff/yBJUuWYNiwYRgyZAhatmyJLVu2IC4uDr1798bcuXMRFhbGRsGVQEWbCxu51D1eKnExGFq//vpr3Lp1Cz/99BMaN27MGgHGPyIQCGBra4tx48aha9eu+PDDD7Fx40Zs2rQJ1tbW+P777zFu3DhYWFiw8lSJiMXiWucLjvF8vFTTYkSEX3/9Fb/++iveffdd9O7dmzUEjOfC4LH4/v37WLRoEY4ePYqQkBCMGjUKYrEYS5cuxaZNmyCTyVhDWImYmZmx1WJ1lJdGXIgIV65cwZdffon+/fvjtddeYyvDGM+Fwa6yZMkS9OnTB7t378b//vc/HD58GBs2bMD+/fvRrFkzfPLJJxg4cCD27NmDsrIy1iBWAoaRi16vr+mkMP4lL0XrSkTIy8vDu+++C2dnZ3zxxRewtrZmoxbGMyEilJWV4bfffkO/fv3w3XffoVOnTjh06BA++eQTeHp6wszMDK1atcKGDRvw66+/wtLSkt/pf/bsWWaMfkEM59doNJoaTgnj31LvxYWIoNVq8d133yExMRHz589HgwYNajpZjFqMocycPXsWY8eOxRtvvAGJRILff/8dK1aseMxgLxAIYGlpiV69euH333/H4sWLkZaWhuHDh2PWrFmIjY2FXq9nIvMfEIvFEAgETFzqIPVeXABg37592Lp1K+bMmYPOnTuzEQvjiRjsKvfu3cNbb72F4cOHIyMjA0uXLsWOHTvQpUsXmJubP/X3AoEADg4OGD9+PA4fPox58+bhzz//RL9+/fDFF18gIyODrXr6lxhGLpXp641RPdTr1WJEhJSUFHz22Wdo164dXnvttf/sJ4pRfzGMKPLy8vDzzz9j3bp1AIA5c+ZgwoQJcHd3/1cdEoFAAHd3d7z99tsYMmQI1qxZg/Xr12PXrl2YMWMGxowZAwcHB9bJeQ7YyKXuUm9HLkQEpVKJzz77DEqlEl999RUcHBxqOlmMWgYRQS6XY9OmTejTpw+WLFmCvn37Ijo6Gu+++y48PDz+swiYmJggKCgI8+fPx/79+xEREYFPPvkEAwYMwJ49e1BeXs6myv4BNnKpu9Rrcfn9999x+PBhfPzxx2jatGlNJ4lRiyAiqNVqHD16FEOHDsXcuXPh5+eHvXv3YsmSJQgJCam0Q7tMTU3RsmVLbNiwAdu3b4elpSWmTp2KMWPG4OzZs2yp7TMwMzODQCBg4lIHqZfiQkS4f/8+vv/+e/To0QMjR45ky44ZAP7frnLjxg1MnToVr7zyCpRKJX766Sds3rwZ7dq143vLlYlAIICFhQV69uyJnTt3YunSpcjIyMCwYcMwc+ZM3L17FxzHMZF5BLZarO5SLw0QarUa33zzDVQqFT755BPY2NjUdJIYtQAiQmpqKtauXYvNmzfDzs4OX3zxBUaPHl1tPsAEAgHs7e3x6quvokePHtiyZQvWrVuH6OhoTJo0CVOmTIG3tzezxzzEYHNhI5e6R70TFyLCoUOHsH//fnz11VcIDQ2t6SQxagH5+fnYsWMHVq5cCblcjvHjx+P111+Hj49PjTTkjxr9V69ejXXr1mHXrl2YOXMmRo4cCUdHx5dKZPLz83H79m0olUqo1Wqo1WqkpKRApVJh7969iI+P599Xq9Xo2bMnevXqVdPJZjwNqmfk5uZSy5YtqXfv3lRUVFTTyakROI6jTZs2kZubGyUmJtZ0cmoUhUJBO3fupMjISHJ0dKQJEybQjRs3SKfTEcdxNZ08Hq1WS1euXKExY8aQg4MDtWvXjnbu3ElyubxWpbMquX37Njk4OBCAf7xMTU3p+PHjNZ1kxjOoV4YInU6HtWvXIi0tDR988AHs7OxqOkmMGoAeboI8f/48xo0bh2nTpsHW1ha//fYb1q1bh/DwcJiYmNSqUYFIJELLli2xceNGbNu2zWin/5kzZ16KaaGAgAB07Njxub4bFBSEJk2aVHGKGC9CvREXIsKdO3ewbt06vPLKK4iMjKxVjQejeuA4DomJiZgzZw6GDBmC1NRULFmyBLt27UK3bt34OfzaiMG9f69evbBr1y4sW7YMWVlZGD58ON544w3cvn0bOp2uppNZZVhYWGD48OHPtRetXbt2cHZ2roZUMf4r9cbmolKpsGTJElhbW+PNN9+EqalpTSeJUY0QEXJzc7FlyxasWbMGer0es2bNwtSpU+Hm5gYAtVZUHqWie/+ePXti69atWLNmDY4ePYoJEyZg2rRp8PHxqXcrIAUCAbp06YIGDRogOTn5qd8zMTFBv379Km2pOKNqqBelk4hw/vx5HD58GG+88QZ8fX3rTEPCeDGICCUlJdi6dSv69euHRYsWoUePHjh8+DA++ugjfnd9XSwPAoEALi4umDNnDo4ePYrRo0dj06ZN6N27N1auXAmpVPqPS5ezs7Nx69atOrPE2dXVFX379n3m82rQoAGaN29ejali/BfqhbgoFAosXrwY/v7+GD16dL3r0TEehx56YDh58iRGjRqFN998E15eXti1axdWrFiB0NDQelEOBAIBhEIh/Pz88P333+PAgQNo1aoVvvjiCwwcOBC///47SktLnygeOp0Oixcvxvjx4xEbG1snBMbExATDhw+HpaXlU7/Ttm1buLq6VmOqGP+FOl/7iAjHjh3DxYsXMWvWLDYP+xKg1WoRExODGTNmYNSoUZDJZFi9ejW2b9+ODh06wNTUtE6OVJ6FQCCASCRCREQE797fwcEBr7/+Ol555RWcPn0aKpXK6De3b9/G5s2bERMTgzfeeANpaWm1XmAEAgHCwsLQokWLJ35uYmKCPn36MB+BdYA6Ly4lJSVYtWoVIiIiMGDAgHrXqDD+H47jkJ6eji+//BJ9+/bFuXPn8OGHH+LQoUMYNWoUrKys6v3zNxj9e/bsid9//x3Lli1Dbm4uRowYgRkzZuDOnTvQarVQqVRYunQppFIpAOD8+fN48803kZ+fX+sFxtbWFkOGDHmiTcXNzQ1t27at98+5XlAjC6ArCY7jaPfu3eTg4EC//fbbS7Mf4J+ob/tcOI6jwsJCWr16NTVp0oTc3Nxo9uzZlJSURDqdrqaTV6Po9XrKy8ujhQsXkr+/P3l6etLHH39M27dvJxsbG6O9ISYmJjRp0iQqLi6u9XUlKSmJ3NzcHtvfMmzYMFIqlTWdPMZzUKfHlnK5HGvXrkXTpk3Rq1cv1pupZ9BDu8qJEyewaNEi3L17Fz179sTs2bMRERFRL6e//i1CoRDOzs6YM2cOBg8ejFWrVmH9+vVQKBQoKysz+q5er+en07766qtn2jVqGm9vb3Tv3h1bt27l3zMxMUGvXr1gZmZWgyljPC91dlqMiHD27FlcvXoV06dPh62tbU0niVGJaLVaXL16FZMnT8akSZMgFAqxefNm/PTTT2jdunWt3q9S3QgEApiYmMDf3x/ff/893nzzzceExYBGo8Hq1auxYsWKWr0xUywWY+jQoUaHszk4OKBTp07sudcR6uzIRaVS4ZdffkFAQAD69OnDClw9geM4pKamYvXq1di6dSscHR3xzTffYOTIkeyAreegpKQE+/fvf+Z3lEolvvnmG7i4uGDcuHG10jguEAjQoUMHBAQEIDY2FgDQpk0beHp61nDKGM9L7StVz0l8fDxOnz6Njz76iLl5qePQQwOzTCbD1q1bsXLlSpSXl2PKlCl47bXX4OXlVS+WFVcH27dvx7Vr1/7xe6WlpXjvvfcgkUjQr1+/Wpm/Dg4OGDRoEOLi4iAQCNC9e/daPZXHMKZOiotOp8Ovv/4Ka2trDB48uFZWjMrE0PgS0RMvnU4HvV4PrVYLvV4PnU6HwsJC6PV65ObmwtraGiKRyOiq6FvLsMmw4mbD6hohGOwqhw4dwg8//IDk5GQMGDAAs2fPRmhoKEQiERutPAdEhLS0NKxatQp6vf65fiOVSjFr1izY29ujffv2lZbPj5bXR9979FWv10Ov1/M+4Sq+17ZtW1hZWYGIEBwcjMzMTL7sGrxwVCzPFe1wz3qt7nL+MlInxSU7Oxv79u3D4MGD68Uw2VDRDIdFqVQqFBYW8ldBQQHy8vIglUpRXFyM4uJilJSU8K8qlQpExP+eiKBQKFBaWopRo0bB1NQUQqGQr1QmJiawsrKCvb097OzsYG9vD3t7ezg4OMDNzQ3Ozs6QSCSQSCRwcnKCvb09X2kra7e7oQG5dOkSfvjhB5w+fRqtW7fm96oYTiBkPD8HDx5EZmYmhEKhUcP+LNLS0jBjxgxs3boVTZs2fWKeP6lzw3EcysvLIZfLoVAooFAojP4uKSlBUVER5HI5ysvL+ausrMzof6VSaXQSJ8dxRnHp9XqUl5cDAKZMmWLU2TB0KiuWS6FQCHNzc1haWhpdVlZWRv8byrytrS2sra35y8bGBjY2NrC2tjYq84Z4Kr4yno2AnqcE1iKICD/99BM++OADHDhwAG3atKkzD7tiJeU4DlKpFFlZWcjKysKDBw+QmJiIhIQEZGdno7y8HCqVCmq1GiYmJrwIWFlZ8RXFxsYG9vb2fEUwNTWFWCyGSCTiT/Cjh8f56nQ6aLVaaDQaaDQalJSUoKSkBAqFgq/0CoUCRUVFUCgUfCU1NzeHjY0N/Pz8EBwcjMDAQPj4+MDDwwPe3t6wtbX9V5XO0GgkJiZixYoV+P333+Hh4cGvdmJTnP8NIkJhYSGkUimSk5MRFxeHuLg4PHjwABkZGcjNzYVGo3mq4ERFRWHLli3w8fFBaWkpCgsLUVRUhKKiIshkMuTm5iInJ4d/zcvLQ3l5ObRardHFcRxMTU1haWkJa2trWFhYQCwWw8zMDObm5jAzM4NYLIaFhQVfjs3Nzfn9O4bOj6FhF4vFuHv3LsrKyhAZGQng70UJer0eHMfxJ1QaRu1arRZlZWVQKpVGdUij0fDnwKhUKpSVlaGsrAxqtZpPc8XLzMwMjo6OcHNzg7u7O9zd3eHm5gYnJyc4ODjAwcEBjo6OkEgkfF1j4mNMnRMXuVyO4cOHg4iwf/9+o9UktY2KvTGpVIrU1FQkJSXhxo0buHnzJjIyMlBaWgqtVssXZE9PTzRs2BDe3t7w9PSEp6cn7O3tYWFhAQsLC15AxGLxC7uN5zgOOp2OFxyNRsNXyvz8fF740tLSkJqaiuzsbOTm5qKsrIwf+QQFBaFFixZo1qwZ/Pz80KBBA1hbWz9W0Qx5kZeXh02bNmHt2rUgIkybNg0TJ06Eh4cHq5SVjF6v50cRhYWFSEhIQGxsLG7fvo24uDjk5ubyowKBQICQkBDY2NhAJpPxDbNGo4FYLIatra3RCNfV1RXOzs5wdHQ0amxtbW15ARGLxTA1NeWnrSpOyf4bp5OFhYUoKyuDj4/Pv7r/ilPGOp3O6O+KZb6srMxISIuKilBYWIi8vDwUFBTwswXFxcUoLy+HQCCAubk5LCwsYGtrCy8vL/j5+cHPzw8+Pj583jg7O8PBwcFo2v5lKuN1TlwuX76Mvn37YsGCBZg8eXKtelgVRyb5+flITEzE5cuXcebMGdy7dw8FBQUQCATw9PREUFAQIiIi0KRJEzRo0AAODg6ws7ODjY1NrfP2SkTQaDQoLS1FSUkJCgoKkJiYiNu3byM2NhZpaWnIzc2Fubk53Nzc0LJlS3Ts2BFNmzZFQEAArK2tIZfLsW/fPixZsgTp6ekYNmwY3nzzTQQHB9e6+63LVKzO5eXlyMvLQ05ODlJTU/nRTEpKCnJzc1FaWgrgb8O5RCLhpz/btGkDf39/eHh4wNXVFdbW1rC0tISFhQX/Wledgf4bDOXeMH1nmMqTyWTIyclBRkYGHjx4gMzMTBQUFKCwsBAymQw6nQ5WVlawsbGBm5sbQkJCEBoaioCAALi5ufFTzxXLfX3MyzolLhzH4b333sPevXtx+vRpeHl51XSS+Mqs0+lw//59nDt3DtHR0YiNjeWN6Y0aNUJUVBRat24NX19fuLi4QCKR1MoloP8WtVqNgoIC5ObmIjY2FhcvXsTNmzeRmpoKjuPg4+ODsLAwPHjwALdu3ULnzp0xb948tGnThp9OYPx7Hq22paWlyMrKQkpKCq5fv45bt24hLS0NMpkMxcXFMDU1hYuLC9zd3REcHIzg4GD4+fnBw8MDtra2vO1Bp9PVyg5ObUav16OsrAwlJSUoLS1Ffn4+UlNTkZycjHv37iEzMxN5eXmQyWQwNTWFo6Mj3N3d0aRJE7Ro0QLBwcHw8vKCm5ubUZ2o64JTp8QlLy8PPXr0QFRUFFauXFmjFcDQq0lISMDZs2dx8OBBxMTEQKPRIDg4GFFRUejYsSMCAwPh7e3NzyvXd4gIpaWlyMjIwK1bt3Dq1ClcuXIFSUlJAIC+ffti1KhRaNu2LVti/B8gIpSVlSEzMxOpqam4ffs2rl+/jqSkJOTl5UGlUsHFxQUeHh4ICAhAaGgoQkND4e7uzi/SYBtQqw+O46BQKFBYWMiLTsURpMG+KpFI4OXlhcaNG6NFixYICwuDj4/PYyOcukSdEpdDhw5h3Lhx2L59e425e+E4DtnZ2Th37hx27NiBixcvQiQSoWnTpujTpw86deqEoKAgfurgZccwRRgbG4uTJ0/i2LFjSE5OhkQiQdeuXTF69Gg0b96cGfKfAhFBLpcjPT0dd+7cwblz53Dz5k2kpaWhvLwczs7O8PLyQrNmzdCyZUsEBwfD09MTzs7ObBl3LYYenkNkmLK8desWrl+/juTkZOTm5kKtVsPDwwNBQUFo164dP1Xp6upaZ8SmzoiLTqfD1KlTcfv2bZw6dQr29vbVFrdhlBITE4Nff/0VR44cQW5uLpo2bYqRI0eiW7du8Pf359fdswr9OIZiVlpaitjYWPzxxx84cuQIsrKyEBoaihEjRmDAgAHw9fWtM5WnqtBoNMjKykJsbCxOnDiBq1evIiUlBRzHwcPDA82aNUO7du3QtGlTeHt7w83NzWiKlZW/ukXFJri4uBhZWVlITk7GpUuXcPnyZTx48ABFRUXw8PBA48aN0bVrV0RFRaFBgwaws7Ortc+7zohLWloaunXrhtGjR+PLL7+slukUIkJ5eTkuXLiAdevW4cyZM7CxscGAAQMwZMgQtGzZkt8xXFsfcG3EUOQKCgpw5swZbNu2DefPn4eVlRVGjhyJ8ePHIygoqF7YpJ4Hw1RXamoqTp8+jWPHjuHOnTsoKSmBh4cHWrRogc6dOyM8PBz+/v5GfvRYuat/VGySdTodMjMzER8fj/Pnz+Ps2bNITk6GWq1GUFAQ2rdvjz59+qBx48ZwdnauVdPMdUZc9uzZgylTpmDfvn3o0KFDlVcqpVKJCxcuYPny5fjrr7/QsGFDTJgwAQMGDICPj89LsVqmqqm4GCImJgZbtmzBnj17wHEcRo8ejalTpyIgIKBejmQMngnu37+Po0eP4vDhw7hz5w5EIhFCQ0N522KTJk1gb2/P9lC85Bjqilar5RdtHD9+HJcuXUJeXh68vb3RsWNHDBkyBGFhYXBycqpxoakT4qLX6zFlyhTcuXMHp0+frlIPyHq9HrGxsfjhhx9w6NAhNGzYENOnT8egQYPg5OQEgFXwqsCwuTIpKQk///wztm/fDqFQiDfeeAMTJ06Es7Nzvch3nU6HnJwcnDx5Ejt37sSVK1cgEonQokUL9O/fH+3atUNQUBCbYmU8lYpbHqRSKa5du4ajR4/izz//RHZ2Nvz8/NC7d28MGzYMjRo1qrFD9OqEuGRnZ6Nbt24YMGAA5s+fXyUZRUSQyWTYsGEDVq5cCQsLC8yaNQujR4+GRCJhlbyaMHgvSEhIwLJly7B7924EBgbi008/RefOnWv1ptmnYZhevXv3LrZu3YrDhw+juLgYYWFhGDp0KLp164aAgAB+GpCVNca/wdAxk8lkuHDhAg4cOIATJ06gtLQUbdq0wdixY9G9e3e4uLhU72jm6eeI1R5OnjxJtra2FB0dXSUn6Ol0Orp8+TL16tWLJBIJzZgxg5KSkkiv19f6E/vqKxzHkVqtpj///JM6d+5MEomE5s2bR7m5uXXmmXAcRyUlJXTgwAEaNGgQOTo6kr+/P82bN4/OnTtH5eXldeZeGHUDjuNIq9VSamoqrVu3jrp06UISiYSaNm1K33zzDaWkpJBWq62WtNR6ceE4jj799FMKCAigjIyMSg9fpVLRxo0bycfHh8LDw+mPP/4gtVrNKn0tgeM4KigooC+//JJcXV2pS5cudOPGDdLr9TWdtKfCcRzJ5XLau3cv9e7dmxwcHCgyMpJWrFhBaWlppNPpWPliVDkcx1FZWRmdOnWKJk2aRO7u7uTr60sfffQR3b9/v8qPCK/14qJUKqlLly40ZMiQSs+M0tJS+uyzz8jR0ZHGjBlDycnJrNLXUjQaDR05coSaNm1KgYGBdPjw4SqvHP8FtVpNp0+fpsGDB5OjoyN16tSJNm/eTDKZrFYLIqP+YpgFuHXrFs2aNYs8PDwoICCAFi1aRFKptMravFovLsnJyeTr60s//vhjpWZCcXExzZ49mxwcHOijjz6ikpISJiz0d0EsLi6m/Px8ys/Pr1X5wnEcxcXFUY8ePcjLy4t27txZbUP8f4LjOEpPT6e5c+eSi4sLtWjRgjZu3EhFRUVVkn8ajYYKCgr456RSqSo9Dkb9guM40mg0dOvWLZo8eTI5OTlRVFQURUdHk1qtrvT4arW4cBxHx48fJ1tbWzp16lSlVdKysjJ6++23ydHRkRYuXEgqlarWNKAvgk6no5KSEtJoNP85jLKyMhozZgz5+vqSo6MjjR49msrLyysxlS8Gx3GUmZlJQ4YMIU9PT9q/f3+Njwg0Gg1FR0dTy5YtycPDgz777DPKysqq0nRdvHiRmjZtSu7u7uTo6Ej79u2rsrgY9QuO40ipVNLRo0epQ4cO5OzsTB9++CHl5+dXajtY68Vl/vz55OfnR6mpqZUSpk6nox9//JEcHBzou+++qzf2FY7j6ODBgxQSEkLLly//z/fEcRwVFRXR5cuXSSKRUP/+/amsrOy5fqtUKqm0tLTKRxMcx1F2djb17duXGjZsSJcvX66xZ6hQKOiHH34gFxcX6tq1K509e/aFxP15UavVJJVK6eOPPyaBQEA7d+6s8jgZ9QuO40gqldKnn35KLi4u1KdPH4qPj6+0ulR7tnM+hZiYGN5N9YtCRDhz5gzmz5+PsWPH4q233jI6FrWuU15ejpKSEsjl8v8chkAggL29PRwdHf91vnz//fcIDw/HyZMn/3P8z4NAIICbmxuWLFkCe3t7vPPOO5BKpVUa55OQy+X49NNP8fXXX2PkyJHYvn072rVrx+9RqUrEYjEkEgmsra2rPC5G/UQgEMDJyQkff/wx1q9fj+TkZIwdOxY3btx4rlNM/4laLS5qtRrJyckIDAx8Yffs9PCkvs8//xwBAQH4+OOP65WnYoFAgEGDBuHatWuYPXt2jdxXaWkp73SvqhEIBAgICMD8+fNx7949rFq1CjqdrsrjNVBWVoZPP/0UmzZtwgcffID58+fXm42ejJcHgUAAU1NT9O/fH9u3bwcATJo0CTExMS8sMLXaeVNBQQEKCgowaNCgSgnv999/x927d7Ft2za4urpWSUOg1+uh1+uN3hOJRPy55hzHgeM43mMtPTwn3HB2eMXvA/+/C/fGjRvIz8+HpaUlQkJC+EO2KoYBABKJhI+r4v3pdDrcu3cPsbGxAIDGjRsjJCQEwP+fWy4QCJ7oSVev1/OnFwoEAjRr1gzBwcFGaTQccWuIy3D8rFAofOETM5+GQCBAp06d8Oqrr+Lnn3/GyJEj0bhx40qP51H0ej3WrFmDX375BR999BFmzpwJMzOzKo/3nygpKeHdgTg7OyMyMtLIdYwBengsws2bN5GVlQWhUAh/f3+EhYXxRw0/Wi4NZSMnJweXL19GWVkZgoOD0axZM5iamkKv1yM5ORl3796FQqGAg4MDmjRpAh8fn8eePz08evvu3btISkqCTqeDp6cnIiIijBwxPlqXRCIRZDIZrly5gsLCQri5uaFNmzawsbF54j3KZDLcuHEDubm5EIvFCA4ORmhoKD9bQQ9PqqzYiAqFQn4zq+Gk1or10fCeAcOpmoa6nZaWhjt37qC0tBT29vYIDw83Olri0ThNTEzAcRzu3LmD+Ph4WFpaolWrVvDy8qrWjopQKETz5s2xceNGjBs3Dm+++Sa2b98ONze3/56OSplcqyJiYmLIxcWFtm3b9sLzgDKZjFq2bEnDhw8npVJZSSl8nN27d1NISAgFBQVRcHAwhYWF0cGDB4mISK/X05IlS6h169a8DUmv19OXX35JjRo1oqCgIAoPD6eYmBgiItJqtbRr1y5q1qwZtW7dmkaNGkU9e/akhg0b0pw5c6iwsJA4jiOVSkXTpk3jw5g4cSJvJ+E4jsrLy+nrr78mLy8vatWqFY0ZM4aGDRtGCxYsoDlz5lBQUBA1atSI+vXrRwqFgoiIkpKSyMnJiXr16kVff/01jRo1ikaPHk2hoaHk7e1t9EwSExOpefPm5OjoSAKBgLy8vCgkJIRCQkLogw8+qFIbBMdxlJiYSL6+vvT+++9XuXGf4zi6cOECubu708yZM2t0sYNer6fvv/+eBAIBLVy4kCZPnkzjxo2jvn37kqurK/Xs2ZMyMjKM6o5er6ezZ89Sx44dqUmTJjRs2DAaOHAgBQUF0bBhw+jevXvEcRxxHEdffPEFX5b79u1Lhw4dooiICLK0tCSRSETe3t70119/kVKppC+//JKCgoKoT58+NGbMGOrbty8FBQXR1KlTqbCwkI+f4zhKS0ujcePGUUBAAA0cOJCGDRtGTZo0ofbt29PZs2f5Z7h+/Xpq3LgxBQcHU9OmTengwYM0YsQIGjt2LPXr1488PT2pZ8+eFBcXZ3SPOp2ODh48SK1ataKIiAgaMWIE9evXjwICAmjy5Ml8nty7d4/atm1LQUFBFBQURCEhIfTZZ5/x4Zw9e5aaNGlitHl737591KRJEwoKCqLQ0FDavHkzv5/k+++/p8DAQOratSuNGjWK2rVrR8HBwbRy5Up+NV96ejp17dqVr6uLFi2ir776itzc3MjU1JTMzMyoX79+JJfLq7LoPBWO4+jEiRPk5uZG8+bNeyH7aa0VF47j6Pz582RjY0MnT558IXHhOI6OHj1KdnZ2fENfVchkMjp8+DA5ODhQREQE3bx5k4qLi4no73017du3J5FIRBs2bOArcXZ2Nq1Zs4ZatGhBFy9e5HduHzlyhJycnKhfv36UlpZGWq2WSkpKaPHixWRlZUVvv/02qdVq0uv1lJqaSseOHSNnZ2fq3r07Xzg5jqP169eTubk5jRkzhnJyckin01FhYSF9++235OvrSzY2NrR161ZKSkri944YxMXJyYm+/fZbKi4uJq1WSzdv3iQfHx9q3rw5SaVSIvrbkB8XF0fjx48nc3NzWrFiBcXGxlJsbCxlZmZWubFdq9XS//73PwoLC6Pc3NwqjUupVNLw4cOpWbNmjzXc1Y1BXABQ69at6dy5c6RWq6msrIy+/fZbEgqF9P333/Np5DiObt26RQEBARQeHk63b98mtVpN5eXldOzYMfLw8KBOnTpRTk4OcRxHWVlZdPHiRQoODiY3Nzfq3r07LV26lK5cuUKLFi0iFxcXOnr0KB07dozs7e3piy++oNLSUtLr9VRaWkpLliwhiURCCQkJfPxFRUU0cOBAcnJyoj179lB5eTmp1Wq6efMmNW3alEJCQigxMZE4jqP8/Hy6ceMGdenShUxMTGjYsGF08+ZN/h63b99OdnZ21KNHD17AOI6jU6dOkZubG3Xu3JmSkpJIo9GQQqGgHTt2kIODAw0ZMoSKi4tJqVRSTEwMtWjRguzt7enAgQOUlZXFhzNnzhwCQFOnTuUFr6ioiP78808KCgqiPXv2UEFBAWm1Wpo/fz5ZWVnRu+++S4WFhaTT6SgvL48mTZpE1tbWtH37dn6/SUJCAq1YsYIEAgG1bduWBg8eTIcOHaKzZ8/SgAEDqG3btlRSUlIDJepvtFotv2n5ypUr/7mM12pxOXLkCNna2tLVq1dfOKwPP/yQGjVqxBeeqkQul1PPnj3J2dmZ7ty5w4vIlStXyN3dnYRCIQ0fPpzv9er1enr33Xfprbfe4guxXC6n7t27k42NDf35559GD7igoIBat25Nzs7OdPfuXf791NRUcnd3NxKXgoICioiIIAcHh8dWVaWlpZG/vz/Z2dnR+fPnje7BIC4+Pj704MED/n29Xk99+/Yle3t7unHjhtFv5syZQ5aWlrR///7KycjnhOM4+uOPP8jOzo4uXLhQpXFdu3aNJBIJrVq1qsZXGVYUlxkzZhiN2m7cuEHW1tY0YMAA/n2VSkVTpkwhMzMzWr9+/WO9/Tlz5pBQKDTaUyaTyahZs2ZkampKa9eu5cMqLi6m9957j27evEnLli0jCwsLWrVqlZHLpPz8fHr99deNGuxt27aRqakpvfLKK0a9Yo7jaNmyZSQSieiTTz7hOzlKpZIGDhxIJiYmtGzZMqM0q9VqGjRoEIlEIvr999/5EUT//v3JysqK9u/fb/R9pVJJY8aMITMzM37krdfr6auvviKhUEg///yzUdpbt25NZmZmFBQURNnZ2Xw6d+/eTZ07d+brWFJSEnl5eZG/vz+lp6cb3dPNmzfJxcWF2rVrx3cyiYj2799PAoGAAgMD6cGDB3y8Fy5coI8++ui5V2hWFQ8ePKCAgACaO3fuf54NqNUG/fLycpiamlaKMf/mzZto2LAhXFxcKil1T8fKygq9e/dGUVERTp06xTuWO3r0KLp164bGjRvj3LlzyM3NBfD3qqNTp05hwIAB/NzsgwcPcPPmTf6sbcN9EBFsbW3RtGlTFBcX48KFC880vCUlJSE5ORne3t7w9/c3mj91dnZGaGjoM+/F398fjo6O/P+GlVpKpRJKpfI/51FlIhAIeO+vBptSVXHhwgWYm5ujW7dutcp4HxERYeSU0NraGjY2NpDJZHz5KCoqwunTp2FhYYHIyEij9AuFQkRFRUEkEuHYsWNQqVRG4bu6uqJz5858HHZ2dvzqwLCwMJibm+O7777DggULcOPGDcjlckgkEqxcuRIeHh58OIcOHYJWq0XXrl15W4UhfW3atIFAIMCff/7J2+wMiEQitG3b1ijNpqamaNeuHXQ6HU6cOAEAyMzMxJUrVyCRSBAeHm70fTMzM0RGRkKn0+HYsWPQarUQCATo1q0b7OzscODAAWg0GhARf/zBwIEDkZaWhitXrvD2ksOHD6NHjx6wtLQEEeH8+fOQSqVo3rw5nJ2dje7J398fbm5uiIuLw4MHDx57bu3bt4e3tzefzrZt2+Lrr7/mz4mqKQwu/E+dOvVYWXhearW4KJVKmJqavvChUXq9Hjk5OfD29q6WA6gEAgF69uwJGxsbvsAqFAqcOXMGQ4cOxcCBA1FYWIiTJ0+CiHDt2jWYmZmhadOmfBhFRUWQyWTIzMzEwIED0a5dO/7q2LEjX0nT0tKemg56aNRUKBR8Y1MRsVj8j8cLW1paPpZnYrGYX5hQW3B1dYWlpSUyMzOrNJ64uDi4uLjA29u7SuP5NwgEgseOoTAYpis+I6VSiZycHJiamsLZ2fmxMCQSCczNzZGbmwuFQmH0ubW19VNPf42KisLKlSvh6emJr7/+Gr169ULXrl3x+eefIyUlxchFvKGBXbBggVGZbteuHV577TXodDqkpaU9tuJQKBRCIpE8Fre7uzsAIDU1FcDfixoKCgpgYWFh1Cky3KOLiwtEIhEyMzOhVquNFqhcvnwZ6enpAICDBw+iY8eOmDBhAvR6PQ4ePMgvrrl16xa6d+/OC21GRgY0Gg3OnDmDLl26GN1Tz549kZKSguLiYuTn5z/WEfT09KxVnRQDJiYmiIiIQEFBwX9e5l+rV4vpdDoIBIIXdhNtWHVSnSt6fH190bp1a1y/fh2JiYlQqVQoKipC+/btIZFIsHz5ckRHR2P06NE4evQoWrZsyZ8XA4A/jMzDwwPffPPNU/dOeHl5/ec0Ps+BZ0/6vDZWBlNTUwiFwipfBl1eXg6xWPzCo+nK5tFn8rRn9E/Pjh5ZZWhAKBQ+tR6amppi9OjR6N27N+7evYvjx49j//79+Pbbb7F79278+uuvaNasmdFvJk+ejMjIyCeGJxaLn9hzf1Y7UPEwtX9bPs3NzdG/f398+umnOHfuHBwdHXHlyhV899138Pf3R0BAAM6cOQOpVIpLly7BxsaGn02oGHdkZCTmzJnz1HQ+aSVjbT5t1crKCnq9/j/Xqdp7Z/j7oev1+hfev2BqagoLCwsUFRU9tfJUNoapsZMnT+LEiROQy+WIiorilycGBATg/PnzSEhIwMmTJ7Fw4UKjQung4ABHR0cIhUI0a9bMSHiAvxu52NhY2NraPrMhkUgksLGxgVwu56cqDGi1WpSVlVVNBlQzcrkcWq32qb3rysLV1RXXr19HSUnJYz3j2o6lpSU8PDyQn5+PvLw8uLq68p8REQoKCqBWq+Hm5vavNmdmZmZCo9HAz8+P77G/8cYb+Oyzz7B+/Xr88ssv+PHHHyEQCODv748LFy7AxcXlsRNlOY5DUlIS9Hr9Y40uEaGkpOSxuLOzswEADRo0APD3dJ2zszOUSuX/tXfe8VEU7x//3OVKern03ggJCaGEXqSX0EJVIBRRqSqCoIjtK9gVlSZFEKRIFRQpoUMgEAIhECAEQghppJdLv1zb5/cH3v5yhKaQPu/Xa193t7e3O7s3M5+ZZ2aeBwUFBTAxMdE7R05ODjQaDVxdXfnYQDrT2I8//oj9+/fD0dERBgYGaNmyJczNzfHSSy9h69atOHfuHMLCwhAcHKz3Wzc3N0gkEhgaGqJz5856MYeICHl5eUhNTYWRkVG9bJg9joyMDEil0qdaNx5HvTaLGRkZQa1WP7e4CAQC+Pj4IDk5GRUVFS8odU+/5oABA2BqaoqdO3fixIkTGDBgAEQiEUxMTDB48GDk5+djyZIlMDY21msJAYCnpyfatWuH7OzsaguaiAgHDx5ESEgIkpKSnpiO5s2bo3nz5khPT0diYqLeeQoKCnD79u0Xds9V5/ID4NdS1IaApaeno7S0FD4+PjV6nU6dOiEzMxO3bt16IauYaxMrKyv07t0bFRUVuHDhgp7JjOM4nD9/HhqNRq/yfBa2bNmCjz/+GCqViu852NnZYeTIkTA2NtYThWHDhkEikeD06dPV1oMVFBRg0qRJWLNmTTWTq0ajQXR0tN4zV6vViIiIgFgsRv/+/QE86Ml36tQJ+fn5uHr1qt7xSqUSkZGREIlECA4O1gvO1qpVK/j5+eHSpUtYvXo1unfvDktLSxgYGGD48OHQaDTYuHEjYmNj0adPHz2R6N69OxwcHHD16lXk5eXppZvjOCxZsgTTpk2rZmqszygUCpw/fx4+Pj6PNEc+C/VaXExMTKDRaKBQKJ6rIAsEAnTp0gVJSUlPHKN40bi5uaFTp06IiYlBYWEhP4gqFAr5AcG9e/eiffv21f5AY2NjLFiwAEZGRvjmm2+QmJgItVoNpVKJK1euYMmSJRgyZEg1c8PDWFpa4u2334ZSqcSPP/6IzMxMaDQaFBYWYvPmzcjJyXlh9+vk5AS1Wo2srCyoVCrs3bsXw4YN4ycu1BREhJiYGAgEgqdOUHheOnToABsbG+zYsaNa5VjfEYvFmD17Njw9PbFq1SrExsZCpVJBoVDg6NGj2LVrF3r16oVx48b96xb26dOncerUKVRUVIDjOH7yABGhT58+AB6Uw4EDByIkJAQHDx7Erl27UFpaCq1Wi7y8PKxYsQIFBQV4/fXXYWBgoHd+rVaLPXv24MaNG1CpVCgvL8euXbtw9uxZ9O3bl59gYWhoiPfeew9WVlb48ccfcefOHajVapSVlWHv3r04duwYQkJCEBwcrHePRkZGGDJkCLKysnD27FkMGjSI/75t27Zo1qwZjh8/DhMTE7Rs2VLvt25ubnj33XeRnZ2NH374AVlZWdBoNCgvL8fBgwexe/duTJ8+vdo4V33mypUriI6OxsiRI/+76e4/zTGrJaKjo8nS0pIOHTr03OtcYmNjyd7enpYuXVprU0g5jqOlS5eSgYEBzZ49W28xYUlJCQUFBZFUKqXTp08/8vdVF4O1atWKQkJCKCQkhNq2bUtvvPEGZWZm8nPnv/zySxo8eDAZGhqSnZ0djRw5kvbu3UtED6Zgfv/99+Tu7k5t27blF8599NFHNHr0aL0pvCqVin766ScKDg4miURCjo6ONHr0aLp48SIlJibSlClTyMvLiwQCAfXq1Ys++OADfqpifHw8tWrVinx8fGjo0KEUEBBA8+bNq3F38BUVFdS/f38aOHBgjS8+0y0utLOze+71V89DSkoKvfbaaxQYGEgAqHPnzvTee+9RSUkJbdy4kQYNGkRGRkYkk8lo9OjR/HR2rVZLUVFR1LdvXwoICKCQkBAaNGgQ+fr60rhx4ygxMZGfOr97924aPnw4WVhYkLm5OQ0bNoxmzZpFeXl5emk5f/489evXj/z8/GjQoEE0atQo6tmzJ/n4+NDnn3+uN61Wt35m2rRp5O3tTX379uWP79y5M4WFhelNfdVNRTY0NKRNmzZRSEgIvfzyy9S/f39ydnamwYMHU0JCQrVp1UePHqUuXbpQmzZtaPjw4TRgwADy8fGhGTNmUEZGRrX/jeM4ioqKIisrK+rQoQMVFhbqnW/69On8uqGHp+bqFiovX76c/Pz8qHPnzjRixAgaNGgQBQYG0tdff80/A7lcTvPmzaNu3boRAPL396fRo0fThg0b6k18IrlcTkOHDqU2bdrwdcx/QUBUf/v2d+7cQd++ffHZZ5/hjTfeeC57pVqtxoQJE3D37l2EhYXVmPuXh8nOzkZ4eDjatWuHZs2a8dfkOA4XLlxAdnY2Bg4c+FgbNxFBLpfj2rVryM3NhVgshre3N1q0aMG7sdBqtThz5gxvf9bRpk0b3tym1WqRmJiI+Ph4EBG8vb3RvHlzvP766zh+/DhOnTqF1q1bQ6vVIjIyUq+HJxAI0KNHDxgZGeH06dN6A3zW1tYYOHAg73ImLS0NsbGxUCgUcHZ2Rvv27WvUhxsR4ciRI5g4cSJ++uknTJ48ucb/15ycHIwaNQoajQY7duyAp6dnrdvS5XI5Tp48qTdNVCaToW/fvrhx40Y1c2fnzp35qehEhPLycly/fp13/+Lp6YmAgABIJBL+mBs3buD69et65zE1NUX//v2rjWUolUokJCQgJSUFFRUVMDMzQ4sWLeDh4QGhUFjN/YtGo0FCQgISExOhUqlga2uL1q1bV3OYWllZibFjx+L48eO4desWpFIpYmNjUVxcDAcHBwQFBcHU1PSR7l+Ki4tx7do15OTkQCKRoFmzZvD19X2kiyPggSno2LFjkMlk6N69u94xCQkJuHr1Krp37/7IGV70z/TjzMxM3LhxA8XFxTA1NYW/vz/c3d35nphCocDJkydRVFSk93tfX1+0a9eudmPcPwKVSoVvv/0Wy5cvx9q1azFmzJjG6f4lLy+PAgIC6IMPPnjuFiLHcRQeHk42Njb0zTff1JtWQk3DcRyVlZU9sgWiW4zp4+ND+fn5dZTC56OgoID69OlDXbt2rdairil0LmA8PT0pODiYUlJS6nxBZWNF13MxMjKi1NTUuk5Oo0VnAVm+fDlZWVnRRx999NzhSOr1mIuVlRWcnJwQHx//3OcSCATo2rUrQkNDsWLFCpw/f77BDcj+V06cOIEhQ4bwTgI5juNt0PHx8Zg4cWKNz7KqCVQqFX7++Wdcu3YNH3744X8eePy3CAQCdOrUCStXrsStW7demBdZBqMuoH96sj/++CMWL16M0NBQfPDBB88fjuRFKV9NwHEczZ49m1q3bq3nOuF5zpeenk5dunSh9u3b8/blxgzHcXTo0CGysrKiNm3a0NSpU+mtt96ikJAQ8vDwoHfeeYcKCwsb3HPQaDS0c+dOsrGxoQ8++KBOwvxqtVo6duwY+fn5UYsWLejAgQONJqppfeDEiRM0e/Zs8vLyIpFIRK+//rqeE0jG88NxHKWkpNDrr79OMpmMFixY8MJCm9frMRciwubNm7Fw4UKcOHECAQEBz23bJiJER0cjNDQU3t7eWL9+vZ77hcYG/WMPv3XrFhISElBYWIjKykpYWloiKChIzwV5Q0Gr1eLYsWOYMWMGOnTogHXr1tVar+VhOI5DXFwc3nvvPVy9ehWvvfYa5s6dC0dHxwb1TOsjFy9exJkzZ/R6hB4eHhg5cmS9W8Ta0NDVC8ePH8dnn32GvLw8fPLJJ3j11Vf5sAsv4iL1Fo7jKDo6mqysrGjv3r0vrEWo1WrpyJEj5ObmRn379m0SPZjGgkqloj///JPc3Nxo4MCBde6ZmOhBPs3Pz6dFixaRg4MDBQUF0c6dO6mkpKTO08ZgVIXjOFKr1XTz5k164403SCaTUb9+/SgqKuqFj0PXa3EhIsrOzqaAgAB6//33X2hB1Wq1dPToUfL29qZ27dpRZGRkkxnkb4joPN6uXLmS7O3tadiwYfVuIF2lUtH58+dpyJAhJJPJKDg4mI4cOUJlZWX1Kp2MpodOVJKSkujTTz8lNzc38vLyoh9++IHy8/NrJH/We3HRarX0yiuvUNeuXV94YCbdnP8OHTqQm5sbrV+/no+lwqg/6MbKZs2aRVZWVjR9+nTKzs6ul/8Tx3FUXFxM27dvp06dOvEi8/fff/OxThiM2oLjOFKpVHTr1i369NNPydvbmxwdHWnu3Ll0+/btGm1Q13txIXoQkc7e3p6PjfIi4TiO7t27RxMmTCArKyt69dVXKSEhgVUC9QBdlM2DBw9S+/btycnJiVasWEGlpaX1Uliqogt2tX79eurSpQvJZDJ66aWXaO3atZSRkUFqtbre3wOj4aLVaqmsrIxOnTpFU6dOJWdnZ3JxcaF33nmHYmNjazQ6rI4GIS6xsbFkY2NDv/32W40VyOLiYlq9ejV5eHiQj48PrVq1iuRyOasA6gitVku3b9+mGTNmkLW1NfXp04ciIiKeK+xqXaAbj9m1axcNHTqUZDIZNWvWjObMmUPh4eFUVlamF2CLwfiv6Hopd+/epZUrV1LPnj3J2tqaAgIC6H//+x/dunWrVkRFR72eLaajpKQEgwcPhpOTE3bs2FHN79CLQqvVIj4+HkuWLMHBgwfRsmVLzJkzB8HBwTA2Nmazf2oBjuOQlZWFTZs2YcOGDSAivPnmm3j99derrd5uSNA/awni4uKwa9cuHD58GHl5efDx8UFISAgGDBiAgIAAfqZOQ71PRu1CRNBqtcjMzMS5c+fw999/IzIyEpWVlejSpQtefvll9OvXD3Z2djVWbz6OBiEuRITFixdj8+bNOH36NNzd3Wu08FVUVODUqVNYunQprl69ivbt22PWrFno27cvzMzMWMF/wdA/rjPu37+PXbt24bfffkN+fj7GjBmDt99+G76+vrVeMGoSrVaL7OxsnD17Fvv27cP58+ehVCrh6+uL4OBg9OrVC4GBgXxeY/mNoUNXXWs0Gty7dw8XL15EWFgYLl68iKKiIvj7+yM4OBjDhg2Dj49PnTaKG4S4AEBUVBQGDRqENWvWYOzYsTX+wIgIRUVFOHr0KNauXYtr167B398fU6ZMQXBwMO9fiBX8/0bVQnLz5k3s2rULe/bsQXFxMYYMGYKZM2eibdu2DW4Nzr+BiKBSqZCeno6IiAiEhYUhOjoaJSUlcHFxQbdu3dCnTx8EBgbCw8ODD3bXWJ8Hozq6ckL/RMFMSEjAhQsXcOLECdy6dQsKhQIBAQHo3bs3Bg0aBD8/P1haWtaLPNJgxEUul2Pw4MHw9PTE1q1ba60lqxOZs2fPYuPGjTh37hwsLS3Rt29fjB07Fh07duSdTtaHP7S+o8tuum78zp07+bj0Q4YMwWuvvYbWrVs3alF5HCqVChkZGbh69SqOHTuGS5cuITk5GcbGxnBzc0OXLl3QtWtX+Pv7w9PTUy/mSlN7Vo2VqmKSnZ2NxMREXL58GREREYiPj0dubi4sLS0RGBiIfv36oUePHvDy8npi0MC6osGICxHhiy++wIYNG3Dq1Cl4e3vX+vUVCgWuX7+OPXv24MiRI8jIyIC/vz9CQkLQs2dPBAQEMKF5iKrZKzc3F1evXsWhQ4dw/PhxZGdno2XLlhg7diyCg4Ph5eXVqMxfzwPHcSgsLERKSgqio6P5yiU9PR1SqRRubm5o37492rdvj+bNm8PFxQWOjo56sTdYHqzfVC0bZWVlyMjIQFJSEq5cuYJLly4hISEBOTk5MDc3R7NmzdC1a1d0794dfn5+cHJyqtWw7f+FBiMuAHD16lX0798fX331FaZPn15nhUfXqoiKisKOHTsQFRWFsrIyNGvWDH369MGgQYPg6+sLOzu7OnehXZcolUqkp6fjxo0bOHjwIKKiopCRkQEXFxf06NEDY8eORevWrRuk08zaRic2aWlpuHr1Ks6ePYu4uDhkZGRAoVDAxsYGLi4uCAwMRPv27eHv7w97e3vY2NiwySj1CF2gvtzcXGRkZOD69eu4cuUKLyQVFRWwtbWFu7s7OnbsiO7du8PHxwdOTk4NLkxygxKX8vJyjBo1CgCwf//+Oldu+icuRWpqKmJiYhAWFobIyEjk5eXByckJ/v7+6NatG7p27QoPDw/Y2Ng06pZ5ZWUlsrKycPfuXURGRuLs2bNITExEaWkpvLy80L17dwwdOhStWrWCra1tkxbe50Vnrs3KysL9+/dx48YNXLx4EQkJCXwkUGtra9ja2sLZ2RktWrRAQEAAmjVrBltbW8hkMpiamrL/oAbQjaXJ5XIUFBTw5q3bt28jPj4eGRkZyM/Ph1Kp1GsUBAUFISAgAE5OTrC3t4dYLK7rW3kuGpS4EBHWrVuHTz75BIcOHUKHDh3qjZITETiOQ2ZmJuLi4nD+/HmcPXsW9+7dQ3l5OVxcXODu7o7AwEB07twZPj4+sLOzg6Wl5X8PI1pH0D9O7/Lz85GTk4Nbt24hJiYG165dQ3JyMuRyOezs7NCiRQt07doVL730Evz9/WFhYQGAmWteNFWLsFwux/3793H//n3cuXMH8fHxuHXrFnJyclBYWAi1Ws2LjrW1Ndzc3ODl5QVPT0+4ubnBysoK5ubmMDMzg5GREROfR0BEfOjkkpISlJSUoKCgACkpKUhOTkZSUhIvILm5uVAqlbCwsIC1tTVcXFzg7+8Pf39/+Pj4wMXFBQ4ODnpC0ljKR4MSFwBITk5Gnz59MH78eHzxxRf1siege6QqlQopKSmIj4/HhQsXEBMTg7S0NBQUFMDAwAAuLi5wcXHhI+T5+PjA0dERFhYWMDExgYmJyWOj5tXGPSiVSpSXl6OsrAxyuRxpaWlISEhAQkICkpOTcf/+feTk5MDQ0BC2trbw9fVFp06d0KFDBzRv3hwODg582htLgWkoVC3WGo0G+fn5yM7ORkZGBhITE3Hnzh0kJycjNTUV9+7dg0qlglQqhZWVFaytrSGTyWBlZQVHR0e9zd7enhceIyMjSKVSSKVSSCSSahEnGxI6wVAqlVAqlaisrIRCoUB5eTkKCwuRlZWFrKwsZGZmIisrC/n5+XzPpKioCEQEU1NTmJmZQSaTwd3dHd7e3vDz84O7uzv/7KpG8AQad7locOKi0Wjw1ltvISIiAuHh4bCzs6vrJD0V3SPmOA65ublITU1FYmIiYmNj+UHa4uJilJaWwsDAADY2NpDJZJDJZLC3t4eLiwucnZ1hb28PKysrWFhY8AVaIpFAJBJBKBRW2wQCATiOA8dx/GIr3We1Wg2VSgWVSoWKigoUFRWhsLAQmZmZyMjI4FteugJUWFgIsVjMFx5vb28EBgaidevW8PT0hLu7O8zMzPh7bsyFpiFTdQp4XFwcfvjhBxw8eBA+Pj6YNm0aJBIJkpOTkZaWhqysLOTm5qK8vBwKhQIKhQIqlYrPB2ZmZnwjyMTEBJaWlrwo6V6rHmNkZASxWAyRSASRSAQDAwP+VSAQ8L0kXYPx4X26fKyzEgCotk9nqtZoNNBqtVCr1dBqtaisrERFRQXKy8tRXl7O5/fCwkLI5XIUFhairKyM/17XK1EoFBAKhTA0NOQFVSaTwcHBAc7OznyPz87ODjY2NrC1tYWFhUW1Hl9TLA8NTlyICOHh4Rg1alStrXl50VSdbgg8WLSpaxndv3+f7xVkZGQgMzMTxcXFfMFWq9XQaDQQiUSQSqUwMTGBVCqFWCzmC6uuwAqFQmi1Wr6g6QqdRqNBRUUFKioqoFKpQEQQiUSQSCSQSqUwNjaGjY0NnJyc4OLiAldXV3h4eMDJyQlOTk6wtbXVmyrc0J5/U4bjOKSmpmL9+vXYunUrDA0NMXPmTEycOFGvoVZVhEpKSiCXy1FUVAS5XA65XI6cnBzk5+fzlbNuKy4u5hsturyq1Wr5ho1QKIRIJIJYLOYbSLq8qxMZXW9dKBTy+8RiMX8enYDo0ldVVLRaLZRKJZ8GXX4XCAT8NQwMDCAWi/lrGxsbw8rKihfFqg07a2trWFlZwdLSkn81NDSslvdZGahOgxMXACgqKsKIESNgZmaGP/74Q2++f0PmYdHRtcbKyspQUFCA4uJivdZVaWkpioqKUFZWBo1Go1eg4uLiEBUVhREjRsDW1pbv4eiEyMLCAhYWFjA1NeVblqampnzBquqGhBWghg8RIS8vDzt37sTq1atRWlqKCRMmYMaMGfD09PxXC4IflU91r1qtls+bZWVlUCgUeqYm3XuFQsE3cBQKhV6Pg+M4KJVKAOB7HlXR5U1dQ0ooFEIikUAgEEAikcDY2BjGxsYwMjKCoaEhb7qr+t7U1JTfdPVH1XzO8vzz0yDFperA/v79+9G5c+cmmQkeLtxV32/ZsgUffvghwsPD4ePjA0C/oLDC0zQgIpSWluLo0aP48ccfcffuXQwaNAjvvvsuWrVqxfcM6iJdVV8f9d2z8Ki0PyqfM2qfBjkVRCAQYMiQIbCyssL27dv5LnJTQ9fCqjrOojOH6cZcqpoCHh6PYQWvcVNZWYnw8HCEhoZixowZsLCwwI4dO/Drr7+ibdu2dTZZBHh03q2ah591e9xYI8vfdU+DFBcAcHBwwOjRo/H333/j3r17/6q1w2A0ZjQaDa5fv4633noLr7zyCnJycrBixQrs2bMH/fr1e3Ex0hmMJ9BgxUUkEmHy5MngOA5bt26tZpdlMJoSuvG5tLQ0LFq0CEOGDMHZs2excOFCHDp0CKGhocyjN6NWaVir9x7C29sbI0aMwI4dOzB16tQad8XPYNRHiAiFhYXYuXMnfv75ZxQVFWHChAmYNWsWPDw8GvT6E0bDpcH2XABAIpHgjTfegEKhwJYtW1jvhdGk0AUg++uvvxASEoL//e9/CAoKwsGDB/HNN9/wjkCZsDDqggYtLgAQEBCAUaNGYfPmzUhNTWVjL4xGj853VUREBCZMmICpU6fC2NgY27Ztw6+//op27do1yZAFjPpFgxcXiUSCGTNmQKlUYsOGDU125hij8aNbRxIXF4e3334bY8aMQXp6OpYuXYo//vgDAwcOhJGRUV0nk8EA0MDHXHT4+flh/Pjx2LJlC8aOHYtWrVqxVhuj0VA1DPSGDRvw22+/QSKRYP78+Zg8eTLs7e2Zg0lGvaNR5EixWIxZs2bB2NgYy5Yt41f3MhgNHSKCXC7H2rVrERwcjF9++QWjR49GWFgY3nvvPTg6OjJhYdRLGk2udHd3x8yZM3HgwAGcO3eOjb0wGjREhIqKCuzZswdDhw7FJ598grZt2+LAgQP4/vvv0bx583rpEZzB0NFoxMXAwACTJk2Cr68vvvnmGxQVFdV1khiMf43O9fuZM2cwbtw4zJgxA6ampti+fTvWr1+PDh06NPggUoymQaMRFwCwsbHBBx98gNjYWGzfvp13y81g1Hd0g/XXr1/HrFmzMGbMGGRmZmLFihXYvXs3Bg4cCGNj47pOJoPxzDSKAX0dAoEA/fv3x9ChQ7F06VL07dsXfn5+dZ0sBuOJEBHS0tLw66+/YtOmTTA0NMTChQsxceJE2Nvbs8kpjAZJo+q5AOALJhHh66+/RkVFRV0nicF4JESE/Px8/PzzzwgODsaGDRswduxYHD58GPPnz9eL5MlgNDQanbgIBAL4+vrivffew8GDB7F//342uM+oVxARysrK8Mcff2DYsGFYtGgROnTogAMHDuC7775Ds2bNmKgwGjyNyiymQyAQYOLEiThy5Ai+/PJLdOjQAd7e3nWdLEYTR7eyPioqCj/++CMiIiLQsWNH7Ny5Ez169OADXjEYjYFG13MBHoiLqakpFi9ejLKyMnz11VfMPMaoUzQaDW7cuIG33noLo0ePRmZmJn7++WfmBp/RaGmUPRfggcC0atUKCxYswMcff4zevXtjwoQJbMEZo1bRucFfv349Nm/eDCMjI3z44YeYNGkSbG1tmaAwGi2NVlyABwIzefJkhIeHY/HixWjbti1atmxZ18liNAF0g/U7duzAmjVrUFxcjNDQUMyaNQuenp6skcNo9DTqHC4QCGBiYoIvvvgCYrEYn3zyCeRyeV0ni9GIISKUlJRg9+7dCAkJweeff84P1n/77bfw8vJiwsJoEjT6XC4QCNC8eXN8/vnniIiIwOrVq5nnZMYLh4igUCgQHh7OB+qysLDgV9YHBQXVacx6BqO2adRmsaoMHz4cly5dwvLly9GmTRsMHjyYFXTGC0GtViM+Ph7Lly/H/v374enpiRUrVmD48OEwNTVl+YzRJGkS4iIQCCAWi7FgwQJcv34dH3zwAZo1a4bmzZuzgs/4z2i1WqSnp2PdunXYsmULjI2N8dFHH2HixIlssJ7R5Gn0ZjEdAoEANjY2+O6771BZWYmFCxdCLpezBZaMf41usH7VqlUIDg7Gpk2bMH78eBw5cgRz5syBnZ0dExZGk6fJiAvw/9OTv/76a0REROD777+HWq1mAsN4Jh5eWf/555+jY8eOOHjwIL7++mt4enoyN/gMxj80CbNYVYRCIUaOHIk7d+7gp59+QosWLTBp0iTW0mQ8Fp0b/MjISCxdupRfWb99+3b06NGDLYBkMB5BkxMX4EHkytmzZ+P27dv45JNP4Orqit69e7MKgqEHEYHjONy6dQvLly/Hvn374ObmhmXLlmH48OEwNzdneYbBeAxNyixWFQsLC3zzzTfw9vbG7NmzERcXx8xjDAD/Lyr379/H4sWLMXjwYJw6dQoLFizAoUOHMGnSJFhYWDBhYTCeQJMVFwBwcXHBypUrAQCzZ89GRkYGE5gmji5m/S+//ILg4GCsW7cOY8aMwZEjRzBv3jzmBp/BeEaatLgIBAK0bNkSK1euxN27d/H++++juLiYCUwTRBez/s8//8SwYcPw8ccfo3Xr1vzKeh8fHzZYz2D8C5q0uAAPBKZnz5745ptvcPz4cXz55ZeorKxkAtNEqBqzPjQ0FNOmTYOJiQm2b9+ODRs2oEOHDpBIJHWdTAajwdEkB/QfxsDAAGPHjkVGRga+//57WFlZ4f3334dYLGYmkEaKblzl5s2b/Mp6d3d3LFu2DCEhIWxMhcF4Tpi4/INEIsE777wDuVyOn376CRYWFpg5cyZEIvaIGhO6HmlaWhq/sl4qleKDDz7AhAkT2JgKg/GCYDVnFYyNjfHxxx+jtLQUixcvhoWFBUJDQ+u1rZ2IUFpaCoVCobe/pKQEHMehoKAA5ubm/H6BQAALCwtIpdLaTmqdo1tZv3PnTqxevRrFxcWYMGECZsyYwbwVMxgvGAGxwYVqFBYWYs6cOTh58iRWrVqFkJCQeiswHMdh48aNWL58OTiO4/cXFRUhNzcXHh4eemMGVlZWWLduHfz9/esiuXVGaWkpwsLCsHTpUiQmJmLw4MGYO3cu2rRpU2//WwajIcN6Lo9AJpNhyZIlmDFjBubMmQMTExP069fvkS1brVYLAHVWQQmFQgQGBiI9PR3FxcXVvr97967e527dusHd3b22klfnKJVKREZG4ocffkBkZCQ6d+6MXbt24aWXXmIx6xmMGoTZAR6Dvb09Vq5cCV9fX8yYMQOnT5/W6xkAD+Kib9myBWFhYXWUyge0bNkSrVq1eqZjhw8fDmNj4xpOUd2j0WgQGxuLmTNnYsyYMcjLy8Pq1avxxx9/oG/fvsxlC4NRwzBxeQwCgQCurq5Yt24dvLy8MH36dISHh/MCw3Ec9u7di/nz5+O7775DQUFBnU1fNjIywrBhw546ZmBjY4P+/fvXUqrqBo7jkJycjP/9738YMmQIzp8/j08++QSHDh3CuHHjYGJiwkSFwagNiPFEOI6je/fuUa9evcjT05NOnjxJGo2GwsLCyNHRkQCQSCSidevWEcdxdZbGa9eukY2NDQF47NavXz+qrKyskzT+V5RKJeXk5Dz12XIcR7m5ubR8+XLy8/MjR0dHWrBgASUlJRHHcXX23zAYTRUmLs8Ax3F09+5d6tGjB3l7e9PPP/9MXl5eehV369atKTMzs84qMYVCQQMHDnyssAgEAlq1alWDqmTVajVt3ryZhg4dSnK5/JHHcBxHxcXFtHv3burcuTPJZDKaNGkSXb58mTQaTYO6XwajMcHE5RnhOI7u3LlDQUFBZGBgUK3yFgqFtGTJkjrtvaxevZpEItEjxcXR0ZHi4+MbTGWr1Wpp//79ZGtrS1KplH755RfSarX89xzHkUKhoNOnT9OQIUPIysqKBgwYQMeOHaPKysoGc58MRmOFjbn8C+iBGPMzxKrCcRzWrVuHlJSUOhl7EQgE6Nu3L2xtbR/5fYcOHdCsWbMGMd5ARLhw4QJmz56NvLw8KJVKrFy5EllZWQAexKy/fv063nrrLYwZMwbZ2dlYsWIF9uzZg379+rHBegajHsDE5RkgIty/fx9vv/02YmNjH3vc3bt3sWHDhmqzymoLDw8PdOnSpdp+gUCAUaNGNQhvA0SE+Ph4vPnmm0hNTeX337p1C7/++ivu3r2Lzz77DEOGDEFERAQWLlyIsLAwhIaGwszMjIkKg1FPYIsonwIRIS8vDzNmzMD+/fufKhwuLi44cuQI/P39a72iIyJs3boVU6dOhVqt5ve7ubnh1KlT8Pb2rtX0/FuICGlpaZg8eTLOnj1b7XsrKyvIZDIoFAp+Zb2HhwdbBMlg1ENYz+UpqNVqfPXVVzh06NAz9Uju37+PNWvWPNJ0VtPoPDw7Ojrq7e/atWuDWDiZl5eHOXPmICIi4pHfy+VyiEQi7N27F1999RW8vLyYsDAY9RQmLk9BJBJh2rRpeO+99+Dj4wOxWPzU3/zxxx+IiYmpk7EXZ2dn9OjRg/8sFAoxcuTIem0SIyKUlJTg448/xoEDB5743PLy8sBxHEQiETOBMRj1GCYuT0EoFCIgIACff/45wsPDsXr1avTq1QtGRkaP/U1ubi5WrlypZ5qqLQwMDDB8+HDeMaWXlxc6d+5c6+l4VogISqUS3333HTZv3vzU3mFhYSF++uknVFRU1FIKGQzGf4GJyzMgEAggEong5OSEN954A/v27cPff/+NSZMmwcbG5pEt6EOHDiEiIqJGei+6WWu6jeM4fiMidO3aFa6urgCA7t27w9HRUe8Y3XFVt7pAN/Nu7dq1WLZs2TOL8ZEjR3DixAkW0I3BqMewAf3/iK7FnZiYiO3bt2PPnj24d++eXst72LBh2LlzJ4yNjfmK8OEKXfe+srISZWVlqKiogFKpRGVlpd6r7n1lZSVUKhVUKhWAB2NCWq0WHMdBpVLxkRV37dqFO3fuYOjQoejQoQMEAgEMDAz4AGhisRgGBgYQCASQSqUwNDSEVCrVe//wPhMTE5iamvImKd0GoNr7Z4HjOGzbtg1z5syBXC5/5mcvFArRq1cv7N27F5aWls/8OwaDUXswcXkOdI9Oq9UiIyMDhw8fxpYtWxAdHQ2NRgMTExN88cUX8Pb2RmFhIeRyOYqKivRede8VCgU0Gg20Wi2/cRzHvxIRRCIRvwmFQhgYGPAD2jrREAqFEIlEqKysRG5uLlxcXCAQCKDRaPiegm6ygUajAcdx0Gg0/KbVamFgYMCfv+p1dOJkZmYGS0tLWFlZ8a+69zKZjP+s28zNzXkhqypCR44cwRtvvMGvX3kY3bEGBgawtbWFu7s7PDw80KJFCwQGBmLAgAFNwgkng9EQYeLyFKr2MABApVKhsLAQeXl5yM3NRU5ODlJTU5GZmYmsrCzcvn0bd+7c4XswEokEEokEhoaGMDU1hYmJid5mZmamVzmbm5vD2Ni42mZkZASRSMRX8rqKV+esUveq21dSUoKwsDCMHTsWAoHgkaawqmY1rVYLjUYDtVoNhUKBiooKVFRUoLy8HBUVFVAoFNUEsaysDOXl5fym+6zRaPh7lkqlMDExga2tLRwcHODo6AgXFxcYGRlhyZIlSEpK4p+1QCCAtbU13N3d4e7uDj8/PwQEBMDX1xfW1tawsLCAmZkZf/8MBqP+wsTlH6o+BpVKhZycHGRlZSEjIwNJSUlITk5GSkoKMjIyUFpaivLycigUCkilUlhbW/PiYG1tzVeiVlZWiI+Ph5+fH3r27AmpVAqJRMK/SiSSGpv1pDO1PWniwfOcW2d+U6lUUCqVvKmusrISpaWlyMnJQXZ2NrKzs5GVlYWcnBzI5XIUFxcjIyMD+fn50Gq1/HOXSCRwc3NDYGAggoKC0KZNG7i5ucHR0REymUzP4zMTFgaj/tPkxKXq7arVal5AMjIycPv2bSQkJODOnTvIz89HUVERiAjW1tawtraGjY0NXFxc4OzsDE9PT3h5ecHa2hpmZmYwMTGBsbExb57SwXEclEolDA0Nm3SlqHsO5eXlyM/PR3l5OUpKSnD//n2kp6cjKSkJqampyM/PR35+PkpKSmBsbMwLdvPmzeHv7w8/Pz+4uLjAxcUF1tbWes+0KT9fBqO+0ajF5eHeSFZWFu7fv4/bt28jJiYGN27cQGZmJgoKCiASiWBraws7Ozt4eXmhRYsW8PX1hYeHB2QyGSwsLGBqasoW7dUQRASVSoXS0lIUFRWhsLAQycnJuHPnDuLj45GSkoK8vDwUFhbqjcEEBASgbdu2aNasGZydneHg4MD/R0xsGIy6o1GKC8dxKCgoQHp6Om7evInIyEhcv34dWVlZKCwshImJCRwdHdG8eXMEBQWhVatWcHBw4HsozPFh/YKIUF5ejsLCQuTn5yMpKQlXr15FbGwsUlNTkZ2dDY1GAzs7O3h6eqJjx47o3LkzmjVrBhcXFxYgjMGoAxqFuBARCgoKkJKSgsuXL+PMmTO4efMm7t+/D7FYDGdnZ/j7+/NC4urqCkdHR+bosIGj1WpRUFCAzMxMJCcn4+rVq7hy5Qru3r2LnJwcGBkZwcPDAx06dECPHj0QEBAANzc3GBkZsf+dwahhGqy4VFZWIi0tDVevXsWJEydw+fJlpKSkwMjICO7u7ujcuTO6du0KX19fuLu7w9zcnP8tq1gaF1WzMMdxyMvLQ3JyMq5fv46IiAjExsYiMzMThoaG8PX1xUsvvYTevXvD19cX9vb2zNTJYNQADUZcdKaRpKQknD59GseOHcO1a9egVCrh4uKCbt26oVevXggICICnpycMDQ0BMCFpqlTN1nK5HImJiYiJicGJEydw/fp15OXlwdnZGZ06dcLgwYPRoUMHODs7P5PvOAaD8XTqtbjoptMmJSXhyJEjOHz4MK5duwapVIqWLVti0KBB6Nq1K/z8/GBmZgaAiQnj0eiyOcdxyMnJwfXr13Hy5EmcPHkSqampMDc3R5cuXTB8+HB07doVTk5OrEfDYDwH9VJctFotcnJycPr0aezZsweRkZEQiUQICgrC8OHD0b17d3h7e/OefpmgMP4turU65eXluH79Oo4fP46wsDDcvXsXtra26NevH15++WW0bdsW5ubmLI8xGP+SeiMuuqmoCQkJ2LlzJ/bt24ecnBz4+/tjzJgxGDhwIBMURo2gE5qKigrExMRg//79CAsLQ05ODlq3bo3x48dj8ODBcHR0ZL0ZBuMZqXNx0Zm+rly5gg0bNiAsLAxSqRQDBw5EaGgoOnTowM/uYYLCqGl07nAKCgpw4sQJ7Nq1C5GRkbC1tcXYsWMxYcIEeHp6QigUsvzIYDyBOhMXXU8lNjYWP//8Mw4fPgw7OztMmjQJr7zyCtzd3ZkPKUadovN8HRMTg61bt2L//v0wMjLC5MmTMWXKFLi6uuq5pWEwGP9PnYgLx3FITk7GihUrsHPnTlhbW2PatGkYN24c7OzsmOmBUa8gImg0GsTHx2PdunXYu3cvZDIZ3nnnHYwbNw4WFhasEcRgPEStiovOrv3HH3/gm2++QWVlJaZOnYrXX39dz20HA9i2bRtu3boFAHBwcMCbb77JWsn1ALVajdjYWCxduhRHjhxBp06dsGjRIrRr165eh5JmMGqbWqutiAhpaWl48803MW/ePLRp0wYHDhzAhx9+CGdnZyYsDyEQCFBWVoY1a9Zg/fr1DS7qIhHhzp07WL16NdLS0hpc+h+HWCxG+/bt8euvv2L9+vXIzs7GmDFjsHr1alRUVDSa+2QwnhuqBbRaLUVFRVGnTp3Izc2N1qxZQyUlJcRxXG1cvsGSnp5OPj4+1KpVK9JoNHWdnGocOHCAli1bRhkZGdW+02g09P7775NEIqHvvvuuUf7XWq2WUlNTafr06WRlZUUzZ86kvLy8RnmvDMa/pcb78USEM2fOYNasWTAzM8O2bdvQpUsX1lNpBOzYsQMHDx5Ex44d4eTkpPedUChEaGgoTE1NMXz48DpKYc0iFArh5uaGn376CYGBgfjiiy+Qn5+PFStWwMHBgY3DMJo0NSouRISYmBjMnDkTDg4OWLt2Lfz8/Oqk0NE/5gpdaF8AfEhg4NHrZqhKlEYi4kPuPmoaKj0UQvhpx1ZNR9Xokv/2nv7LeXShjYlI7zf0z3oPXWjl50mbQCBAmzZt0KZNmyemv+oze9r/8aj0635TlxW5iYkJZsyYARsbG8ybNw/z58/H6tWr2UA/o0lTo+KSk5ODd999FyYmJvjll1/g6+tbZ8JSUFCAQ4cO4fDhw3wYYm9vb4wePRojR46sFsyL/hkz2LJlCyIiIiCXy2FpaYnWrVsjODgYvXv3homJCYAHHgUuXLiArVu3IjY2FgqFAg4ODujUqROGDBmC9u3bQyQS8Wt69u/fjz179uDu3bswMDBAQEAAJkyYgF69ekEikTzT/ZSXl+PPP//EX3/9heTkZEgkEgQGBmLSpEno3r07f72oqCjcvn0bAGBpaYmXXnoJv//+O3bv3o2SkhJ06dIFH3/8Mdzd3ZGcnIx9+/bh1KlTSE9Ph1gsRsuWLfm06fxuZWdn49ixY7h37x5UKhUOHTrEXyMwMBAtW7bE0aNHUVhYCADw8fHR663qRPHUqVPYsWMH4uLioNVq0axZM7z88ssYOnQov7bp5s2biI6OBhFBKpWiX79+OHLkCDZv3oy8vDz4+/tj7ty56NSpU51W5GKxGGPGjIFSqcT8+fOxfPlyfPTRR8xXGaPpUlP2No1GQ59++inZ2dnRyZMn69QOzXEcffbZZ2RjY0NffPEFxcTE0Pnz52nOnDlkbW1Nn3zyCanVar3jz507R/7+/tSuXTvatWsXXbt2jf766y966aWXyNTUlHbt2kVED+zuGzduJEdHRxoxYgSdOHGCrl69Sr/88gt5eXmRp6cnxcXFERFReXk5zZs3j2xsbGjevHl08eJFCg8Pp3HjxpGtrS39/PPPemMrjxtzKSkpoRkzZpCtrS19/PHHFB0dTSdOnKARI0aQvb09bdq0iTQaDXEcRxs2bKAxY8aQpaUlNW/enN58801q164djR49mlq3bk1mZmZ09OhRKisro5EjR5K3tzdt2LCBrl27RseOHaMxY8aQra0t/f777/x/GB8fT6+++ip5eHiQWCymAQMGUGhoKIWGhtKOHTuouLiYPvzwQwoODiYDAwOaMmUKKZVKPv1qtZq+//57srW1pcmTJ9OZM2coKiqK5s+fTzY2NjR37lwqLy8njuMoLCyMxo0bR66urmRpaUmLFi2iZcuWUUxMDO3YsYM8PDzI39+fUlJSajQPPSuVlZW0YMECsre3p3PnzrHxF0aTpcbE5e7du+Th4UHz5s3Tq7jrAo7j6N1336WZM2eSSqXi91dUVNArr7xCjo6OdOPGDX5/fn4+denShWxsbCgqKoqvIDiOo+vXr5OzszNt3LiROI6j2NhYcnZ2pqCgIMrKyuKP1Wq1tGPHDrK3t6crV64Qx3G0detWMjExoUmTJlF5eTl/zvz8fOrcuXO1dDxKXLRaLa1evZoMDQ3p7bffJoVCwZ8nMzOTWrVqRe7u7pSYmMifp7CwkFq3bk1SqZSmTJlCGRkZpFar6ebNm9SyZUs6duwYlZSUUHBwMK1du5a0Wi1/ztzcXGrTpg21a9eOcnNz9Z5raGgomZubU2Rk5COf++XLl8nY2FhPXDiOo5MnT5JMJqN+/fpRQUEBf3xlZSVNnTqVDA0NadOmTfyzVCgUNHLkSBKJRPTBBx9QZWUlET1owCxatIhEIhFt3Ljx2TJDLZCRkUGBgYE0adIk/v9hMJoaNTYVOTw8HBUVFZgwYUK9GLyfN28eFi9ezJuLiAiGhobo0KED8vPzcfv2bX5cJiIiAleuXEGnTp0QGBjIm1sEAgFatGiBV199Fa6urgCAvXv3IiMjA0OHDoW9vT1/rFAoRJ8+fTB69GiYm5ujoqIC27Ztg1arxcsvvwxjY2P+nDKZDEOGDEFWVhYOHTr0xPsoKSnB9u3bIRKJMHr0aL3QAnZ2dhg4cCDS0tJw9OjRar81NDTE1KlT4ejoCJFIhObNm+PPP/9Ep06dYGxsjFWrViE0NJQffwEemNICAwNx+/Zt5OfnP/f/oNVqsX37dsjlcowaNQoymYz/TiqVYvz48dBoNNi4cSPUarXeb8ViMbp16wapVArgwXiQv78/RCIRb5arDzg4OGDcuHE4efIkcnJy6jo5DEadUCNjLkSEiIgIuLu7w9/fv14MalpZWeHIkSM4ePAg7t27B4VCAeDBuJBarUZZWRmAB2m/cuUKVCoVmjVrxldkOkQiEb766iv+2KioKABAQEBAtWva2dlh1apVAID8/Hxcv34dAoEA2dnZOHz4sN6xxcXFAIBLly7xkwceRWlpKeLj4yEUCpGWllbtPGVlZSAiXL58udp5bG1t4eHhwe8TiUTw8fHh78XExATbt2/HyZMnkZmZCZVKBSJCSkoKFAoFlErl0x7zU9FqtYiOjoZAIHjkM3NycoJMJkNKSgqysrLg7u7OfyeVSuHi4qJ3vJmZGUQiEf//1QeEQiF69uyJpUuX4vr163r3wGA0FWpEXHQxM5ycnJ5pgLqmqaysxMKFC7Fp0yYMHjwYc+fOha2tLQQCAfbs2YNly5bpLX4rKSkBEcHY2Pips5ZKSkoAAKampk9Mg1qtRnl5OVQqFTZv3lxNtACgT58+8PT0hFarfexqb5VKhYqKCmi1Wvz666+PHDDu06cPXFxcwHGcXq9RIpE88rrAg0H6KVOm4NKlS5gyZQpee+01mJubg+M4LFmyBIcOHXohCwS1Wi1KS0shEAj4CRFVEYvFkEgkUKlUKC8v1/tOIBBUS7/u/nSz2+oLLi4uEAqFyM7OruukMBh1Qo2Ii1AohEQiQWVlZU2c/l8TExODLVu2wN/fH2vWrNEzxcTExFQTEEtLSwgEApSXl4PjuMe6XREKhbC0tATwoEfxJMRiMUxNTcFxHH777Te+x/BvkUgkMDExgUAgwI4dO+Ds7PyfzvMwe/fuxalTpzBlyhR8++23fCWu0WhgZ2f3Qq4BPBADCwsLENEjn5lKpYJSqYSxsfFTBbs+U1lZyc9wYzCaIjUy5iIQCODr64uUlBQUFBTUxCWeGSJCZmYmSkpK4O7uDisrK73vNRqN3meBQID27dtDKpXizp071UxBSqUSs2bNwooVKwAAXbp0AQDcuHGj2rXT09MxevRonDx5EsbGxmjbti3UajXu3LlT7djCwkJMmTIF27Zte+L9mJubIzAwEEqlEklJSdW+z8nJQWhoKP78888nnqcqRIS7d++C4zi0aNGiWm/z4Wek47+YOw0MDNCpUycQEeLi4qp9f//+fcjlcnh5ecHBweFfn78+QESIj4/np1czGE2RGhvQ79evH7KzsxEREVHn/pZsbW1hYmKC5ORkPbGrrKzk11BUpVu3bujUqRMuXbqE2NhY/nvdWNK+ffvg4eEBABgzZgzc3d1x8OBBZGZm6i3W3LlzJ65evQo3NzcYGRlh0qRJEIvF2L59u16rneM47Nu3D8eOHXtqZWRubo5JkyZBq9Vix44d/NhR1WtGRET860rN1dUVAoEAcXFxvKASEYqKih4pnABgZGQErVbLi8+pU6fw6quvIjc397HXMTAwwIQJE2BjY4M9e/boTRKorKzEtm3bIBaLMXXq1Aa7RkSlUmH//v1wdnaGr69vXSeHwagbamoamlwup549e1Lv3r2psLCwpi7zTJSWltIrr7xCUqmUxo8fT8ePH6ezZ8/SvHnzyMXFhQDQ4sWLKS4ujtRqNXEcR5cuXaI2bdpQq1ataPPmzRQVFUUbN26k1q1b0/Tp06msrIyIHkyt3b59O7m4uNCgQYPowIEDFBkZSV9++SV5e3vTqlWr+GnECoWCPv30U7K1taUpU6bQ0aNHKTIykr7++mvy9vamr7/+mp8qfe/ePTp69Ci5ubmRj48PXblyhTIzM4njOCorK+PXy8ycOZNOnDhB586do88++4y8vLxo+fLl/H1kZWXR2bNnqXnz5uTl5UXh4eF08+ZNvXUnuusFBQWRmZkZLViwgCIiIujo0aM0ceJEsra2JqFQSDt37qS7d+/yU5XXr19PYrGY5s+fT+Hh4TR06FDq378/lZaW0u3bt2nHjh1kaGhIISEhdPnyZX7asUajoZUrV5K9vT298sordPToUQoPD6e33nqLbGxsaOHChVRRUUEcx1FhYSFdunSJ+vTpQ+bm5vTnn39SamoqaTQaSkxMpDVr1pCxsTG9/PLLFBsby0/xris4jqOzZ8+SnZ0dffvtt/XSJxyDURvUmMt9IsLBgwcxZcoUzJkzBwsXLqyzwX0iQn5+PjZt2oTDhw+jqKgIDg4OGDRoEIgI69atA/BgCunu3bshk8n4WVLbt29HeHg4CgoK4OjoiOHDh2PcuHEwMzPjzUIcxyEmJgbbtm3D5cuXUVlZiebNm2PChAkYMGAA756EiKBWq3HixAn88ccfuHXrFjiOg5+fH15++WUMGDCAt9HPmTMHp06d0nNVM23aNLz99tsQCARQKpU4fPgw9u7dizt37vCzr8aOHYvevXtDIpGAiLB27VqsXr1a7zxOTk7YvHmzntmJiJCYmIj169cjMjISSqUSnp6eGD58OK5du4awsDAIhUJ07NgRq1evhlQqRXFxMZYvX44jR45ApVIhMDAQ8+fPh4uLC6ZNm4bbt2+D4zgIBAKIxWIsXrwYISEhvNuX8+fPY+fOnbh27Ro0Gg18fX31noNAIEBYWBg+/PBD3gWPUChESEgIFi5ciLlz5+LixYt6rnl27tyJFi1a1Gb20iMzMxPjx49HZWUl/vrrLzg6OtaL2ZIMRm1To/FclEolFi1ahHXr1uH777/H5MmT68zUQf+sbdFtAoEAQqGQ9x+mo6ofrcf95nF+yKqe62nHchzHm9AedayuMq2K7piq6XvSeR5OU1Ue5S/scffwuGs87ngAer+pmv6qkyOe9Puqwv1w+h+VrifdV22Rn5+PuXPn4vTp09i8eTP69u3LhIXRZKlR32JSqRQLFy5EVlYWFi5cCLVajVdffRVGRkY1edlHUrVSfnj/42aDPe43Tzr2WQJ66VrZT+JZFp4+7Tz/Jk1POv5x13jS+Z81/U9L38OC9G+vURsQEbKysrBgwQIcO3YMS5YsQa9evZiwMJo0Ne5y39zcHD/99BOkUik++ugjJCYm4sMPP4S1tTUrfIwGj1arRVxcHObPn4/4+Hj88MMPGD9+PItKyWjy1EqYYyJCWVkZVqxYgeXLl6N169ZYvHgxOnbsyAoho0FC/3im3rVrF77++msYGxvjhx9+QN++fVmeZjBQS+KiQ6VS4dixY1i0aBGys7MxdepUTJs2DY6Ojiw+PKPBoFarERsbiyVLluDEiRMIDg7GokWL0KxZM5aPGYx/qFVxAR60+NLT07F8+XJs27YNjo6OePPNNzFq1ChYWVmxwsmol+hmuCUnJ2P9+vX4/fffYWVlhfnz52Ps2LFPdRXEYDQ1al1cAPBTci9duoRly5bh9OnTaN68OaZOnYqQkBBYW1szkWHUC+ifwGbJycnYunUrfv/9d6jVakyaNAmzZs3ifYgxGAx96kRcdBARKioqcObMGaxevRoXLlyAq6srJk6ciBEjRsDd3b3OQ9gymib0T9TQK1euYMeOHdi/fz84jsPo0aMxffp0NG/enOVNBuMJ1Km46NANjl68eBG//fYbjh8/DqlUiuDgYIwePRpdunSBqanpv5oazGD8W3Smr+zsbBw/fhy7du1CTEwMZDIZxowZg0mTJsHLy6teePpmMOo79UJcdBARlEolEhMTsXv3buzbtw8ZGRnw8vLCiBEj0L9/fwQGBvLx7pnQMJ4X3SLOwsJCXLhwAQcPHsSJEydQXFyMoKAgjB07FsHBwXB0dKw362oYjIZAvRKXqmi1WuTn5yMyMhJ79uxBREQEFAoFfH19MXjwYPTs2ROtWrXi3c8zoWE8K7oeSk5ODqKjo3H8+HGcOnUK2dnZcHd3x8CBAzFq1Ci0aNFCz80Pg8F4duqtuFRFqVQiIyMD586dw/79+xEdHY2ysjK4ubmhV69e6NGjB9q0aQNXV1e+dckqBIYOnZuZyspKJCQkIDo6GidPnkR0dDQKCwvh4eGBHj16ICQkBK1atYKNjQ0bpGcwnpMGIS5VUSqVyMzMRExMDA4fPozo6GikpaXBwsICvr6+6NatGzp27AhfX1+4urryC9qY2DQNqmbn8vJyJCUl4ebNm7hw4QKioqKQmpoKAGjRogV69OiBAQMGwNfXlwkKg/GCaXDiUhWd6SwpKQlnzpzB+fPnkZCQgNzcXFhaWsLDwwNdu3ZF586d4ePjA1dXV73ohkxwGjZVsy7HcSgoKEBaWhri4uJw7tw5XLlyBRkZGVCr1fDw8EDLli3Rp08fdOzYES4uLszkxWDUIA1aXKqiWzuTk5OD9PR0REdH49y5c0hISMD9+/dhaGgIW1tbeHp6om3btggKCoK7uzucnZ31wh4DTHTqIw8LSX5+Pu7fv4+kpCTExsbiypUrSElJQV5eHgQCATw9PREYGIhu3bqhXbt2cHFxgUwmY70TBqOWaDTi8ii0Wi0KCgqQmpqKuLg4xMTEIC4uDhkZGcjNzYVUKoWDgwN8fHzg7++PFi1awM3NDba2trC1tYWlpSWrjOoQtVoNuVyOvLw8ZGdn486dO7h16xbi4+P5/5DjODg4OMDLywtBQUEICgpCs2bN4OrqCgsLC9ZQYDDqiEYtLg9TtXeTkZGB27dv84KTl5eHgoIClJeXw8zMDLa2tnBxcYGfnx98fX3h6ekJmUwGS0tLmJubw8zMDBKJhFVez4Hu/yguLkZxcTHkcjmysrJw9+5d3Lp1C0lJScjLy0NeXh4qKipgbm4OmUwGDw8PtG3bFm3atIGbmxucnJxga2vLHEYyGPWIJiUuVXnYzFJUVIScnBxkZWUhMTERt27dwu3bt5GZmQm5XM7HvLe0tIRMJoOVlRXc3Nzg6ekJT09PODs7w8rKCiYmJjA2NoaxsTFMTEz4iIpNDa1WC4VCgYqKCpSXl/OveXl5SE1NRUpKCm/GKiwsREFBAcrKymBgYAALCwvIZDJ4enqiRYsWaNGiBVxdXWFnZwdbW9tqPZKm+HwZjPpOkxWXx1H1cRARSkpKkJOTg4KCAuTl5SEtLY2vGNPS0lBcXIyysjJUVFSA4zgYGxvD3Nwc5ubmsLCwgJWVFRwcHGBvbw8bGxtemCwtLWFsbAyJRAKpVMq/isViiEQifqurilO3uFCr1UKj0UCj0UClUkGpVEKpVPLvy8rKUFhYCLlcDrlcjtzcXGRnZyM3NxdFRUUoKSnhN7VaDbFYDBMTE5iamsLGxgbu7u7w8PDgBdrGxgY2Njaws7ODoaGhXpqYiDAYDQcmLv+Ch4VHq9VCLpcjPz8fcrkcxcXFKCgoQHZ2NrKyspCdnY3s7Gzk5+ejoqICKpUKKpUKarUaarUaQqEQEomE7+WYmJjA0NBQT2yMjIz473U9IiMjIwiFQr5XJBKJ+PDRun0GBgYQi8VQKpV8WtVqNYgIKpWKFw5dWioqKqptlZWVekKi26/riajVaggEAkgkEojFYj7NZmZmsLe3h4ODA7/Z29vzoiqTyWBjYwNTU9NqY1pMQBiMxgETlxfIw+Kje9VoNCgpKUFpaSnKyspQXl7Ov5aWlvKt/qKiIpSWlj62otdoNNBqtdBqtfz5dXHkdZtuX9V0VA0lXDVGfdV9BgYGvCDpBEwnZrpN1xPTiYSpqSnfC9G9Nzc3r+YH7uFXBoPR+GHiUoc8TowetU/X49D1JnSiolarAQAajQYcx4HjOGg0Gr3r6Ho3ulehUAiBQMD3dsRiMaRSKQwNDauZ4h71nokFg8F4GkxcGAwGg/HCYYs4GAwGg/HCYeLCYDAYjBcOExcGg8FgvHCYuDAYDAbjhcPEhcFgMBgvHCYuDAaDwXjhMHFhMBgMxguHiQuDwWAwXjhMXBgMBoPxwmHiwmAwGIwXDhMXBoPBYLxwmLgwGAwG44XDxIXBYDAYL5z/AxyeTbe927M1AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
- "# Experiments on the Sachs dataset\n",
+ "from causallearn.search.ScoreBased.GES import ges\n",
"\n",
- "The dataset consists of the simultaneous measurements of 11 phosphorylated proteins and phospholipids derived from thousands of individual primary immune system cells, subjected to both general and specific molecular interventions (Sachs et al., 2005).\n",
+ "# default parameters\n",
+ "Record = ges(data)\n",
"\n",
- "The specifications of the dataset are as follows - \n",
- "- Number of nodes: 11\n",
- "- Number of arcs: 17\n",
- "- Number of parameters: 178\n",
- "- Average Markov blanket size: 3.09\n",
- "- Average degree: 3.09\n",
- "- Maximum in-degree: 3\n",
- "- Number of instances: 7466\n",
+ "# Visualization using pydot\n",
+ "from causallearn.utils.GraphUtils import GraphUtils\n",
+ "import matplotlib.image as mpimg\n",
+ "import matplotlib.pyplot as plt\n",
+ "import io\n",
"\n",
- "The original causal graph is known for the Sachs dataset and we compare the original graph with the ones discovered using CDT in this section."
+ "pyd = GraphUtils.to_pydot(Record['G'], labels=labels)\n",
+ "tmp_png = pyd.create_png(f=\"png\")\n",
+ "fp = io.BytesIO(tmp_png)\n",
+ "img = mpimg.imread(fp, format='png')\n",
+ "plt.axis('off')\n",
+ "plt.imshow(img)\n",
+ "plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "## 1. Load the data"
+ "Well, these two results are different, which is not rare when applying causal discovery on real-world dataset, since the required assumptions on the data-generating process are hard to verify.\n",
+ "\n",
+ "In addition, the graphs returned by PC and GES are CPDAGs instead of DAGs, so it is possible to have undirected edges (e.g., the result returned by GES). Thus, causal effect estimataion is difficult for those methods, since there may be absence of backdoor, instrumental or frontdoor variables. In order to get a DAG, we decide to try LiNGAM on our dataset."
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 6,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "image/svg+xml": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "%3 \n",
+ " \n",
+ "\n",
+ "\n",
+ "mpg \n",
+ "\n",
+ "mpg \n",
+ " \n",
+ "\n",
+ "\n",
+ "displacement \n",
+ "\n",
+ "displacement \n",
+ " \n",
+ "\n",
+ "\n",
+ "mpg->displacement \n",
+ " \n",
+ " \n",
+ "-0.64 \n",
+ " \n",
+ "\n",
+ "\n",
+ "horsepower \n",
+ "\n",
+ "horsepower \n",
+ " \n",
+ "\n",
+ "\n",
+ "mpg->horsepower \n",
+ " \n",
+ " \n",
+ "-1.40 \n",
+ " \n",
+ "\n",
+ "\n",
+ "weight \n",
+ "\n",
+ "weight \n",
+ " \n",
+ "\n",
+ "\n",
+ "mpg->weight \n",
+ " \n",
+ " \n",
+ "-17.70 \n",
+ " \n",
+ "\n",
+ "\n",
+ "cylinders \n",
+ "\n",
+ "cylinders \n",
+ " \n",
+ "\n",
+ "\n",
+ "cylinders->mpg \n",
+ " \n",
+ " \n",
+ "-3.55 \n",
+ " \n",
+ "\n",
+ "\n",
+ "cylinders->displacement \n",
+ " \n",
+ " \n",
+ "40.12 \n",
+ " \n",
+ "\n",
+ "\n",
+ "cylinders->horsepower \n",
+ " \n",
+ " \n",
+ "10.14 \n",
+ " \n",
+ "\n",
+ "\n",
+ "acceleration \n",
+ "\n",
+ "acceleration \n",
+ " \n",
+ "\n",
+ "\n",
+ "cylinders->acceleration \n",
+ " \n",
+ " \n",
+ "-0.82 \n",
+ " \n",
+ "\n",
+ "\n",
+ "displacement->weight \n",
+ " \n",
+ " \n",
+ "5.24 \n",
+ " \n",
+ "\n",
+ "\n",
+ "horsepower->displacement \n",
+ " \n",
+ " \n",
+ "0.83 \n",
+ " \n",
+ "\n",
+ "\n",
+ "horsepower->weight \n",
+ " \n",
+ " \n",
+ "6.49 \n",
+ " \n",
+ "\n",
+ "\n",
+ "acceleration->horsepower \n",
+ " \n",
+ " \n",
+ "-4.77 \n",
+ " \n",
+ "\n",
+ "\n",
+ "acceleration->weight \n",
+ " \n",
+ " \n",
+ "61.92 \n",
+ " \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "from cdt.data import load_dataset\n",
- "data_sachs, graph_sachs = load_dataset(\"sachs\")\n",
+ "from causallearn.search.FCMBased import lingam\n",
+ "model = lingam.ICALiNGAM()\n",
+ "model.fit(data)\n",
"\n",
- "data_sachs.dropna(inplace=True)\n",
- "print(data_sachs.shape)\n",
- "data_sachs.head()"
+ "from causallearn.search.FCMBased.lingam.utils import make_dot\n",
+ "make_dot(model.adjacency_matrix_, labels=labels)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "## Ground truth of the causal graph"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "labels = [f'{col}' for i, col in enumerate(data_sachs.columns)]\n",
- "adj_matrix = nx.to_numpy_array(graph_sachs)\n",
- "adj_matrix = np.asarray(adj_matrix)\n",
- "graph_dot = make_graph(adj_matrix, labels)\n",
- "display(graph_dot)"
+ "Now we have a DAG and are ready to estimate the causal effects based on that."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "# Causal Discovery with Causal Discovery Tool (CDT)\n",
- "\n",
- "We use the CDT library to perform causal discovery on the Auto-MPG dataset. We use three methods for causal discovery here -LiNGAM, PC and GES. These methods are widely used and do not take much time to run. Hence, these are ideal for an introduction to the topic. Other neural network based methods are also available in CDT and the users the encourages to try them out by themselves. \n",
+ "## Estimate causal effects using Linear Regression\n",
"\n",
- "The documentation for the methods used in as follows:\n",
- "- LiNGAM [[link]](https://fentechsolutions.github.io/CausalDiscoveryToolbox/html/_modules/cdt/causality/graph/LiNGAM.html)\n",
- "- PC [[link]](https://fentechsolutions.github.io/CausalDiscoveryToolbox/html/_modules/cdt/causality/graph/PC.html)\n",
- "- GES [[link]](https://fentechsolutions.github.io/CausalDiscoveryToolbox/html/_modules/cdt/causality/graph/GES.html)"
+ "Now let us see the estimate of causal effect of *mpg* on *weight*."
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 7,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Estimand type: EstimandType.NONPARAMETRIC_ATE\n",
+ "\n",
+ "### Estimand : 1\n",
+ "Estimand name: backdoor\n",
+ "Estimand expression:\n",
+ " d \n",
+ "──────(E[weight|cylinders])\n",
+ "d[mpg] \n",
+ "Estimand assumption 1, Unconfoundedness: If U→{mpg} and U→weight then P(weight|mpg,cylinders,U) = P(weight|mpg,cylinders)\n",
+ "\n",
+ "### Estimand : 2\n",
+ "Estimand name: iv\n",
+ "No such variable(s) found!\n",
+ "\n",
+ "### Estimand : 3\n",
+ "Estimand name: frontdoor\n",
+ "No such variable(s) found!\n",
+ "\n",
+ "Causal Estimate is -38.940973656209735\n"
+ ]
+ }
+ ],
"source": [
- "from cdt.causality.graph import LiNGAM, PC, GES\n",
+ "# Obtain valid dot format\n",
+ "graph_dot = make_graph(model.adjacency_matrix_, labels=labels)\n",
"\n",
- "graphs = {}\n",
- "graphs_nx = {}\n",
- "labels = [f'{col}' for i, col in enumerate(data_sachs.columns)]\n",
- "functions = {\n",
- " 'LiNGAM' : LiNGAM,\n",
- " 'PC' : PC,\n",
- " 'GES' : GES,\n",
- "}\n",
- "\n",
- "for method, lib in functions.items():\n",
- " obj = lib()\n",
- " output = obj.predict(data_sachs)\n",
- " graphs_nx[method] = output\n",
- " adj_matrix = nx.to_numpy_array(output)\n",
- " adj_matrix = np.asarray(adj_matrix)\n",
- " graph_dot = make_graph(adj_matrix, labels)\n",
- " graphs[method] = graph_dot\n",
- "\n",
- "# Visualize graphs\n",
- "for method, graph in graphs.items():\n",
- " print(\"Method : %s\"%(method))\n",
- " display(graph)"
+ "# Define Causal Model\n",
+ "model=CausalModel(\n",
+ " data = data_mpg,\n",
+ " treatment='mpg',\n",
+ " outcome='weight',\n",
+ " graph=str_to_dot(graph_dot.source))\n",
+ "\n",
+ "# Identification\n",
+ "identified_estimand = model.identify_effect(proceed_when_unidentifiable=True)\n",
+ "print(identified_estimand)\n",
+ "\n",
+ "# Estimation\n",
+ "estimate = model.estimate_effect(identified_estimand,\n",
+ " method_name=\"backdoor.linear_regression\",\n",
+ " control_value=0,\n",
+ " treatment_value=1,\n",
+ " confidence_intervals=True,\n",
+ " test_significance=True)\n",
+ "print(\"Causal Estimate is \" + str(estimate.value))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "As you can see, no two methods agree on the graphs. Next we study the causal effects of these different graphs"
+ "# Experiments on the Sachs dataset\n",
+ "\n",
+ "The dataset consists of the simultaneous measurements of 11 phosphorylated proteins and phospholipids derived from thousands of individual primary immune system cells, subjected to both general and specific molecular interventions (Sachs et al., 2005).\n",
+ "\n",
+ "The specifications of the dataset are as follows - \n",
+ "- Number of nodes: 11\n",
+ "- Number of arcs: 17\n",
+ "- Number of parameters: 178\n",
+ "- Average Markov blanket size: 3.09\n",
+ "- Average degree: 3.09\n",
+ "- Maximum in-degree: 3\n",
+ "- Number of instances: 7466"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "## Estimate effects using Linear Regression\n",
- "\n",
- "Now let us see whether these differences in the graphs also lead to significant differences in the causal estimate of effect of *PIP2* on *PKC*."
+ "## 1. Load the data"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 10,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(7466, 11)\n",
+ "['raf', 'mek', 'plc', 'pip2', 'pip3', 'erk', 'akt', 'pka', 'pkc', 'p38', 'jnk']\n"
+ ]
+ }
+ ],
"source": [
- "for method, graph in graphs.items():\n",
- " if method != \"LiNGAM\":\n",
- " continue\n",
- " print('\\n*****************************************************************************\\n')\n",
- " print(\"Causal Discovery Method : %s\"%(method))\n",
- "\n",
- " # Obtain valid dot format\n",
- " graph_dot = str_to_dot(graph.source)\n",
- "\n",
- " # Define Causal Model\n",
- " model=CausalModel(\n",
- " data = data_sachs,\n",
- " treatment='PIP2',\n",
- " outcome='PKC',\n",
- " graph=graph_dot)\n",
- "\n",
- " # Identification\n",
- " identified_estimand = model.identify_effect(proceed_when_unidentifiable=True)\n",
- " print(identified_estimand)\n",
- "\n",
- " # Estimation\n",
- " estimate = model.estimate_effect(identified_estimand,\n",
- " method_name=\"backdoor.linear_regression\",\n",
- " control_value=0,\n",
- " treatment_value=1,\n",
- " confidence_intervals=True,\n",
- " test_significance=True)\n",
- " print(\"Causal Estimate is \" + str(estimate.value))"
+ "from causallearn.utils.Dataset import load_dataset\n",
+ "\n",
+ "data_sachs, labels = load_dataset(\"sachs\")\n",
+ "\n",
+ "print(data.shape)\n",
+ "print(labels)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "From the causal estimates obtained, it can be seen that the three estimates differ in different aspects. The graph obtained using LiNGAM contains a backdoor path and instrumental variables. On the other hand, the graph obtained using PC contains a backdoor path and a frontdoor path. However, despite these differences, both obtain the same mean causal estimate.\n",
+ "# Causal Discovery with causal-learn\n",
"\n",
- "The graph obtained using GES contains only a backdoor path with different backdoor variables and obtains a different causal estimate than the first two cases. "
+ "We use the three causal discovery methods mentioned above (PC, GES, and LiNGAM) to find the causal graphs."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "## Graph Validation\n",
- "\n",
- "We compare the graphs obtained with the true causal graph using the causal discovery methods using 2 graph distance metrics - Structural Hamming Distance (SHD) and Structural Intervention Distance (SID). SHD between two graphs is, in simple terms, the number of edge insertions, deletions or flips in order to transform one graph to another graph. SID, on the other hand, is based on a graphical criterion only and quantifies the closeness between two DAGs in terms of their corresponding causal inference statements."
+ "First, let us take a look at how PC works."
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 15,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "bc0f31d1492e4934994a6d4ba68f1ad3",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/11 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAF9CAYAAACZG2t7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddVxU6ffHP3foFDAwUNdcdd3VNb4WJaCAiq4NdgACdhdgg4mA2N21dosodq0YKEoqiCCgdE7c8/vDnfnpWswwAwPc9+vFa9eZuc/z3Oc+ce455zmHISICBwcHBwcHR6WFV9YN4ODg4ODg4ChbOGGAg4ODg4OjksMJAxwcHBwcHJUcThjg4ODg4OCo5HDCAAcHBwcHRyWHEwY4ODg4ODgqOZwwwMHBwcHBUcnhhAEODg4ODo5KDicMcHBwcHBwVHI4YYCDg4ODg6OSo1rWDeAoG8RRqMX/FYlEkj8ejwcVFRWoqKiAYRgwDAMAkv9yVA64MaJ8fP5MWJaVPA8AUFVV5Z4Hh8xwwkAlQbx4ZGVlIT4+HlFRUYiKikJiYiJSU1NRUFAg+Q3DMODxeFBTU0PVqlVRu3ZtNG7cGE2bNkXDhg1RvXp1qKp+GjrcYlNxkGaM8Hg8MAwDdXX1L8bIr7/+igYNGqBatWpQVVXlxkcJICIQEfLz85GYmIjo6GhERUUhPj4e79+/R05ODliWlQgIDMNAVVUVBgYGqFmzJho2bIhff/0VjRo1Qq1ataCurv6FoMDB8TkMl6io4kJEEAgEePPmDUJDQ3H9+nUkJSVBR0cHjRs3RpMmTVCvXj0YGxtDV1cXampqUFVVhUgkglAoREFBAT58+IB3794hOjoa0dHRSEtLg56eHjp06IBu3bqhRYsW0NHR4RaYcop4jMTHxyM0NBShoaFfjZH69eujRo0a3xwj+fn5+PDhg2Szio6OxocPH2BgYIDOnTvDxsYGzZo1g5aWFjdGioFY2EpJScG9e/cQHByM6OhoMAyDBg0aoEmTJmjYsCFq1qyJKlWqQF1dHaqqqiAiCIVCFBUVIT09HcnJyYiJiUF0dDQSExOhrq6OVq1aoXv37vjzzz9hYGAAHo+zEnP8P5wwUAEhImRmZiIkJARHjx5FWloa2rZti+7du6NFixaSN/viviV8ribOzs5GbGwsbty4gdDQUPD5fNjb2+Ovv/5CvXr1uAWmnEBEyMrKwtWrV3HkyBGkpqbKbYxkZmYiJiYGoaGhuHHjBgDAwcEBDg4OqF27NjdGvgERoaioCI8ePcLBgwcRHh6Ohg0bwt7eHm3atEGdOnWgrq4u0cgUt0yWZZGfn4/4+HjcvXsXISEhSElJgZmZGQYNGoRmzZpJTAsclRtOGKhAiBf448eP4+DBg6hTpw4GDx6Mzp07Q09PT64qQvHi9fLlSxw5cgS3b9+GhYUFxowZg/r163MLvpJCRMjJycGJEyewb98+1KpVC46OjujSpYtCxkhhYSFevHiBgwcP4uHDh7C1tcWoUaNQu3ZtbgPC/2tmbt68ic2bNyM/Px/9+vWDnZ0djI2Npdr8i1OXUChEfHw8Tp48ifPnz6Np06Zwd3dHy5YtoaKiIpd6OMonnDBQQRAKhbh27Rr8/PxgYmICNzc3tGrVSuFSv9iumZSUhL179+L8+fNwcnLC8OHDoauryy34SoRQKMTNmzexZs0a1KhRA+7u7mjdurXCbfviMRIfH48dO3bgxo0bGDt2LAYMGFCpzQdEhOjoaKxevRrv3r3DuHHjYGNjo/A+ES/5GRkZOH78OPbt2wcLCwuMHz8e1atXr7TPo7LDCQPlHLE2YM2aNbh//z6mT58OKyurUnfeEi/40dHRWLFiBXJzc7FkyRI0bdqUW1zKGLE2IDAwEKGhoZg2bRpsbGygpqZWJmMkPDwcy5cvh7q6OhYvXox69epVujEiEAhw8uRJBAYGYvDgwRgxYoREM1OaEBHev3+PgIAAhIWFYdGiRejQoQOn2auEcMJAOYaI8O7dO0ybNg01a9aEp6dnmUv2YvPBvn37sGfPHixbtgxdunThFpcygoiQkpKC6dOnQ19fHwsWLICxsXGZj5H8/Hxs3rwZZ8+exZo1a9C6detKIxAUFBRgzZo1uHPnDpYuXYrWrVuX6fwgIohEIly8eBErVqzA+PHjMXDgQM5sUNkgjnIJy7L0+vVrsre3p9WrV1NhYSGxLFvWzZIgEonoypUrZGpqShcuXFCqtlUWWJalt2/fkoODAy1btozy8/OV5jmwLEtCoZCOHz9OpqamdOfOHaVpmyLJy8uj6dOn09ChQ+n9+/dKdc8sy1J4eDhZW1vTli1bSCgUlnWTOEoRLs5AOYSI8OHDB0yePBm9evWCq6ur5Ny/ssDj8WBlZQUdHR3MnDkTVapUQceOHSvN219ZQ/+eKJkyZQosLS0xceJEqKmplXWzJDAMAxUVFfTp0wdaWlqYPXs2Nm/ejGbNmlXYMSIQCLB69WqkpaUhKCgIBgYGZd2kL2AYBr/99hs2b94MNzc3GBgYYMCAARX2eXB8CWcmKIfw+XzMmDED+vr68Pb2hrq6usxl0b92XCKSBBuSJ0SECxcuYM2aNdi3bx9q1qzJLS6lgFAohJeXFwQCAZYtWwYNDY0Slff5OJGnhzsAsCyL/fv34++//8bu3buVbpOUB0SEEydOYNu2bdi1a1eJzXmKfB5EhGfPnmHChAnYsGEDWrZsyc3ZSgBnyC1nEBEuX76MuLg4zJgxo0SCgJj169fjr7/+ws6dO+XQwi9hGAa2trYwNzfH2rVrwbKs3Ovg+BIiws2bNxEWFoY5c+aUWBAAPm3Yq1evRu/evXH06FE5tPL/4fF4GDx4MExMTLB9+/YKOUaSk5MRGBiIRYsWycWvRyAQYNGiRejZsyeuXLkip1Z+gmEY/PHHH3B1dYWPjw8KCwvlWj6HcsIJA+WMvLw8bNiwAdOnT0eVKlXkUqaLiwuMjIwQHx8vl/L+i4qKCtzd3fHw4UNEREQopA6O/6ewsBDr1q3DpEmTULVqVbmUyePxMGHCBKirq+Pdu3dffU9EOHbsGO7duydT+erq6pg2bRpOnTqFxMTEkjZXqWBZFrt27YKpqSnatm0rl7dsNTU1TJ8+Hfn5+UhLS5NDK7+EYRj0798fRUVFuHbtGjgFcsWHEwbKEUSEO3fuQEdHB507d5Z6UaF/vYYLCwshFAolpgF1dfUfeg7Tv8FKCgsLwefzZVoYqlevjr59+2L//v0V8s1PWSAiPH78GAKBAF27di3RGCkqKvoi7v2PxgkRYf/+/bh165bMbW/QoAG6dOmCEydOVKjNJz09HZcvX8aoUaNkEgQ+n38ikeiLefszsx7LsigqKkJRUZEkoVFx0dLSwtixY7F3714IhUKp281RvlAurzOOn3L27Fn06dOn2OYB8VtJVFQU2rVrh9jYWERFRYFhGMyePRuNGzf+6vdHjhzB48ePoaWlhaFDhyIrKwu7d+8Gn89HYWEhunbtiqFDh0rlkMYwDHr27AlnZ2fk5OTITavB8TXnzp2Dvb09tLS0pL42KioKmzZtQn5+PoqKivDnn3/C1dX1q7JEIhH27duHiIgIaGtrQ1NTEy9fvkRubi5ycnLQoUMH2NvbS7X5MQyDfv36YfHixRg3bhw0NTWlbr8y8s8//8DExAS//PJLsfujsLAQmzZtQlJSEszNzfHo0SPExsaiatWqmDNnDmrUqPHF7/l8PrZv3443b95AX18fLi4uUFFRQVBQEBISEsAwDLS1teHh4YFmzZoVqw0Mw6Bz586SoEi//PKLtLfOUY7gNAPliIKCAkRGRqJ9+/bFXlQYhoGNjQ2ePn2KjRs3wsnJCYGBgTA2NsaECROQn5//xe/p3zgBGRkZGDhwIGrXro3Lly/D1NQUgYGBWLBgATZu3Ig7d+5I3f46depAW1tbYeYIjk+25GfPnqFTp04yvYXevHkTjRo1QkBAAHx9fXHmzBmcPn36q98REfLy8pCfn4/Bgwdj4MCBqFevHtq0aYPhw4ejffv2UtfNMAyaNGmC3NxcfPjwQerrlREiwv3799G5c2epzu2rqanBzs4OFy9exJEjR+Dh4YHAwECkpaXB09Pzm2/5WVlZ4PF4GDRoEHR0dDB37ly8e/cOfn5+WLt2LRiGwcWLF6Vqf5UqVdCoUSO8ePFCqus4yh+cMFCOEC++NWvWLPY1DMOgdu3a0NXVRYcOHVC3bl3o6Ohg0KBBePLkCV69eiX5rVgr8Pz5c6xevRotWrSAtrY2xo0bh2bNmuH69euIiIiAhoYGHj16JLUqV0NDAzVr1qxwNmFlIi8vD7m5uahTp45M1w8cOBCWlpa4efMmHj9+DD09Pdy7d++LZy0UCrF7924kJSXB19cXv/76K3755Rfo6OigWrVqaNy4scxOcnp6ejAwMEBycrJM7Vc2WJZFXFyc1JE4VVRUULduXWhoaKBr166oVq0aqlSpgkGDBuHSpUtISUmR/JbP52PDhg1gGAYLFixA48aNkZqainPnzsHR0RH6+vrQ09PD9OnT0a1bN6naLxbQYmJipLqOo/zBmQnKEUVFRVBVVZU5psDnzmQGBgYQiURIT0+XfHbp0iVcvnwZTZs2lYSqFQqFCAoKwp07d9CvXz9oa2tLUqXKgoGBAbKysmS6luPnCAQCCIVCmUwE4iN+hw8fxqBBg2BgYACBQPDVsz558iTy8/PRoUMHyTiRl42fx+NBS0vrK41VeYX+DQVdkuOSVatWlQgS1apVQ05ODnJzcyXzee/evXj//j369OkjCUOemZmJ3NzcL4SyevXqSV03wzCoUqUK0tLSJL4KHBUTTjNQjlBRUQHLsjIvvDk5OZL/z8rKgoqKCgwNDSWftWrVSmIH3rlzJ1iWRUZGBrZv344JEybA1dUVQ4YMkWlREVNUVCSXo24c30Z85lxaZzHgkxlq48aNGDJkCDw8PDBkyJBv2pc7dOiAvXv34tatWzh8+PBX4/HzM/CyIBAIlC6IlqwwDAM1NTXw+XyZy8jJyZH058ePH6GrqwsdHR3J9zY2Nti5cyeOHTuGCxcugIhQpUoV6Ojo4OPHj5LnkJCQgEePHklVNxGBz+fL5Qgzh3LDCQPlCHE2s883dWm4efMmUlNTUVhYiBMnTuC3335Ds2bNJItF7dq10aRJE/j4+MDf3x8PHjyAmpoaqlSpgujoaPD5fKSkpCAyMlJSpjQLPsuySElJ+cr5iUN+aGlpQVNTEx8/fpT6WhUVFVStWhUxMTEoLCxERkYGnj179tUzNjExQYsWLbBo0SL4+Pjg2bNnAAAdHR3k5uYiKSkJixYtkmkDLCwsRE5OjtyORJY1DMOgVq1aePv2rczC0eXLl5GdnY3c3FwcO3YM1tbWMDY2lnxfr149tGvXDjNmzICnpyfi4uJgYmICW1tbHD16VGI6WrlyJaKioqSuPzExkUs5XQmoGOJ3JUFXVxfGxsaIjIxErVq1pL6+RYsW2LBhA96+fQs+n4+goCDo6Ohg586diI6ORkJCAk6dOoWcnBzo6Ohg/vz5GDZsGFavXo2goCBERESgRo0aqFu3LkJDQ/Hnn3/C1ta22PVnZmYiNTUVDRo0kLrtHMVDS0sLderUwcuXL9GwYUOpFnANDQ0sX74cK1asgLu7O2rWrImqVasiIiIC+/fvR2ZmJt69e4fg4GD89ttv+PDhAzQ0NDBr1iyMHj0aw4YNQ1BQEF6/fg1zc3OZwh+npKSgsLAQtWvXlvpaZUQcwOfRo0cYNGiQTGU0btwYy5cvR2JiInR0dODl5QUA8Pf3R25uLo4cOYIGDRogIyMDQqEQU6ZMgbu7O1asWIG1a9di0qRJUFFRQYsWLfDXX39JVTefz0dERAQcHR1lajtH+YELR1yOICJs3rwZcXFxWL58ebFDBwuFQjg5OaFTp06YOHGiRO0nVsUWFRVJzhGrq6uDiCAQCAAAqqqq0NDQAJ/Ph1AohLq6OkQikeT/i5sGl4hw6dIl7Nq1C3v37lWqOPkVCSLCwYMHcevWLaxbt07qzHPiZy8QCKCmpib5t/j/Px8nLMtK/q2mpgZ1dXUUFhaCiKCpqSl1aGsiwu7duxEWFgZ/f/8Kk+kyMjIS7u7uOHHihFRHavPy8mBpaQlvb2/Y2tpCIBBAQ0ND8kzFcQeAT4KcUCiU/FtdXV0yV8U+H9I+EyJCREQEJk+ejBMnTkBPT6/Y13KUPzjNQDmCYRjY29tj+PDhePfuHerWrfvTa4gIcXFxyMrKQlJSEj5+/PhVCttvnef+r11fQ0ND8pksG7lAIMDevXsxcODACmMPVhaICCzLIj8/H4mJicjKykJwcDBev36NRo0aSX3WX7yRiJHGx0MWx0UxeXl5OHr0KObOnVthBAHgUzCl2rVr48qVK+jXr1+xnodIJEJUVBQKCgrw5s0b5ObmwsjI6Ivf/LevvzUvVVRUoK2tLVO7iQgHDhxA9+7doaurK1MZHOWHijPjKgl169aFlZUVNm3aVCwnMSLCP//8AwsLCxgZGSE6OroUWvl1G65du4bMzEx0796dsz2WELFT1/v373Hjxg34+flh1KhR6N27N6ZMmYKIiAiYmZkhKCio3ESOEyfyMTAwkClGgTKjpqaGcePGYcuWLcjIyCiW74BQKMSDBw/g6Ogo8cMoTYgIL1++xK1btzBkyBBuzlYCODNBOYOIkJqaiiFDhmDOnDmwsbFR6olKREhKSsKIESPg6ekJS0tLpW6vMiIOBJWcnIznz5/j/v37ePbsGbKysmBsbIy2bduibdu2aNKkCYyNjaGuro6MjAwMGzYMHh4e6NWrl1L3OREhOjoaY8eORVBQEP744w+lbq8sCAQCzJ49G7q6uvD29lZq7RgRITc3F87OzrC3t8fIkSMr3PPg+BrlHZEc34RhGNSoUQPe3t7w9vZGnTp10Lx5c6WdrNnZ2Zg1axbMzc1hbm6utO1UJogIBQUFSEpKwtOnT3H37l28ePECRUVFaNCgAdq3bw8HBwc0bNgQhoaGEhvy531rZGSEhQsXYubMmahbty5atWqllH1PREhLS8PUqVORlZWF8PBw1KxZE9WrV69QpgJVVVXMnj0bo0aNwuHDh+Hk5KS098fn87F8+XJUrVoVjo6OSjluOOQPpxkop7Asi0OHDmHHjh0ICAhAixYtlGrSEhEyMzMxZ84c3L17F9WqVUPPnj3h4OCAX375pdiOh5UB8Zu/ePO/ffu25EhfgwYN0LlzZ7Rr1w5169aFnp4eGIYpVt+xLIsTJ04gKCgIa9euVTqBgIiQkpKC8ePHSxJZHTt2DJGRkWjXrh0GDhyIVq1aQVNTU6naLSti1buHhwfc3d0xYMAAqR08FU1BQQFWr16NZ8+eYePGjV8EPOKo2HDCQDlGIBBg+fLlOHLkCIKCgmBmZqYUbxtEhLdv32LWrFmoW7cuZs+eLTm2eOvWLVSrVg19+vRB165dYWxsrBRtLk3EXvkfPnzA06dPcf36dTx9+hT5+flo0qQJTE1N0a5dO9SvX18SXEbWBVkkEuHUqVPw9/eHt7c3unbtqhQbkNg0MH36dGhra+Pdu3ewsbHBiBEjoKKiggsXLuDUqVNQV1fHwIED0b17d5lDHCsTRITnz59j6tSp6NOnD5ydnUvkdCnPdmVkZGDx4sVIS0vDmjVrvnI05qjYcMJAOUP8uBITE7Fp0ybcunUL5ubmuHHjBv766y+MHTtW8vZYFm0TCoW4evUqFi5ciH79+mHixInQ1NSUtDsrKwv37t3D8ePH8erVK7Rs2RL9+/dH+/btJUeXKtoCJI4el5WVhejoaNy4cQP37t1DWloa6tevL9n8GzVqJNWbf3FhWRY3b97EwoULYW9vj3HjxkFfX7/MxohAIMCZM2cQEBCAkSNHYvjw4UhOTsbu3btx5coVdO/eHaNHj4aBgQEePnyIgwcP4tWrVzA3N4ejoyN+/fVXqKiolNtxQkRISEjAnDlzJHED6tWrV2bPQ5z2esGCBWjevDnmz5+PKlWqlNv+5ZANThgoRxARPnz4gL179+LkyZOwsbGBs7MzatWqhYSEBCxduhTJycmYPn06OnfuDHV19VKZ0OIFJSYmBv7+/oiNjQXDMGjYsCFmzJghCTL0eVtEIhHev3+PkJAQnD59GhkZGbC0tESfPn3w66+/llrbFYF4SvH5fCQmJuL+/fu4evUqoqOjYWBggHbt2qFr165o3rw5DAwMSuVNnYjw7t07LFu2DPHx8Zg2bRrMzMxKdYywLIuIiAj4+fkhPT0dXl5eaNOmjUQzxLIs4uPjsXXrVty+fRv9+/fHkCFDYGhoiPj4eBw7dgznz59HvXr1MHz4cHTq1Ana2trlcpyIsz5u2bIFJ0+exIgRIzBgwIBS24TFY/T9+/fYvHkzQkNDMX78ePz1119cDJBKCicMlAPEyU5OnDiB3bt3o1WrVvDw8ECjRo2+ULHz+XwEBwdj/fr1qFKlCpydndGhQwfo6OgoZIERawKioqKwZ88e3Lt3D3379sWIESPAMAx2796NEydOYPDgwRg2bNg3NRbiN8WYmBicOXMGV65cgZaWFhwcHNC9e3eYmJhI4u0rM2KBKDMzE69evcK1a9dw9+5d5OXloWXLlujatSvat2+PGjVqlKmgw+fzce3aNaxbtw7a2tpwcXFBx44doaurq7AxIhAI8OLFC+zatQvPnj3DkCFD4Ojo+N06RSIRoqOjsWHDBjx//hyurq5wcHCAtrY2MjIycPXqVezfvx98Ph9Dhw6FnZ0dDA0NlX6MfAuxgLR27VokJCRg+PDhsLOzQ/Xq1QHIX0smFsrevn2LI0eO4Ny5czA1NYWHhwcXcriSwwkDSoz4PPm1a9cQGBgIY2NjTJw4EX/88cd3jyaJ3zguX76Mffv2IS8vD7a2trCxsUGTJk2goaEhsxpaPFSEQiGSk5Nx+/ZtnDx5Eo8fP4azszOGDh36xYLCsiyio6Ph5+eHd+/eYfr06TA1NZVkVvte2x8/fowTJ07g0aNHaNCgAfr3748uXbrAwMBA7ir0kkBEEg3Hw4cPERwcjIiICBgaGsLU1BQWFhZo2rQpdHV1lcovgogQHByMqVOnon79+hAKhbC1tUW3bt3kNkYEAgGSkpJw8+ZNnD59GtnZ2ejTpw8GDBhQLNu/uG/DwsKwdu1aFBQUYOrUqejcuTNUVVVRVFSEf/75Bzt27MDr16/Rp08fDBw4ELVq1VKqMVIciAjZ2dlwdnZGfHw8tLS00LlzZ9jb26NVq1YlNh2JBYCPHz/i4cOHOH36NF69egVTU1OMGDECjRs3Vgo/Eo6yhRMGlBDx5H369CnWrl2LrKwsTJo0SRLvvbjhf4uKivD8+XOcOXMGhw8fRq1atdCmTRu0b98ezZo1Q82aNVGlShWoqqpKNitx2eI3XZFIhNzcXKSlpSEuLg6PHj1CWFgYMjIy0LJlS1haWmLXrl3o1q0bxo8f/5WQIn4zvHbtGvz9/dG4cWNMnToVDRo0+O59fJ6h7ebNmzh+/DgSExPRsWNH/PXXX/jjjz8kSZtKG3G/vn79Grdu3UJISAiSk5PRuHFj2NjYoHPnzqhVq5bSnpZgWRbBwcFYunQpvLy8YGZmhoiICJw9exa3b98GwzBo2bLlT8eIeNkQj5GcnBykpaUhNjYWDx8+xOPHj5GTk4NWrVqhV69e6NChg0zaB3F/X758GRs2bECjRo0wZcoUSWRFoVCIyMhIiWbK1tYWQ4YMQf369cuFUCDW+nl5eSEnJwfLly9Hbm4uLly4gJCQEGRmZqJhw4b43//+h99//x116tSBkZHRFwLbf+csy7IoKCjAx48fER8fjydPnuDBgwdITk5GvXr1YG9vDysrqwp3fJOjZHDCgJJBREhMTMSGDRtw7949jBkzBn379pVZ1U9EePr0KSZOnCixFz969AgxMTHIz88HwzDQ0tJClSpVoKmpCVVVVbAsi6KiIuTk5CAnJwcsy0JVVRX16tVDq1at0L59ezRt2lTypv727Vu4ubmhT58+GDt27De1FmIHul27duHEiRMYNGgQhg4d+lMbqdgUkZCQgIsXL+LChQsQiUTo1q0bevXqhQYNGnxX0yAviAj5+fmIjIxESEgIQkNDUVRUhHbt2qFbt25o3bo1DAwMlN6cIRKJ8Pfff2PDhg1YsWIFOnTo8MVGUlBQgNevXyMsLOyrMaKurg4DAwPo6OhAXV0dAoEARUVFkmx6LMtCTU0NNWvWxN27d7Fy5UpYWlpKHBVL2i9iE8y+fftw5MgR9O3bV+JkKP4+Pj4ee/bsQUhICLp06YJRo0Yp9Vuv2IN/5syZ0NbWxrJlyyRaALEQnZSUhPDwcNy/fx+vXr2SRDAUPw9tbW1JXoKioiIUFBQgKysLQqEQPB4PNWvWxG+//YYOHTqgefPmqF69erl2vuRQHJwwoCSIo34dPnwYe/fuhbW1NcaNG4caNWqUaOLm5+dj7NixkpwG4rrEb3PZ2dnIzs5GRkYG3r59i9WrV8Pb2xuGhobQ09ODgYGB5L/it91v2f1fv34NNzc3DB06FMOGDfvuAsyyLGJiYrBmzRokJCRg+vTpxdZ4EBEKCwsRERGBU6dO4ebNmzA2NkafPn1gaWmJGjVqyG3hF7+xRURE4PLly7h16xZ4PB7MzMxga2uLZs2aSZzXysPCKhAIsHPnThw5cgRr165Fy5Ytf6qZEY+RrKws+Pr6olq1arCwsACfz4eqqio0NTWhr68vGSNVqlSBiooKfH19IRAIsHDhQrm/ebIsi9evX2PNmjV48+YNZsyYATMzM4nTG8uySE5OxoEDB3DmzBl06tQJzs7OaNiwoVIJBeJIolOnTkW9evXg5eX1XWdI8RItEolQUFCAzMxM5OTkID09HQUFBSgqKsKePXvQoEED9O3b94u5q6GhofRCKoeSQBxlDp/Pp2vXrlHPnj1p1KhRFB4eTiKRiFiWLVG5LMvS3r17afDgwZSXl/fT379584ZsbGwoNzdXprpevXpFVlZWdOjQIRKJRD/8bVFREV28eJFsbW3Jzc2NoqOjf3jNt8pIT0+nCxcukIuLC5mZmdH48ePpypUrlJWVJVPfsSxLOTk5dOfOHZo/fz5ZWVmRg4MDrVmzhp49e0b5+fklfiZlQWFhIa1YsYJ69OhBMTExUt+DSCSikSNHUnBwcLF+//btWzIzM6PIyEiF9BfLssTn8+nixYvUrVs3mjJlCiUmJn5RF8uylJSURCtXriQzMzOaPXu21GNMUbAsSwkJCdSnTx9asmQJFRQUlKifWJalhQsX0qZNm+TYSo7KBicMlCEsy1JcXBxNnDiRbGxs6MyZM1RUVCSXBZRlWYqPjydzc3N6/PhxscqMi4sjGxubYgkO36szPDycLCws6MSJEz9deMUbup+fH5mamlJgYCBlZmZKdf8sy5JQKKS3b9/Srl27qF+/fmRtbU1Lly6lp0+fUmFh4Q/LY1mWcnNz6cGDB7Ro0SLq1q0b9erVi/z9/SkiIkJyfXkUAoiIcnNzaf78+TRw4EB69+6dTPfB5/PJ3t6enj17VqzfsyxLfn5+NHXqVBIKhVLXV1xYlqUPHz7Q0qVLydLSko4dO/bV/GFZlt69e0fLly8nMzMzWrx48VeCQ2nCsixFR0eTnZ0drV27loqKiuRS5vLly8nf318OLeSorHDCQBnAsixlZ2fT+vXrqUuXLrRq1Sr6+PGjXBcogUBAkyZNIl9f32K/DcXExJCNjQ0VFBTIXC/LshQWFkZmZmZ0/vz5n96TeKONjIwkFxcXsrOzo+DgYOLz+TLVXVRURM+fPycfHx+ysbGh3r1705YtW+jNmzckFAol9RUUFNDTp09p6dKl1K1bN+rRo4dEA1DeBQCiT32RmZlJEyZMoNGjR9OHDx9kvp/MzEyytramxMTEYl+TkpJClpaW9PTpU4X2I8uyJBKJ6P79++Tg4EBubm4UHx//lUAgfhv38vIiMzMz8vf3p7S0tFJ9xmJh2crKirZt20YCgUBu5QYEBJCvr69cyuOonHDCQCkifou9ffs29e7dm0aPHk0RERFyV12yLEuhoaHUrVs3+vjxY7Gvi4qKom7dulFhYWGJ67937x6ZmppSSEhIsRZc8UZ+4cIF6t69u8R0IKu6X6zyv379Ok2ePJnMzMxo9OjRdPToUdq4cSM5ODiQjY0NLVu2jJ4+fSpR1ZZnAUAMy7KUmppKI0aMoMmTJ8tsNhHz9u1bsrS0pJycHKnasGXLFnJxcZHbpvez+jIzM2nFihVkbm5OZ86cIYFA8JVQIBKJ6OXLlzRp0iSysrKiAwcOUF5ensKfO8uy9ODBAzI3N6eDBw/KVWPCsixt3ryZFixYILcyOSofnDBQSrAsS8nJyTRv3jzq2rUrHT9+/KcqbFnJzs4mBwcHOnv2rFTlv3r1irp16ybTW/l/YVmWrl+/TqampnTr1q1it+Nz00GXLl1o3bp1UpsOPi9LJBJRcnIyrV+/nurXr08NGjSgGjVqkJWVFYWEhEg2googBBB9uufExETq378/eXl5yWzy+ZwnT55Qr169pFZpp6enk42NDd29e7fU+lcsbNva2tLMmTO/+/YvEAjo4cOH5OjoSH/99ReFhoYSn89XmI/D9evXyczMjE6fPq0Q4X/37t00e/ZsuZbLUbngDpkqGPo3cNDJkyfh5OQEFRUVHDx4EH/99ZfkrLC86zt06BCqVq0KGxsbqcpnWVZu3vEMw8DMzAze3t6YM2cOHj58KPGK/tl1hoaGmDx5Mnbs2IFnz57B0dERISEhEAgExSqD/j0KeOfOHcycORODBw9GWFgY1q1bh/v37+P27dv466+/sGbNGvTv3x+BgYGIiYmBUCgsVvnKChEhNjYWLi4u6Ny5M+bPnw9tbe0Sl5uUlARjY2OpvfENDAwwZswYBAUFQSAQlLgdxUFFRQWdOnXCvn37oKqqimHDhuHRo0dgWfaL36mqqqJdu3bYuXMnRo0ahWXLlmHy5MmIiYmR6xhgWRYXL17E/PnzsWjRIvTs2VPuJywYhoGGhgb4fL5cy+WoZJSdHFLxYVmWYmNjydXVlXr16kW3b99WqEMVEVF8fDyZmZlReHi41Ne+ePGC7Ozs5KrWFYlEdObMGTI3N6cnT55I7Rz4uenA3d39u6YDlmVJIBBQXFwcBQUFkZ2dHfXo0YM2b94s8Rf47+/z8/PpwYMHNH/+fLK0tCRHR0c6dOgQJScny+U0R2nCsiw9ffqUrKysaOvWrXLR7ojL3blzJ82dO1em/sjOzqYePXoU21wkT/h8Ph0/fpzMzMxo+/bt3/XaF2ujAgICyNTUtETaqM8RCoV09OhRMjc3V7h25OjRozRx4kSFlc9R8eGEAQUg3mh27NhBZmZmFBAQIJfF5WcIBAKaPn06LVu2TCZVZHh4ONnb28vdxisSiejvv/8mS0tLevHihdT9IF6s16xZ89ViLXbGvHDhAo0ePZrMzc1p1qxZdP/+/WIfBRSJRPTx40c6d+4cOTs7k7m5OU2cOJGuXbtG2dnZSi8UsCxLt27dIjMzMzpy5Ijc7dG+vr4UEBAg8/WnT5+mfv36UX5+vtzaJU39L1++pAEDBtCECRN+6DQoEokoKiqKxo0bJxFgZDUdCAQC2rVrF3Xt2lVqIVgWjh07RuPHj1doHRwVG04YkDPixWfo0KHk6OgoiRlQGvXeuXOHrKysKDU1VaYynj59Sj179lSI9kIoFNL+/fvJ2tqaXr16JdPiKBKJ6NWrV+Ts7Ez29vZ08uRJWrt2LVlbW9PAgQPp6NGjlJqaKvNbvdjBMyEhgXbs2EF9+/YlGxsb8vHx+eKUgTIhEonowoULZGpqSpcuXVKIPXrSpEl05MgRmcvIz8+nfv360alTp8qk/8TOhfPmzaNevXr9UCAVa6POnTtH3bp1o2nTpkl1JFMcAyEoKIi6d+8u81iXlpMnT5Kbm5vC6+GouHDCgJxgWZby8vJo27ZtZGZmRlu2bCkVL2UxeXl51K9fP/r7779lrvPx48fk4OCgMFOGUCiknTt3Urdu3WQ6KSA+IXDp0iXq1KkT1axZk2rXrk1Hjx4tceCWb9VVWFhIz549kxxT/Ouvv2jbtm0UHx//lad6WSAUCunw4cMKVUOzLEuOjo50/fr1EpUREhJC9vb2lJ2dLcfWSdcGPp9P+/btIzMzMzp37twPx7k4hsGSJUvI0tKSTpw4USwHysLCQvLx8SEHBwd6/fp1qY2RM2fOkIuLS5mPSY7yCycMyAGW/RR9b8iQITRkyBCKiIgo9fPLhw8fpkGDBpUoRsCjR4+oT58+CvVrEAqFtGXLFrKzsyv2Yik+EbB161aytbWlPn360L59+yguLo4CAwPJzMxMpoBFxUVsiggNDaVJkyaRubk5jR07ls6dO0cfP34sk6h2fD6ftmzZQtbW1vTs2TOFjTeBQEA9e/akJ0+elKicoqIiGjp0KO3fv79MNyyRSER37tyhrl270ubNm38a5EsoFNLdu3epZ8+e5ObmRm/evPnu7/Py8mjevHk0aNAgSkpKKtX7PHfuHI0dO5YTBjhkhhMGSoA4eM2ePXvI1NSUNm/eXKraADFpaWlkZWVF9+7dK1Hd9+/fp379+ik8apxAIKCgoCDq2bMnJSQk/NAh8NWrV+Tt7S0JN3zv3r0vYgKwLEtRUVHk5uZGPXr0kDlgUXHbLhKJKCUlhQ4fPkyOjo5kYWFBc+fOpfv375fasy8sLKRVq1bJHF5YGnJzc6lbt24UGxtbonLEsSdsbGwoPT1dTq2TvS0xMTHUp08f8vT0/Gn4bbGZYeXKlWRubk6nTp36aoxlZWXR5MmTaeTIkSUK8CQrFy9epNGjRytFuGWO8gknDMgIy7L05s0bcnZ2pn79+tHTp0/LZCKKRCJavXo1TZo0qcSOf3fu3KGBAwcq/MSDWGXr5+dHffr0+eItSux8ef36dXJ2diZLS0vy8fGh2NhYSQTB75V36dIlsrOzIw8PD4VvkmJhJTo6mgICAsje3p7s7e0pMDCQYmJiFBZoJy8vjzw9PWnAgAEyhxeWhg8fPpClpaXMfiifIxAIyNXVlbZs2VLmb7DiwExjx44lFxeXYgXnEolEdPfuXbKzs6OZM2dSamqqxLnV2dmZ3N3dS8VR+FtcvnyZRo4cyQkDHDLDCQNSIt4ETp06RWZmZrRmzZoy8zhnWZZev35NZmZmMkfr+5ybN2+Sk5OTwoUBMXw+n5YvX079+vWj9+/fU0ZGBh0+fJh69+5NPXv2pL1790resopzbyzLUkZGBvn7+5OZmRmtW7euxNH3ilPn58cU58yZQxYWFuTk5ESHDx+m9+/fyy3pVGZmJk2cOJFGjRpVaqF03717R+bm5jIlr/ov4uOPlpaWlJKSIofWlbw9ubm5NGvWLBo8eHCxVPtiX4K5c+dS9+7d6fz58zRkyBCaMWMG5ebmlpmQwwkDHCWFEwakQLwQzJkzh7p370537twp08knFAppzpw5Mh8l/C/Xrl2jYcOGldo9iZ30pk+fTmZmZtS1a1caMWIEXbt2rUQqd/ERMVdXV7K3t6fLly8rLLrcf2FZlj5+/EhnzpyhMWPGSI4pXr9+nXJycoot2Py3zLS0NBo5ciRNmjSJMjMzFdT6r5FHvorPEQqFNGXKFPLz8ytz7YCYgoICWrZsGfXu3fuHPgGfIxAIaPv27VSlShWJ6aMs7+fy5cs0atQoThjgkBkuAmExYVkW//zzD0aMGAGhUIh9+/ahY8eOco8mVlyICC9fvsTdu3cxZswYubRDJBKVSs53IgLLskhMTERgYCDu378PNTU1MAyDVatWwcLC4ru53YsDj8dDkyZNsG7dOkyePBlr1qzBpEmT5B5d7lswDAMjIyP07NkTmzdvxt69e9G6dWv4+fmhb9++WLFiBSIiIsDn84sdTTEpKQlubm6oW7cufH19UaVKFYXew+dkZ2dDV1dXbuOcx+PB3d0dJ0+exLt375Qi4qOmpiZmzJgBa2truLm5IT4+/oftIiIkJCTg2LFjmDRpEqpXr45Zs2bh/fv3ZXY/ytCPHOUbThj4CUSEwsJCbNmyBdOnT4eLiwt8fHxQrVo1uYcSlgaRSISgoCA4OTnB2NhYbmUqWhhgWRZv3rzB4sWLMXToUGRmZmL79u04deoU2rdvj9mzZyMrK0sudamrq6N79+44dOgQfv31V0lo3MzMzFIRClRVVVGvXj2MHj0ahw4dwurVqyEUCjF58mQ4OTlh9+7dSExMhEgk+mZ7iAhxcXFwcXFBx44d4enpKZfwwtKQlZUFPT09uQkDDMOgcePGMDc3x86dO5VmE1NXV4eHhwd69+4NDw8PJCQkfPeZvHz5EuPGjUPv3r3h5eWFzZs3o0GDBhgxYgT++eefMrknIirT9YijAlDKmohyBct+yoU+btw4GjRoEEVFRSmFalNRntnnzp0jFxcXhagaRSIRRUdH07x588jMzIyWLl1Kr1+//qKu3Nxcmjp1Krm4uFBWVpbc64+MjCwT08HnsCxLWVlZFBISQhMmTCBzc3NycXGhCxcuUHp6uqQ/xPZ1Kysr2rJli8JOSPyM06dPk5ubm9zHxJs3b8jMzEzhjp7SIj7p0qNHj2+mQn706BFZWlrSvn37vvCtEQgEdPLkSTI1NaVDhw6VSqbGz+GOFnKUFE4Y+A5CoZBu3LhB1tbWtGzZMqUKS1tYWKiQM9unT58md3d3uS78YiFg7ty5ZGFhQcuXL6eEhITv1pGTk0MTJkwgDw8PuQeoEUeXu3TpEtna2pKbmxtFRUWVmZ1VHD/h4MGDNHjwYLK0tKT58+fTgwcPKDQ0lMzNzeUeXlhaDh48SNOmTZP72BeJRLRixQqaNWtWmd7ft+Dz+RQYGEi9e/em5ORkiZ/HzZs3yczMjE6cOPHNMcOyLD179ozs7OxoyZIlpepQePr0aXJ1dVWaNYqj/MGZCf4D/WsW2LRpE7y8vDBr1izMnj0benp6SqGGIyLcvn0bGRkZcHBwkGubhEKh3MwELMvi9evXWLBgAcaMGYMqVargwIEDmDVrFurWrftdtbOuri58fHwgFArh5eWFvLw8ubQH+KSiVldXR7du3XDw4MFSNx38Fx6Ph5o1a2Lw4MHYu3cvNm/ejKpVq2LUqFEYOHAg6tatiz///BMsy5aZ6jkvLw86OjpyH/s8Hg8jRozA/fv3ERkZqTTmAgBQU1ODm5sbOnbsiKlTpyI9PR2XL1/G3Llz4e3tjd69e39z/DIMg5YtW2Lnzp2IjY3FtGnT8PHjx1K5N7GJTxnWKI7yCScMfAYRITU1FdOmTcONGzewY8cOdOvWrVSc6opLUVERNm7cCFdXV+jq6sq1bHn4DNC/Dm++vr4YOXIktLS0JEJArVq1irVY6erqYuXKlcjOzsbixYuRn59fojb9F3Ga5EmTJmH79u14/vw5nJyccOXKlVJLtfvf9qipqaFRo0aoU6cOjIyM4O/vjzp16sDZ2RmjR4/GsWPHkJqa+lUqXkWTk5MDPT09hZRtbGyMQYMGYf369RCJRJLP6ZPGUiF1Fhc1NTVMnToVJiYmGDp0KJYuXYoVK1bA2tr6h/4TDMPA2NgYgYGBqF69OlxdXb/rfyBPSsv5l6PiwgkD/0JEePLkCUaOHInq1atj69ataNCggVJJ2kSEmzdvoqioCDY2NnJvW0neLogIHz58QGBgIBwdHZGXl4c9e/Zgzpw5qFOnDhiGKXa5DMNAX18fa9asQVJSEnx8fFBYWCh1m36G+NTB+vXrMWXKFKxevRqTJk1CdHR0qW9GAoEAO3fuxObNm7F+/Xo4OTlh+fLlOHbsGAYPHozz589jwIABmDFjBm7evInc3NxSaWN+fr7CnBYZhsHgwYPx6tUrPHnyBESE5ORkHD16FHw+XyF1SoOqqiqaNm2KsLAwtGnTBu3bty/WGGYYBrq6uvD29oaVlRWcnZ3x4sULhT0vIgKfz4e6urpCyueoHHDCAD6px48cOYJJkybB1dUVXl5e0NfXVypBAPh/rcC4ceMUskALhUKoqqpKdQ0RITc3FwcPHsTgwYMRExODzZs3Y+nSpahfvz54PJ5M/cgwDAwMDODv74+4uDj4+voqRCAQv5V3794dhw8flpgO1q1bV2qmg6KiIgQGBuLEiRPYvHkzfv/9d4nwVLVqVfTq1Qtbt27Fvn370KJFC6xevRp9+/bFypUr8eLFi2IfU5SFgoICaGlpKaRsADAyMsLIkSOxevVqBAYGwtLSEtOmTUNmZqbC6iwOAoEAW7duxdGjR/H3338jKioKR48eLXY/i8eVu7s7xo4di/Hjxyv0pAEnDHCUmFLzTlBCxBHIlixZQra2tvT06VOldcBhWZYuXrxIffr0oby8PIXUsXv3bpo7d26xo/0VFRXR5cuXqVevXjR06FB68OCB3LP5icPGDho0iJYsWaLwNMIsy1JkZCS5uLiQnZ2dJNeBohIg5eXlkZeXF/Xv358SExOLFQGvsLCQnjx5QosWLSIrKyvq168f7d69mxITE+US7fDzumbMmEEHDhyQS3nfKj8rK4s2bdpEurq6xOPxCADp6uqWODGSNG3474mBwsJCWrlyJfXs2ZPi4uKIZVl6/vw5mZqa0v3796XuX5FIRGfPniVTU1O6fv263McSy7K0adMmWrhwoVzL5ahcVFphgGVZSkpKolGjRtGYMWMkXsPKSkFBAfXr14/Onj2rsHbu2LGDPD09f1i+OFlPeHg4jR49muzs7Oj8+fNUWFiokDaJ63z//j3179+ffHx8fpppTh4UFRXRxYsXyd7entzd3eV+BE68EU6aNIlGjBghiXMvSxlXrlwhDw8PMjMzI1dXV7p48SJlZGTIFO3wv+WPHz+eTpw4IXMZPyr74sWL1KVLF1JVVSUAkj8ej0dnzpyRe53fasPt27fpyZMnX4SV9vb2/ko4Y1mWTp8+Td26dZMpI6FIJKIrV66QqakpXb16Ve5jKSAggHx9feVWJkflo1KaCYgIz549w+jRo9GkSRMEBgbC2NhY6cwCYogIt27dAp/PR9euXRXWzp+dJiAipKSkYOHChRg/fjw6d+6MQ4cOwc7ODhoaGgppE/BJ5VqjRg0EBQXh4cOHCAgIgFAoVKgKXxyw6MCBA2jevDlGjx6NoKAgZGVllbheIsLHjx8xadIkEJHE2Uza5yr2rbC2tkZgYCAOHz4MS0tL7NixA3379oW3tzfCwsJQWFgoc5sFAgHU1NRkuvZn8Hg8xMfHQygUfvE5y7Kl4reRl5eH+fPnY9iwYXj58iXy8vLg5eWFuLg4bNy4EbVr15Y8E4ZhYG9vD1NTUyxZskRqnwYejwcrKyssW7YMXl5euHbtmlzvT5G+HRyVg0onDLAsi0uXLmHixIlwdnbGrFmzFHJ0Sp7w+Xxs2bIFY8eOVaj9ViQSfdNngIhQUFCAw4cPw9HREUKhEAcOHMDYsWNRpUqVUuk7sZd2UFAQbt26hXXr1n21iSiiTgMDA4wfPx7bt29HREQEnJycEBISAoFAINNiTv+etnB3d0fdunWxfPlyuYQXVlFRQa1ateDo6Ii9e/di06ZNMDIygqenJwYOHIhNmzYhLi5OaiFKFj+S4sAwDGxsbLB//340atToq++jo6PlXufnEBHOnz+P27dv4/nz5xgxYgTGjRuHnJwcBAYGfjPCqIqKCqZMmYKUlBSp/AfEMAwDMzMzLFu2DN7e3rh165bcBALxEVAODpkpdV1EGSFOc7tt2zaytLSkW7dulYukHizL0vXr16lHjx5yyRz3I4KCgsjHx+cLFaZQKKRHjx7RoEGDaPDgwfTw4cMyDRLDsiwlJCRQr169KCAgoFQj84l9JMSmg+joaKnGEMuyFB0dTT179qSVK1eWiv9Dbm4u3b59m2bOnEkWFhY0bNgwOnbsGKWmpv7Uv4BlWRo5ciQFBwcrtI3//PMPtWzZ8gtTga2tLRUVFSms3oyMDOrYseMXddapU4devnz50z559uwZmZmZUWRkpEzPj2VZicng4cOHcsloOXXqVDp48GCJyuGo3FQaYSAnJ4e8vb3JwcFBacIKFwc+n08jRoygQ4cOKbzN/v7+tGLFCon9NDU1lRYtWkQWFhZ04MABys/PV4p+Y1mW4uPjqUePHrRu3bpSDf0qTpMcGBhI5ubmFBgYKLHP/+y6p0+fkrW1NW3durXUwwuLRCL68OEDnTp1ikaNGkUWFhY0bdo0unnzpiSb4rfaPGzYMAoJCVFo21iWpYiICPrf//4n2ZibNWsm9wiUn9e3Y8eOr3wVAJC9vT2lpKT8VCDYtGkTjRgxQuZsjmIfBAsLC4qIiCixb4erqyudPn1a5jI4OCq8mYD+Pf8+depUJCUlYdu2bWjcuLFSmwU+Jzw8HO/evYOdnZ3C2yyOMyAQCHD+/Hk4OTkhLy8P+/fvh6OjI7S0tJSi3xiGQd26dbF+/XqcO3cO27ZtU7jJ4PO6/2s6GDp0KIKDg797xI+IcO/ePUycOBHjxo3D6NGjFWaH/x48Hg9Vq1aFg4MDtm7dit27d+PXX3/FypUr0a9fP6xateqb2RSpFBLgMAyDZs2a4dChQxKfmI8fP+Ljx48Kqe/jx48Sv5P/cvnyZUkEzB+1d9iwYcjPz8epU6dkUvUzDIOePXvC2dkZU6dOLXEGR85ngKOkyN8YqEQQERITEzF16lQ0bdoU8+fPL1Fq3NJGJBJhx44dGDRoEPT19UulvrS0NMyYMQPR0dHw9vZGly5dlDKyGcMwqF+/PjZs2AB3d3eoqKhg9OjRCrFvfwsej4dGjRohMDAQoaGh8PPzw7FjxzB9+nQ0btxYEqWOZVlcuXIFS5YsgaenJ7p161Zmaa+B/8+mWL9+fbi4uGDEiBF49eoVTp8+jYkTJ8LQ0BB//fUXrKysYGxsDB6PVyqxFhiGwS+//IJ9+/bBzc0NwcHBePfuHWrUqIGsrCxkZGQgKysLOTk5KCwsRFFREVRUVKCpqQltbW1UqVIFVapUgZGREbS0tCRn7v8714kIhw4dQnh4+Befq6qqonnz5hg+fDgGDx7803Gkra2N2bNnY+bMmbCwsEDNmjWlvmcejwdHR0e8f/8eM2fOxMaNG2FgYCB1OSzLorCwkBMGOEoEQ6Ux08sAIsKrV68wZcoU2NnZwcPDQ6Ee74ogOjoaLi4uOHLkiEze5tLA5/Mxe/ZsHD9+HO7u7nBzcys158CSQESIjY2Fh4cHhgwZguHDh5e68EJEyMrKwu7du/H3339jwIABGDlyJPT09HDixAmsW7cOPj4+6Ny5s1L2p3gJyMnJwcOHD/H333/jxYsXaNGiBcLDwzF//nzY29t/s+1EhLdv38LQ0LBEYYuJCEKhECkpKbh58yZmzJiBhg0bQl1dHSzLQktLC9ra2tDV1ZVs9iKRCEVFRcjPz5cICYWFhTAwMED9+vXRrl07tGrVCo0aNYKuri4YhsH79+9haWmJyMhIAJ829Y4dO2Ls2LGws7ODoaFhsZ+RSCSCl5cXNDU14enpKZOQR0QoKirC3LlzoaKigmXLlkm9TvH5fAwYMABLly7FH3/8IXUbODiACioMEBHu37+POXPmYOzYsXByciq1N0Z5wbIsli5dClVVVcydO1dhm4hYe7J8+XKcOHECkyZNwqxZs6QKH1zWEBGio6Ph4eGBUaNGwcnJqUy0GUSEmJgYrF69GvHx8WjXrh3u3LmDtWvX4o8//igX/Un/5gVISUnB1atXsWzZMmhqaqJXr17o27cvmjdvDg0NDcm9CIVCjBo1CkKhEGvWrPniOF5xEAqFSEhIwKVLl3D16lWkpqaibt26aNu2LX755Re0atUKhoaG0NbWhpqa2nfLFolEKCwsRG5uLpKTkxEVFYWHDx8iIiICRUVF+PPPP9GjRw/cvn0bCxcuhKGhIXr06IExY8agQ4cO0NTUlPr5iOfO0KFDsXXrVjRt2lTmUN6ZmZlwcXGBtbU1xo0bJ5VgkZ+fj759+2L9+vVo3Lix1PVzcACoeKcJPg/ucf78+XJxYuBbJCcnk7m5OcXGxiqkfJZlSSAQ0KlTp8jc3JyWL19O06dPp02bNimkPkXDsiy9fPmSrKys6MCBA2X23MUe/MOGDaNq1apRv379JA6ryuB8KQ0sy5KzszOtW7eO1qxZQ7a2ttSrVy/auHEjxcXFkUAgoLi4ODI2NiYA1LFjR3r8+HGxnCkLCgooNDSURo0aRebm5jRz5kwKCQmhDx8+SE45lNSpTlxPVFQUbd++nezt7cnIyIiaNWtGly9flktkSZZlyd/fnyZPnlyiUzYsy1JsbCxZWlrShQsXpGpXZmYmWVhYUFJSksz1c3BUKGFA0WE/SwuWZWnLli00YcIEhRzjY1mW0tLSaObMmWRra0t37twhoVBI3t7etG3bNrnXV1qIw8ZaWlrSkSNHSl0gEIcX9vb2pn79+lFERAT5+/uTqakp+fv7F+vUgTLBsixNmDCBjh8/LhFybt26RdOmTSMzMzMaPnw4ubu7E8MwEm/8Bg0a0JkzZ0goFH51r+LjvdeuXaN+/fpRjx496PDhw5SWlqbwZyWOYnn37l2aNWsWmZmZ0dKlS+n9+/clfiYpKSlkYWFBz58/L7EAc+vWLTIzM5OqrLS0NOrSpQtlZGTIXDcHR4URBoRCIR05coTMzc1lih+uTOTk5FD37t3pwYMHcr8PkUhEd+/eJVtbW5ozZw6lpaVJ3qLmz59PO3fulGt9pY34CJ+FhQUdP3681AQCcWjgyZMnS8ILE33q76ioKHJ1dSVbW1u5vZGWBuLcBPv37//ic5FIRKmpqXTo0CGJVuDzP0NDQ1q3bt0XcRTEx0Hd3Nyoe/fudPr0acrNzS2TfhCJRBQbG0uzZ8+WCI4lCXEtDgc8derUEo83kUhE+/btI3t7+2ILKgkJCWRlZUU5OTklqpujclMhhAGhUEi7du2irl27KnWyoeLAsixdunSJ+vfvL9d4/+K46+vXrydTU1M6derUF2fdWZalOXPm0J49e+RWZ1nBsiyFhYWRubk5nTp1qlTeOj98+EBjxoyh8ePHU2Zm5lfJb8S5DmxtbWncuHEUHR2t9OOUZVny9PSk7du3f/P7sLAw0tPT+0oYAEAaGho0ZcoUysjIIKFQSGfPniVzc3NatWqV0mhIhEIhPXz4kHr37k3jx4//aXyBH5GUlCQ3sx6fz6dFixaRq6sr5efn//T34eHh1KtXL5ljHnBwEFWAOANCoRC7d+/Gvn37sHHjRkn61/KKSCTC/v374eTkJLeUpESEd+/eYcKECbh9+zZ27doFBweHr866fy8ccXmDYRi0bt0afn5+WL16Nc6fPw+WZRVSFxEhOTkZ7u7uqFWrFlasWPFV+muGYSS5Dg4ePCjJdVCaaZJlRUtLCwUFBV99TkQ4ceIEcnJyvnmdOC3ziBEjsGLFCqxduxbLly/HtGnTYGBgoBRzVEVFBW3btsWePXtQrVo1jB07VuacCMbGxrC2tsahQ4dK/DzV1NQwdepU5ObmYvPmzRCJRD/8fVZWFnR0dCrE3OUoO8q1MCAUCrFr1y4cOnQIGzZskNmbV1mgf73i3759CysrK7ncC8uyuHv3LkaNGoVff/0VmzdvRsOGDb95/vpniYrKEwzDoE2bNli9ejVWrlyJCxcuyF0gICLExcXB1dUV7du3h5eX1w/jWDAMA0NDQ0ycOBHbt2/Hixcv4OTk9MOARWWNvr4+srOzv/pcIBBAKBSid+/e6NmzJ7p37w4rKyuYm5ujS5cu6NChA1q2bIng4GAcPHgQy5cvR8eOHcs0xsK3ECd7mj9/Pvr27Qt3d3dERkZK/Sx4PB4GDRqE4OBgZGZmlrhdurq68PHxwenTp3HlypUfticjIwP6+voVZu5ylBFlo5AoOQKBgLZu3Urdu3cvFyrX4sCyLC1cuJB8fX3l4uVcWFhI27dvJzMzMzp37twPnRFFIhFNmjSJ/v777xLVq2ywLEv379+X9IG8TAbiGPXW1ta0ZcsWqcMLi00Hly5dIjs7O3Jzc6OoqCilOv3Csizt3r2b5syZ801nQKFQSAKB4Is/Pp9PfD6fCgsLaf369eTg4EBv374t1ZDRsiIUCmnPnj1kZ2cnU5piPp9PQ4cOpRMnTshlPWJZlm7evPnTPAjbt2+n+fPnl7g+jsqNconpxUQkEmHnzp04evQoNmzYgEaNGpVrjYCYzMxMhIaGom/fviW6H/o3CI6npyfOnDmDrVu3wt7e/qdvDuJwxBUJhmHQvn17rFq1CsuXL0dwcHCJNQT0bxyLCRMmwMXFBWPGjJE6vLDYdNCtWzccOnQIv/32G5ydnREUFKQ0pgOGYaCrq4vc3NxvfqeiogJVVdUv/tTU1KCqqoqwsDAcPnwYfn5+qFOnjlxU2PSv9iovLw95eXnfzMDIsizy8/ORm5srdWZJFRUVODk5wdTUFIsWLZI6TbGqqiocHR1x+PBhuYTHZhgGnTt3xvDhwzF37lxkZWV983fv37+XKQIiB8fnlDthQCQS4dChQzh8+DA2bNjwTZV3eYSIcP36ddStWxcNGzYsUTmvX7+Gq6srhEIhtm/fXmzzSUXxGfgvDMPgf//7H1auXImlS5eWSCAQhxeeOXMm5s6di4EDB5ZIgBKrqcW5DiIjIzFkyBBcuXJF5jTJ8kRPTw95eXlS9VdeXp7EP0BegjoRITg4GG5ubpg+fTrc3d3h4eGB169fS/ooPT0d8+fPh6urK6ZMmYKxY8fi0aNHUgsEEydORHJyMi5duiTVtQzDwNTUFO/fv8ebN2+kvcXvljly5EjUq1cPq1atgkAg+OJ7IsL79+9hbGwsl/o4KjFloY6QFZFIRMeOHZNLpi9lQyAQ0JAhQ+jMmTMlOuJ09+5dsrS0pA0bNkiVIlckEpGLiwudP39eprrLAyzL0u3bt8nU1JSCg4Ol7mehUEh///03mZmZ0c2bN+U+/sTn8IODg8ne3p7c3NzK3AT24MED6t+/f7HNICzL0rFjx8jJyUmup2GEQiGNGjWKdu3aRUVFRZSdnU3Dhg2jYcOGkUAgIJZlaenSpWRhYUFpaWlUWFhIK1eupA4dOkid/ZBlWbp27Rr17NlT6rThLMvS7NmzKSgoSG7PTRwXxM7O7isThFAopCFDhtC1a9fkUhdH5aXcaAaICJcvX4a/vz/Wrl2LZs2aVQiNgJjY2FgkJyejS5cuMt2XSCTCqVOnMGPGDMyYMQPjxo37ImzszyCiCmkm+ByGYdCpUyf4+vpi0aJFuHr1arHf/MSnVoKCgrBu3TqZn9PP2qempgZra2scPHgQLVq0wJgxYxAUFISsrKwy0RIYGRkhKyvrpx7tYoRCIQ4dOoTRo0dLdRomOzsbKSkpyMzMxNu3b3HmzBncvn0bhYWFICLweDxMmDAB/fv3h7q6OnR1ddG8eXOkpKSAZVmwLIvY2Fg0adIERkZGUFdXR6tWrZCcnIz8/Hyp7plhGHTs2BGqqqpSaxYAwMHBAZcuXUJRUZFU1/2oPVWrVsWSJUvg5+f3xYkHgUCAzMxM1KhRQy51cVReyoUwQES4desWli1bhpUrV6J169YVShAgIpw9exbm5uZSZy0jIvD5fGzatAlBQUEICAhAjx49ZPLarujCAPBpYe3SpQuWLVuGhQsX4vr16z9c7MX9GxQUhKNHj2Lz5s0KzzPAMAyqVKmCCRMmYMeOHYiIiICTkxNCQkJK3XSgo6ODoqKir9TT3yM5ORlpaWlo166dVH105coVDB06FAMGDMCRI0eQm5uL1atXY+7cueDz+WAYBm3btoW2tjaSkpJw7do13L59Gx4eHlBTU5N480dFReHGjRuIjIzE33//jf79+8PIyEjq+9bQ0EC3bt1w5coVqa5jGAatWrVCfn4+4uLipK73R+W2adMGw4cPh6enJ3JzcyVJjnJyclC1alW51cVROVF6YYCI8Pz5c8yfPx/e3t7o0KFDhRIEgE+JRi5fvow+ffpIdW9EhIKCAvj6+iI4OBjbtm1DmzZtZO6fiuoz8F8YhoGZmRmWLVsGLy8v3Lhx45sbLBGhsLAQPj4+uHnzJrZs2YImTZqU2vhjGAaNGzdGYGAgpk2bBj8/P4wfPx7R0dEKi5vwXzQ1NaGmpvbdeAL/JSYmBnXq1JE65Xa/fv1gaWmJ9PR0jB07Fo6OjvDx8cGxY8fw4MEDye8EAgEOHDggSffbokULyXetW7dGkyZNsH79eqxduxbx8fHo06ePTGOaYRi0a9cO4eHhUve1jo4O2rVrh5s3b8pVcOPxeBg+fDiqVq2KwMBAsCyLnJwcqKioQEtLS271cFROlFoYICIkJCRg2rRpGD9+PKytrSucIAAAT548gbq6Opo3b17sa4gI2dnZmDt3LuLi4rBlyxbUr1+/RP1TGTQDYsQCweLFi+Hp6fmVQEBEyMnJwbx58xAXF4eNGzfCxMSkTMaf2HRw4MAB/P777xg7diwCAwNL5dSBOF3w9zzZ/8u7d+9gYmIiczyBhg0bSoI21a1bFwYGBggLC5N8r6GhgenTp2Pfvn1o3bo1xo4di6ysLAiFQsyePRsqKirYs2cPNmzYgAkTJsDNzQ2vX7+WqS3Vq1dHfn4+CgsLpb7WxsYGoaGhcjlV8DkaGhrw8vLC1atXERoairS0NOjp6UFTU1Ou9XBUPpRaGPjw4QOmTJmCPn36oH///koXsEQesCyLEydOoGfPnsXOY05EyMjIwLRp00BECAwMRPXq1Uu8UVUmYQD4JBBYWlp+JRAQEdLT0zF16lQIBAK59W9J22pgYIDx48djx44diIyMhKOjIy5fvqzQgEVqamrQ09PDhw8fivV7gUAg9THLz1FRUZH0s/i/IpEIIpEIb9++BcuyYBgGGhoasLW1xatXr/D69WtkZ2fjzp07MDMzg6amJlRUVNChQwdkZWXh+fPnMrdF7I8gDWJTgdhkIk8YhkGtWrUwb948+Pj44PHjx6hevXqJ+pyDA1BiYSAnJwezZs1Cq1at4OrqWmHV1xkZGfjnn39ga2tbrM2GiJCamoqJEyeievXq8PX1/Sr8rSzQv2e4K2o/fw+xQLBkyRJ4enri+vXrSEpKgoeHB2rWrIkVK1agSpUqSqOR4vF4EtPBjBkzEBAQgIkTJyrMdMAwDExMTJCYmFis3xsYGCAjI0Nm4SQxMREFBQWSMM+ZmZkSG7yHhwc+fvwoEdjev38PNTU16OjoQENDA/r6+khKSgLwaTx//PgRIpEIhoaGMrUlLy8PampqMoUFNzIyQt26dREeHi5T3T9CPGYtLCzg4+ODX375Re51cFQ+lHLl5/P5WLFiBdTU1DBz5ky5xehXRh4+fIhatWrBxMTkp78lIqSkpGD8+PFo3bo1ZsyYAU1NTbltVJVNMyCGYRhYWFhgyZIlmDNnDlRVVeHg4IApU6ZAXV1daQQBMZ+fOmjXrh327t2LsWPHon///hg5cqTcY//Xq1cPCQkJIKKfltuoUSNs27YNAoGg2Jquz8nIyMCOHTvQrFkz7N69G1ZWVujUqROICJmZmZg7dy4GDx6MrKwsBAUFYfTo0WjQoAFUVVUxZcoUBAQEoFatWqhRowa2bdsGOzs7tGnTRqb7jo2NRa1atWRaf3g8Hjp16oQ7d+6ge/fuch9D4ngIFy5cgLa2tlzL5qicKJ1mgGVZ7NmzB+Hh4fDx8anQA51lWZw5cwY9e/b86Rv554JAu3btMGvWLGhpacl1kamswoCYqlWrQiQSITU1Fe3atVNKQeBzPjcd7Ny5E5GRkXBycpKYDuSFWDNQnLf9X375BUVFRUhISJCprj/++ANmZmaIj4/HgAEDsG7dOmhpaUFbWxtHjx5Fv379EBcXh+zsbKxcuRILFiyAqqoqGIbBkCFDsGvXLrAsi/j4eLi5uWHDhg0yrSEsy+Lq1aswMzOT6T4YhkGHDh0QFhZW7JMY0qKnp4datWph165dcj25wFFJUVgEAxlgWZZCQkLI3Ny8zIOtlAapqalkbm5OCQkJP/1tcnIy9evXj3x8fOQazEWMQCCgHj16UHh4uNzLVnZYlqV79+6Rubk5HTx4kK5cuUKmpqYUGhpabsbg5wGL7OzsyNXVlSIjI+WS6+Dhw4fUp0+fYgUeEolE5O3tTStWrJC675YsWUKOjo6yNlOuJCYmkpmZGcXHx8tcRnp6OllaWtLbt2/l2LL/Jzc3lywtLWnGjBk0evRoLoUxR4lQGs0A/Zuxb9GiRVi8eHGFyTfwIx48eIB69eqhdu3aP/zdhw8fMGnSJLRt2xbTp0+XSf1aHFiWrZBOmj+CZVmEhIRgxowZmD17NgYNGgQrK6vvnjJQVj43HYhzHcjr1EGtWrWQmZn5zVTG32rHsGHDcPbsWYlpoTgcP34coaGhiI6OxrZt24od5EgRsCyLnTt3wtTUtFjmu++hr68PY2NjxMbGyrF1/09GRgYYhsGUKVOQmZmJkydPlouxyqGcKMXKT//aA+fMmYPhw4fDzMyswgsCLMvi0qVLsLW1/e4GLO6XGTNmoGnTppg+fbrC/CfoX6esit7vnyMSiXDy5EksWrQIvr6+sLe3B4/HkzhoLVq0CJ6ennI/L65IxLkOJk6ciJ07d+LVq1dwdHREcHCwzAGLDA0NoaamVizPeIZh0KhRI/Tq1QsrVqwotrnCxsYG+/fvx7lz58r05BAR4eHDhwgODoa7u3uJ5gOPx0OrVq3w+PFjhYyfpKQkVKlSBcbGxvD09MSGDRukEsA4OD5HKYQBoVCI5cuX45dffsHw4cMrxdtpdnY2wsPDvxvWloiQn5+P+fPnw9DQEPPmzVOYRkBMZdIMCIVC7N27F0FBQQgMDPzqOTAMg65du2LRokWYP38+bt26VW4WWYZhJAGL1q1bJwlYNHHiRMTExEh9H5qamqhatSrevXtXrN/zeDyMGzcOqamp2L59e7He8sVv0cbGxjA0NCwToZSIkJiYCC8vL0yfPr3EcSUYhkHr1q3x7NkzhZz0iIuLQ/369aGiooLWrVvDwcEBK1euVJiPAkfFpsxXfiLC8ePHERERgfnz5yt8w1MWwsPDYWho+F01pEAgwMqVK5Gfn4/FixeXSoQx+jcGfEWG/g0vvH79ehw6dAibNm36bnhrsUCwcOFCzJs3r1xpCMSoqalJ0iS3bNlSJtMBwzBo1qwZIiIiin2Nvr4+Vq5ciePHj+PAgQNlqvYvDkSEpKQkTJw4ET169ECPHj3kIpA0bdoUCQkJcstTIIb+jcz622+/AfgkgLm6uiI+Ph6XL18ud+OUo+wp05VfPKDXr1+PZcuWyRRDvDxC/6Zj7dq16zdPEYhEImzZsgXPnj3DypUroaurq/A3pcpgJqB/wwv7+vrixo0bxQovzDAMrKysJBqCn+UyUEbEpw48PDywc+dOREVFYciQIVKZDv744w+Eh4dLJUA0aNAA69atw969exEYGChJOqRsEBEiIiLg7OwMU1NTeHh4yC3eRvXq1cGyLD5+/CiX8sQIhUJER0ejRYsWkvGrr6+POXPmICAgQO71cVR8ykwYICJkZWXBy8sLbm5u+P333yv0RvQ5hYWFePDgASwtLb+6ZyLCmTNncPLkSaxduxbVqlUrlX4RqzErqmaAiJCbm4t58+YhNjYWGzduRN26dYvVt2INwZIlS+Dl5YXQ0FCl3NR+Bo/HQ6NGjeDv74/p06dLAhbFxMT8UI3NMAyaN2+OmJgYqY4sijUKO3bswD///IMJEyYolU1brCU6duwY3NzcMGzYMElsCXmhra0NQ0PDYgdtKi75+flISUn5IuCQONtiq1atsHnz5lLLX8FRMSizlZ9lWQQEBKBevXro379/pREEACA+Ph4ikQgNGzb84nMiwqNHj7BmzRqsWLGixLkGpEG8QFdEYYA+Cy/M5/NlCi8sDky0dOlSeHt749q1a+V2sVVTU4OVlZUk14GzszOCgoJ+aDqoVasWBAJBscMSi2EYBnXq1MGmTZvQokULjBw5Env37pVk3SsrWJZFZGQkJk6ciL1798Lf3x9OTk5yj8CpoqKCJk2aIDIyUq73m5ycDA0Nja+0qSoqKpg8eTIuX76M58+fK43gxaH8lMnKT0S4du0abt26hXnz5lXoCIP/hYhw7949/PHHH18EQxE7L82ZMwczZswoUfZBWaiomgH6N2yth4cHqlevjpUrV8ocXphhGJibm8PHxwcLFizA1atXy61AIE6T7OHhIcl1MGTIEFy5cuWbuQ709PRQvXp1mY7JMQwDXV1dTJkyBX5+fggODsaQIUNw8uRJ5OTklNqGRf+G3I6MjISXlxdcXV3RqlUr7NmzB23atFHY2G/UqJHcgwJFRUWhbt26XyUoEoePHjNmDFauXCl3XwWOikuZrPwpKSnw9fXF3LlzYWxsXKm0AizL4vr167C0tJR89vnJgR49eqBXr16l3ifiTa0iPQsiwuvXr+Hq6oo2bdpgwYIF0NHRKbGHuKmpKXx9fbFo0aJyLRAAn+6nYcOG8Pf3x7Rp07B27VpMmDABUVFRX9wXj8dD27Zt8eDBA5k2b4ZhwOPx8Oeff2Lbtm2YNGkSjhw5ggEDBiAgIAAxMTEoKiqSu2BARGBZFpmZmQgJCYGHhwfGjRsHfX19HDhwAO7u7grNPSHu3zdv3sjt3sTHH9u1a/fdOgcMGICCggKcP3+e0w5wFItSz00g9pI3MzODhYVFhdp8ikNWVhZev36NP//884usbAEBAVBXV4ebm1uZhAQWOxBWFM0AEeHFixeYMmUKBgwYgLFjx8otsxvDMOjSpYtEoGVZFjY2NuW27z4PWNS+fXvs3bsXzs7O6Nu3L0aPHi3JddChQwesX78eIpFIZnW6OOOgtbU1zM3N8eLFCxw7dgwuLi7Q19eHpaUlOnXqhMaNG0NfXx9qampSrRHizb+wsBBJSUl4/vw5rl69ihcvXqBatWro27cvli1bhmrVqknao2hq166NlJQUCIVCuWhBhUIhnj9//sOXBm1tbUybNg2LFi1C165dZU7WxFF5KFVhgIgQEhKCiIgI7N+/v1LGwY+NjZWcqQY+9cmlS5dw7do17N69u1SOEH6LimQmEL85zZw5E25ubhg0aJDcx5pYIFixYgVmz54NIkK3bt3Kdf+JTQfjx4+Hvb091qxZA0dHR0yZMgXW1tZo1qwZUlNTkZ6ejho1apS4LnV1dbRu3RqtW7dGVlYWVq1ahT179uD69etIT09H1apVYWJigqZNm8LExARGRkbQ19eHuro61NTUwLIs+Hw+CgoKkJGRgdTUVMTFxSEuLg5JSUkQCoWIiorCzJkzMW3aNJiYmEjyGJQmRkZGEAgEyMnJQdWqVUtcXmZmJjIyMtCgQYPv/oZhGPzvf/9D48aNsX//fowfP77SvXhxSEepCgNpaWlYtWoVvL29K80xws8hIjx48ABt27aFqqoqiAjx8fFYuXIlfH19UatWrTKbsBXFTMCyLK5du4aFCxdizpw5kqiCioBhGHTq1EkiEAAo9wIB8P+q7YCAAFy/fh1r1qzB8ePHMXXqVBgbG+PFixdSO2D+qC76NwnXjRs3sH37dvz+++/IyMhAfHw8Xr9+jejoaAQHByMjIwMFBQUQCoUQiURgGAaqqqpQU1ODvr4+qlevjoYNG6JLly5o0KABatSogYCAAMTHx8PExERumiFp0dfXBwDk5ubKRRiIiYmBoaHhT9dQVVVVTJo0Ca6urujTp0+JgyhxVGxKTRgQiURYv3492rVrB1NT00o5KFmWxf379zF06FAwDIP8/HwsWLAA/fr1Q8eOHcu0TyrCaQKRSIQzZ87Az88Py5YtK5Ww1mKBYOXKlZg9ezZEIhHs7OzKdT8CX5sO9uzZg3HjxoHP5+PatWtf+LyUlJycHHh6emLUqFFo3bo1eDweatSogRo1anxhFxc7ALIsC5ZlJX4IKioqX2h+Pn/mEyZMwNChQ3Hx4sUy8cUBPm3Kenp6SE9PR/369UtUFhHh7t27+N///vdTbRfDMGjatClsbGywceNGLF26tFKuuxzFo1RWLPGRuRs3bmDKlCnlfqGUlezsbLx9+xa//fYbWJbFvn37IBQK4ezsXOZ9Up7NBOJNYt++fQgMDERAQECp5rcQn+9etWoVli9fjnPnzpVrp8LPEZsOJkyYgJ07d+L333/H4cOHcenSJZlzHXyOSCRCUFAQqlatimHDhn01/sShlcUbv7q6OjQ1NaGtrQ0tLS1oaGhIVP/iv88xMDCAp6cn/Pz88O7duzJxpuPxeDA2NkZycnKJyxKJRLh37x46d+5crPHN4/Hg7OyM27dv49WrVyWun6PiUiorf0FBAVatWgV3d3fUrFmz0kqnCQkJ0NLSQo0aNfDq1Svs3bsX3t7eMuVblzflVRggIggEAqxfvx4HDx7Exo0bvxteWJGIbbR+fn5YtWoVTp8+XWEEAgCSXAd+fn6SSHfjx49HdHS0zPdJRLh69SpCQkLg7e2tkCPGYsfHbt26YcWKFWUSt5/H46FatWpIS0srsTDy4cMHpKamonnz5sW+platWhg4cCA2btwIoVBYovo5Ki4KX/mJCCdPnoSKigocHBwqrSBARAgPD0fz5s3B5/OxdOlSjBkzBk2bNlWKPhEvUsrQluIiDi+8fPlyhIaGYsuWLWXanwzDoG3btvD398fatWtx4sSJCiUQAICuri6srKwwbNgwmXMdAP8fV8PX1xfe3t4K9ZdRUVGBh4cH3rx5UyZH7RiGQdWqVUscIpiI8PjxY9StW1cq3wOGYeDo6IgXL17g+fPnJWoDR8VF4cJAWloatm7dipkzZ34VIKOyERYWhtatW+Po0aOSCaosm2951Azk5ubC09MT0dHR2Lx5c7HDCysShmHw559/IjAwEEFBQfj777+VPkmPNPB4PHTv3h0PHz6Eu7u7JNeBo6MjLl269M2ARd+isLAQCxcuRM+ePUvFh6hKlSrw9PSEv78/EhMTS10gqFatmtTRG/8LEeHKlSuwsrKSep5WrVoVTk5O2LRpE6cd4PgmCl35WZbFzp070a5duzJR3SoTAoEAr169goGBAXbu3Ik5c+YolXBUnoQBcXjhadOmoaCgAOvWrZObd7s8YBgGf/zxBwIDA7Fx40YcPny4QgkErVu3xvv37/H+/Xs0atQIAQEBmDFjBgIDA78ZsOi/sCyLXbt2oaCgAOPGjSuVI8YMw6B9+/awt7fH8uXLS91cIA/NQF5eHp48efLdtOc/gmEY9O/fH1FRUZx2gOObKGzlJyK8efMG586dg4eHR7nYZBRJeno6srOz8ffff6NHjx747bfflGbzAsqPmeDz8MLVqlUrUXhhRcIwDFq2bImgoCBs374dBw8erDACgYGBAX777TfcvHkTACSnDg4ePIhWrVrB1dUVgYGByMjI+OoNXHy89tChQ1i8eDF0dHRKrd08Hg9ubm54+/Ytzp49W6raAQMDA2RlZclcpzjDq66urswnEgwNDTF48GBs376d0w5wfIXCdmiWZbFlyxb07NmzVBPuKCvv3r3Du3fvEB8fDxcXF6Xrj/KgGRALmK6urmjdujUWLFhQKumdZYVhGLRo0QJBQUHYtWsX9u3bVyEEAh6Ph549e+L8+fNfxKcQ5zrYuXMnYmJiMGTIEFy+fFliOiAipKWlYcGCBZgxYwYaNWpU6s9OX18fnp6eCAgIwNu3b0tNINDW1kZBQUGJyjh//jxsbGxK5GjZr18/hIeHIzo6ukRt4ah4KGTlJyJERkbi3r17GDlypFJvMKUBESEqKgppaWmYMGECjIyMlG4DU3ZhQJxz3tXVFT179sT06dOVyszyPcRpfNevX499+/Zh9+7d5f6tTHxy4u3bt0hKSvrquwYNGmDt2rWYOXOmxHQQHR0NPp8PHx8fdOjQAfb29mUyBxiGQbt27eDg4AAfH59SMxdoampCIBDILAzm5ubi7t27sLGxkbnfGIZBtWrV4ODggD179lQ451aOkqGQlZ9lWWzduhX9+vWThN2t7ISHh8PCwgI9evRQOkEAUO6gQ+LwwuPHj8fo0aPh4uJSZtHkZEEc/GXDhg04dOgQduzYUe4FgqpVq6Jly5YIDQ396u1aHLCoa9euEtOBs7Mz3NzcEB0djalTp5ZpKHIejwcXFxckJyfj1KlTpaId0NDQgEgkkkn4ICI8efIEurq6X6U9lxaGYTBo0CDcvn37K0GOo3Ij95Vf/Bb8+PFjDB48WCk3vtImNzcXoaGh8PDwKLPcAz9DWd8SWJZFaGgopk+fjpkzZ8LR0bFc5rQQn9PfuHEjjh8/ji1btpRrgYDH46FPnz44e/bsd++DYRjo6+vDw8MDc+bMwfnz55GVlYWHDx9CKBSWaTY9fX19eHt7Y926dUhISFB4W8S5FGTVDJw8eRI9evSQSyyGOnXqoFOnTjh+/DiX0ZBDgkKEgZ07d6JPnz4lTmZSESAinDt3Dq9fv0azZs2UVjhiWRY8Hk+p2seyLM6cOYMFCxZg2bJlCs0zUBqIY/5v2rQJ586dw/r168skCI68aN++PVJTUxEfH//D32VnZ2Pr1q1Yvnw5Fi5ciICAAEycOFFy6qAsNiTxEdA+ffrAx8cHfD5fofWpqamBiGQSBtLT0/Ho0SN0795dbvkghg4dijNnziA7O7vE5XFUDOS+ssbHx+PevXsYNGiQUm0sZUVOTg6CgoKgp6cnlyQlioKIlOZ5fR5e2N/fH/7+/jAzMyvXgoAYhmFQv359bNq0CVeuXEFAQIDCNyJFYWBggI4dO+LChQvf3dCFQiHWrl0LExMTDBkyBNbW1jhw4AB+//13ODs7w9/fX+qARfJCbC5ITU3FiRMnFNoGWTUDRITr16+jfv36MDExkUtbGIZB8+bNUb16ddy4cYPTDnAAkLMwQEQ4dOgQunbtilq1asmz6HKJOD1xUVERfvnlF6U1EQD/rxlQBgQCATZs2IADBw5g48aN+PPPP5VGUJEHDMPAxMQEmzZtwu3bt7F69WoUFRWVdbOkhmEY9OvXDxcuXPimp7x4/N+5cweenp7Q0NCQnDpwd3fHrl27EBsbK3XAInmip6cHLy8vbNiwAW/evFFY/TweD0QktTlOKBTi6NGjGDhwoFzNY6qqqnBycsKhQ4fKtbmKQ37IdfVPT0/HpUuX4OTkpDQbS1lSWFiIvXv3wtraWpJLXVkRZ4ErawoKCrBixQpcu3YNmzdvxq+//qoU7ZI3DMOgdu3a2LhxIx4/fowVK1agsLCwrJslNS1btgTDMAgPD//ic/Ex0JUrV2LhwoVfmQx5PB4aNmwIf39/zJo1C4GBgRg/fvxPAxbJG4Zh0Lp1a/Tv3x/Lli1TmFAmXg+lFTZiYmKQkpIiU6ChH8EwDMzMzPD+/XvExMTIrVyO8ovcdmwiwuXLl9G4cWM0btxYXsWWa+7cuQOGYVCnTh3UqVNHqQWksvYZICJJKttXr15h06ZNqFevXoUUBMQwDANjY2OsX78eERER8PHxKfFZ9NJGU1MTPXv2xLFjx77YxPPz8+Ht7Y2BAwd+Nz23+NSBlZXVF6cO/P39kZ6eXmpaAoZhMGbMGGRkZCjMqY5hGEmsheJCRDh27Bisra1hYGAg9zZVqVIFVlZWpXaigkO5kdvuxOfzceTIEQwdOrRcenvLG6FQiD179mDYsGH4+PEjTExMlHpjE4lEZaa5ICJkZGRg+vTpyMvLw/r161GjRg2l7i95wTAMqlevjqCgIMTFxWHx4sXIz88v62ZJRc+ePXH//n2kpaUB+DSWtm7dCh6PhzFjxvz0OYpNB+PHj8euXbsQExMDJyenUjMdMAwDXV1deHl5YdOmTYiLi1OKzTEjIwMhISHo37+/QuYCwzDo06cPQkJCkJubK/fyOcoXchMGnj9/jvz8fPzvf/+rFIv4z4iNjUVCQgKsra2RlJSEOnXqlHWTfohQKCwTIe7z8MJGRkZYs2aNUoYXViTirHaBgYFITk6Gl5cX8vLylGJD+hli/4dmzZrhypUrICLcuXMHJ0+exOLFi6GlpVXsZyk+bREQEIDZs2eXqulAnE9i0KBBCjEXSBvum4gQEhKCX375RaGa1qZNm0JPTw+PHj0qF+ONQ3HIRRhgWRbHjh1Dz549oa2tLY8iyzVEhOPHj8PKygoGBgZIT09X6pMEwKe3udIWBsR25XHjxqFVq1ZYuHAhtLW1K5UgIIZhGBgaGmLt2rXIysrCvHnzkJubWy4WaB6Ph8GDB+PYsWOIj4/H4sWLMXfuXJnMPN8LWBQQEPDNXAfyhGEYjBo1SpJDRJ51iU/rFLc/ioqKcPDgQYVrWtXU1NCzZ0+cPHmyXIw1DsUhF2EgKysLd+/eVdroeqVNdnY2rly5gv79+0MgEKCgoAB6enpl3awfIhYGSuv5ERFevXqFcePGwc7ODjNmzJB4m1dWGIaBgYEB/Pz8IBAIMHPmTGRnZyv9Ii0OT5ybmwtXV1eYmZnB2tq6RM9SHLBo/PjxMqdJlqVOHR0deHt7Y8uWLYiNjZVbPWIH3eL0CRHh8ePHKCgoQKdOnRQ6JxiGgbW1NZ48eYKMjAyF1cOh/JRYGCAi3Lt3DzVr1sQvv/wihyaVb4gIjx49goGBARo3bgw+nw8+n6/0wkBpmgmICP/88w/c3d0xatQojBs3DmpqapVaEBAj3gRXrFgBTU1NTJkypczO4UuDtrY2WrVqhfT0dEyaNEku/ifizbNRo0YIDAyU5DpQpOlAnG3S0dERS5culZu5QCgUgmGYYjkRi0Qi7NmzB4MHDy4VTWudOnVQu3Zt/PPPP0o/zjgUR4mFAZZlcfbsWTg4OHCOg/i00Z06dQq9evWCmpoaBAIBBAJBqaZqLQ5EhNzcXKSkpCA1NRUZGRkQCoXIyMhAZmYmcnJyFLIwiMMLT5s2DTNmzCi34YUVjZ6eHpYtW4YaNWpg4sSJ+Pjxo9Iu1ESE8PBwSZ4CeTujiU0Hn6dJdnFxUZjpgMfjYcSIEcjPz8eRI0dkLr+oqAgfP35EdnY28vLyJMKA+FSBuNz/njKIjY3Fy5cv0bNnz1IRkFVVVWFra4vz588rvC4OJYZKSFpaGllYWFBCQkJJi6oQiPsjPj6eiIhSUlLI1NSUsrOzy7hlX8KyLB05coTq1atH9erVo5o1a5Kenh41adKEmjVrRsOHD6fCwkK51ikSiejkyZNkampKoaGhJBKJ5Fp+RSQ/P588PT1p0KBB9P79e2JZtqyb9AUsy1J6ejr16tWLDhw4QFOnTqWgoCCFtpNlWYqNjaUJEyaQra0tXbhwgYqKiuRaJ8uy9OzZMzIzM6OoqCiZyn727Bn99ttv1LJlS2rVqhUZGRlRr169aOTIkTR37lz68OEDERElJSXRjh07KC0tjUQiEXl6epKvr2+pPuvY2FiytLSkzMzMUquTQ7kosTBw6dIlcnR0JIFAII/2lHuCg4O/6I93796Rubk55ebmlnHLviYmJoaqVatGAL74YxhG7ouRQCCgPXv2kKWlJf3zzz9Kt6kpMwUFBbRkyRLq168fJSYmKlXfCQQCmjdvHk2bNo2KioooLCyMbGxsKCsrS6H1sixLfD6fQkJCqFevXuTq6kqRkZFyFTBFIhFt3LiRhg8fTvn5+VJfn5GRQc2bN/9qfgEgGxsbSZmhoaGkpaVFv//+O/n4+FDnzp3p9evXpfqci4qK6K+//qJbt24p1fjiKD1KZCZgWRZXrlyBtbU1p+rFp/64fPnyF/3B5/OV1h5er149dOjQ4avPDQwM4ODgIFOZ9I2Qq3w+Hxs3bsS+ffuwceNGtGnTRin7Q1nR0NDArFmz0KlTJ7i5uZVKlr3iQEQ4e/YswsLCMGfOHKirq+O3335DjRo1cO3aNYV7/otPHezfvx+tW7eGi4sLAgMD5WY64PF4GD58OPh8Pg4dOiR1mfr6+ujUqdNXn6uoqGDUqFHQ1NQEESExMRFFRUUIDw/H/PnzER0djTNnzuDDhw+l9pzV1NRgZmaGa9eulUp9HMpHiYSB/Px8hIWFwdTUlFvc8ak/Hj16BHNzc0l/CAQCqKqqKmX/qKqqok+fPl85NXXs2BFNmjSRus30rzPpgQMHJAlZxOGFQ0JCsHXr1gobXliRiDe+yZMnw9bWFm5ubmUeGIeIEBMTAz8/PyxevBjVqlUD8GlTGT58OPbu3VsqCZjEDpdubm7YuXMnYmNj4eTkhMuXL8ulfm1tbXh5eWHHjh2IioqSum02NjZfvSg1adIEtra2knmQkJAgEaCJCGlpaZgyZQqsrKxw9erVUnnODMPA3Nwc9+/fL7eJszhKRomEgTdv3kBVVRX169eXV3vKNXFxcVBXV0e9evUkn4lEIqVLDSyGYRhYWVl9EQOBx+NhwIABUFNTk7q8wsJC+Pr6YtKkSThx4gSys7Ph7e2NV69eYfPmzahbt65S9kN5QCwQuLm5oW/fvnB3d0d0dHSZCQS5ubnw8vLC0KFD0bZtW8lzFce8z8/PL1XvdIZh0KBBA/j5+WH27NlYt24dJk6ciMjIyBKdOhBn+Bs+fDiWLFkiVXRI8ZHL/4YSdnR0/GLOfSsFNBGhTp06aN68ucxtl5YmTZogNzcXycnJpVYnh/IgszBARLh//z5atWoFTU1NebapXEJEePDgAVq3bg0NDY0vPlfmDfC/poJatWqhW7duMmkFrly5guDgYGRkZGD8+PEYMmQIcnNzERQUVGnCCysaVVVVjBkzBkOGDIG7uztevHhR6gKBSCTCxo0boauri5EjR36lWdLW1oaTkxN27twpdcrekiAWmCwtLXHgwAFJwCI/P7/v5jqgYuQL4PF4GDZsGFiWxcGDB6XqbxMTE7Rs2VLy72rVqmHw4MGSf7Ms+5UwwDAM7O3tsXPnTtSqVavU5o2enh4aN26Mx48fl0p9HMqFzMIAy7K4e/cuTE1N5dmecgvLsrhz5w66dOnyxefio0TKyn9NBTY2Nqhdu7bU5eTm5mL16tWSzHupqam4desWBg4cCAMDA04QkCOqqqoYPnw4XF1dMWHCBDx+/LjUxhgR4fr167h48SIWLlz4heArhmEY9OjRA7GxsXj16lWpj3+x6cDd3R27d+/Gmzdv4OjoiPPnz3+lAk9OTsaFCxd+qj3Q0tKCt7c3du3ahZcvXxb7ntTV1dG1a1fJv+3s7NC4cWPJfCgsLMT79++/aHvv3r2xY8cO1KxZs1TnDcMwMDU1xa1bt5R6zeJQELJ6Hubk5FDXrl0pLi5O1iIqFFlZWdS1a1d68+bNF5/HxMRQ9+7dZfJGLi1iYmKoevXqpKamRmfPnpXam5hlWdq7dy+pqal95TXdrFkzevbsGeehrADERzXNzMzozp07Cu9jlmUpMTGRunbtSiEhIT+sj2VZCggIoGnTppXpEVLxqYOrV69Sjx49aMyYMfTy5UsSiUQkFAppxowZVKNGjZ/ej7isbdu2kZOTE+Xl5RW7/tDQUNLQ0CBNTU0KDg7+op7379+TiYmJ5BRP//79KTU1tczmy9OnT8ne3l6p1ysOxSCzZiAxMREqKiqoWbOmnMSS8k1ycjJUVVW/ytuurq4OgUCgVJI2fRb0hGVZ1K5dG+3atUPDhg3Rvn37r37zM9LT07F27VoIBIKvvouKioKPj49EY8AhP3g8HhwcHDBv3jzMnDlTEvRHURQVFWHRokWwtbWFhYXFD99aGYbBwIED8fDhQ7x+/brMxv/npoODBw+iTZs2cHFxwdq1axESEoLt27cjNTUV7u7uP9ViMAyDIUOGgMfjYd++fV9pE/47rwQCAfh8Ppo0aYI6deqgbdu26Nixo+S3AJCZmYnMzEzweDwMGjQImzdvRrVq1cpMk1a/fn3k5+dLMlByVB5kihlKRHj58iUaNWr0TTVhZYOIEBERgYYNG37VH2pqahAKhQrPuvajtgGf1JGpqamIjY1FdHQ03rx5g+TkZGRnZ0MoFOL169fIy8uDs7Mz1NXVUbVqVdSuXRuNGjVCkyZNUL9+fVStWlUSZla8WBERDh48iCdPnnxRr6amJtq2bYvRo0ejV69enF+JguDxeLC1tYWWlhY8PT0xd+5c2NnZFSvsrTSwLIu9e/ciKysLHh4exTpKbGxsDFtbW+zevRsLFy4sU1OR2HTg4eEBOzs7rFixAr6+vpJ4/FFRUXB3d8fhw4d/6N+iqakJLy8vODs7o0uXLmjYsCHev3+PuLg4ybx6//49srKyIBKJIBKJQETIycmBhoYGZsyYgdq1a6Nx48Zo3Lgx3r59C6FQCCcnJwQGBsLQ0LBM+0lXVxcmJiaIjIz8whGao+IjcwDx58+fo2XLlpwt+F+ePXuGP/7446v+UFVVBRFBKBSWWlvEbyfp6en4559/EBwcjBcvXqCoqAgmJiZo2LAhmjVrhq5du8LAwAAaGhrIyclBUVERjIyMUFhYiA8fPiApKQlPnz7FyZMnkZaWBkNDQ/zvf/+DjY0NWrRoAR0dHSQnJ2PdunUSYcfIyAi2trYYM2YMOnXqVGmzEJYm4mNhq1evxsyZM1FYWIi//vpLbgIBESEsLAx79+7Ftm3boKurW6zrxOf0hw0bhvj4eDRo0EAu7SkJ4jTJnTp1ws6dO7/47saNG5g5cyY2btz4zfDh4nllaGiI3377DSNGjEC1atUgEAgk86pFixawtraGgYEB1NXVoaamBpZl8fTpU1SrVg18Ph+JiYl49OgRjh07hpcvX0JLSwv16tXD69evoaGhUaZzRkVFBa1bt0ZYWBhsbGy4uVuJkEkYYFkWERERGDduHDdY8Kk/oqKivogvIEZNTQ1qamooKCj46oiRvCEiCAQChIeH49ChQ3j48CFq166Nbt26YfTo0ahfvz60tLS+mZ1QrEH41udCoRDZ2dmIiYnBzZs3sWzZMhQUFMDOzg5JSUmIi4tD48aN4ejoCEdHRzRt2lRpYytUVMTH2AIDAzF16lQUFBTIJe8DEeHjx4/w9vbG1KlTpY4/YWJigm7dumHXrl1YsGCB3DUWsvDu3TusXLnyKwFdrOVq2LAh5s+fLzleS0Tg8/l4+vQpDh06hEePHsHExASTJk1C+/btUa9ePWhqav4w62eLFi2+yFoonqsRERHIysrC/fv3sWDBAgiFQvTo0QN9+vSRHMUt7Xn0xx9/SMwgXDC5SoQsjgZ5eXlkbW1NMTExslxe4cjPzycbGxuKjo7+5ne2trYUGRmpsPrFTlI3b96kYcOGUffu3SkwMJDevHlDfD5f7jHbCwoK6MmTJzR58mQyMTGh1q1b061bt0goFMqtHg7ZYFmWXrx4QdbW1rR169YShwnn8/k0Y8YMmj17NvH5fJnKiI+PJzMzM3r9+nWJ2iIPWJal7du3k4mJCamrqxPDMF85vero6NDu3btJJBJRUVERhYaGkpOTE9nZ2dHGjRspISGBBAJBiecVy7KSMliWpfz8fAoLC6O5c+eSmZkZzZs3j+Li4krdATMuLo66du1KOTk5pVovR9kik2YgIyMDLMtKoo5VdtLT0yESib7ZH+rq6tDU1ER2drZC6iYivHnzBmvXrkVkZCTGjBkDe3t76OnpKeSNgmEYaGpqolWrVvDx8cHkyZPx999/Y86cOejXrx9Gjx6NKlWqcFqBMkIcJGfTpk2YOHEiCgsL4erqCnV1danLIiKcPHkSL1++xO7du2UKRAV80g7Y2Nhg165d8Pb2LnPtwLBhw2Bra4s3b94gLCwMYWFhCA8PR0JCAjIzM5GXl4eZM2dCVVUVN2/exJs3b+Ds7AxbW1vo6OjIbWx/Xg7DMNDS0sKff/6JVq1aISkpCXv37sWIESMwePBgjBgxQmFz+r+IHRg/fvxYbJMQRwVAFgniyZMn1KtXL5nfFCoaT58+pR49enyzP1iWpZEjR9LFixflXq9AIKATJ06QmZkZrVmzhtLT08vkSJI4i5y7uzv17t2bO0qoBLAsS/Hx8dSrVy9avny51BkoWZaliIgIMjU1pbCwsBI/zzdv3iiNduBzWJYlkUhE+fn59ObNGwoODiZfX19q3Lgx1ahRg5YuXUqZmZllMp5FIhFFRkaSi4sL9evXj168eFEq7RAKhTRw4EC6efOmwuviUB5kEtETExNRu3btMpfwlYXk5GQYGxt/tz9MTEzw9u1budZZWFgIPz8/bNy4EWvWrMGUKVPKLLiPOBSsv78/HB0d4eHhUaxALhyKg2EY1K1bF5s3b8Y///wj8fOgYh7xy8nJgaenJ8aMGYNWrVqVeFzVrVtXoh1QpnHBMAx4PJ7Eia9Lly4QCARo3LgxTp8+jWnTpkFfX79M5hWPx0OTJk2wbt069OnTB25ubggJCVF4//F4PDRq1AgxMTEKrYdDuZB6N6d/s2xxwsAniAhJSUmoVavWd/ujXr16cs00V1BQgEWLFiEsLAw7d+5Eu3btyjz/AcMwUFdXh6OjI1atWoWVK1fi6NGjSrXwVzYYhkGtWrWwYcMGvHnzBvPnz0deXt5Px6FIJEJgYCBq1KghOVdfUng8HkaPHo2rV68iLi6uxOUpgoKCAnh5eSEqKgq7du3C//73P2hpaZX5vNLQ0MDw4cPh4+ODxYsX4/Tp0wqfV40aNUJsbKxSxUfhUCwyzfKUlJRSD5WpzCQnJ6NWrVrf/I5hGNSvXx9v376VywQWCoXw8/PD27dvsX79+lKNXV4cGIZBhw4dEBQUhI0bN+LKlSvcglKGMAyDatWqITAwEPn5+ZgxYwaysrK++0zo3xwT165dg7e3t0y+Bt/DxMQEDg4O2Lx5c6nmLCgOAoEAy5cvx8ePH7Fu3Tqly6XBMAy6dOkCf39/+Pn54caNGwqbVwzDoF69ekhMTOSE+UqETMJAWloaqlevLu+2lFvS09NRtWrV7y4e9evXR1JS0jcj9EkD/Zs//ubNm1i9evUP65QX9FlUNfHfz2AYBr/99huWLVuGpUuXlnm63coOwzAwMDDA6tWroaOjg4kTJ+LDhw9fPRMiQkJCAnx9fbFw4UK5C/wMw2DEiBF4+PAhIiIilGZMEBGOHz+Ox48fY+XKlQozt0kzh74FwzD4888/sWjRIixcuFCu2sb/YmJigpSUlBKvWRzlB5nMBB8/fuROEvwLESEzMxOGhobf/U316tXB5/ORlZVVorrev38Pf39/LF68GMbGxiUqq7h8/PgRy5Ytw4QJEzB37lx8+PChWNcxDINOnTph0KBB8PX15RYVJUBXVxdLly5FgwYN4O7ujqSkpC82k4KCAixYsAB9+vRBly5dFLIh1qhRA46OjtiwYUOpBuL6EWIt2+LFi6Va14gIGRkZxfbFOHXqFIYNG4YlS5aUSCAwNzeHg4PDN2MlyItq1aohLy+PCyNeiZBJM5CXl8cdOfmMzMzMHwYU0tfXh56eHt69eydzHUSEHTt2wNTU9Iv88YqEiBAQEICEhAR4eXlBQ0MDHz9+LPb1PB4PI0aMQFJSEu7evas0b4KVGS0tLcyfPx8dOnTAuHHj8ObNG0ks/R07dkAgEMDV1VVh/kAMw2DQoEGIjo5GWFhYmY8JlmWxdetWdOvWTWpHSaFQCFdXVxw6dKhYv7ezs8Pvv/+OsLAwWZsL4FOUwDFjxii0D7W1taGhoYHMzEy5l82hnEg941mWBZ/P52LN/wsRobCwEFpaWt/9jaqqKpo2bVqi3PMfPnzA5cuXMXr06BJFBSMiiEQiCIXCL9SWQqHwi8+AT45kjx8/Rps2bWBsbAxPT080bdpUqvr09PQwcuRI7N69m7M/KgkaGhqYMmUKevXqhXHjxuHVq1e4d+8ejh49iiVLlkBbW1uh9RsaGmLMmDEICgr6KqVwaZOSkoLr169jxIgRUgtAqqqq8PX1Re/evb/6TjynxLkJgE95DeS1bhoYGGDo0KHYvXu3QoQBTU1NThioZEgddEicdEfWACQVEZFI9NMN+s8//0RYWBiGDh0q01v9gwcPUK9ePdSvX1/qa7OysrBnzx7k5uaiS5cu2LVrF+Lj4zFx4kSYmZlh69atiI+Ph0AgQJMmTeDm5gZtbW3s378f0dHRCA4ORk5ODpycnGBiYiJV3QzDoGvXrtiwYQNSU1O/62jJUbqoqanB2dkZOjo6cHV1hVAoxPz589GgQQOFa50YhoGDgwMOHjyI0NBQdO/evcyc9e7evYtff/1V6nHNsizOnj2L8PBwdOzYEVZWVrh9+zauX7+OevXqQUtLC8HBwRAIBN/t11u3buH69etQUVFB165d0aFDh2LXzzAMunXrhh07duDjx49y9+FSUVGBvr4+JwxUImTyGSAiLmb1v7As+9P+YBgGf/zxByIiImR6EyIi3LlzB2ZmZpKsgdKgpaWFtm3bYuPGjdi0aROGDh2K7t2749mzZ3j+/Dnevn0LHx8f+Pr64vnz51i/fj14PB46duyIatWqoWXLlrC1tf2hX8SPMDIyQt26dRERESHT9RyKQVVVFQMGDED16tWRlJSk8NwZn6Orq4uJEydi3bp1yM3NLbV6P4eIcOvWLVhYWEi9nonn9NOnT3HlyhUAQOPGjVFQUIAlS5agdu3aWLlyJXg8HtauXfvNt3eRSISHDx+iQ4cOMiVxql69OmrUqIHIyEipry0ONWrUQGpqqkLK5lA+ZDITAOBiDPxLcYQB4NOJgqKiIrx//16mOt68eSO1il6Muro6mjZtCnV1dQwYMABWVlaYNGkSPDw80K5dO0yZMgXR0dF4+fIlateujevXr4NhGDRq1Ah6enowMTHBH3/88c1MbsVBRUUFjRo14k4VKBliL3qRSITVq1dj3rx5uHLlSqmYcxiGgYWFBapWrYrjx4+XybgQiURITExEo0aNpL5WfPzOyMhI8pmxsTHq1KmDatWqoXXr1tDT00OnTp3w4sWLL45SEhEePXqEffv2wc/PD5aWlqhRo4bUbVBVVcUvv/yC169fK6T/atasiZSUFLmXy6GcSP2aKdYMKNMZ3LJEPAl/1h+6urpo2LAhnjx5gvr160vVfyKRCPn5+dDX1y9RW1VVVWFiYiKJg66pqYnQ0FB4eXnB2toatWvXRkpKCgoLC+W6uDAMAyMjI0nueI6yh4jw4sULbNq0CRs2bEDLli1Rq1YtzJs3D9nZ2fjrr78Urv1TV1fHlClTMG3aNNjZ2ZX62X6hUCiXefVfDAwMJFk7tbS0vtIGvnz5EnPmzIFQKCxRHg/xvFKUKt/AwIATBioR3Ot9KSE+EnT9+nWpN1qGYaCioiKXY0T/XXjEG8GCBQvg6uoKS0tLhSzIfD6f8zNREogIWVlZ8PT0hJubG1q2bCkJahMYGIigoCDs2bNH4Uf/xKr2//3vf9i+fXupawfkOa/+W+6PqFq1KrZs2QJ1dXUsX768RMduFTWvGIaBnp4ecnNzOW1eJYETBkoJhmHQsWNHPHv2DHl5eVJdq6qqCiMjI5lMDAC+msyf/7tKlSpISUlBfn4+ioqK8PTp02+qiUsSLOXzENYcZY9IJIKfnx/q16+PgQMHSjYvhmHQqlUrbN68GYcPH8b69evB5/MVuhnweDy4u7vj4sWLpR7+Vk1NTa5vvz+aZ5//29jYGA0aNMDq1atx9uxZnD59Wqb5xbKsJBS6ItDV1eWEgUoEJwyUIvXr14e2tjZevnwp1QQTv0E9evRIpomZk5ODVatWgYjg7++PS5cuScqZOXMmeDweXF1d4eXlhYyMDGRlZWHNmjVYvXo1UlJScPLkSaxYsULmN5jCwkLExMSgWbNmnHmpjCEiXLx4Effu3cO8efO+CjfMMAyaNGmCrVu3IjQ0FL6+vnI3G/23PrFQ4ufnV6qBiHg8Hlq2bCm3s/rXr1/H6dOnkZSUhO3btyMsLAxHjhxBVlYW1q5di0uXLuHixYt4+/YtNm/ejMzMTFSpUgW+vr5YsWKF1CGaCwoK8Pr1azRt2lQh80pPTw95eXnckeBKgvSu6Rwyo66uDgsLC1y+fBnt27eX6lozMzPMnDlTpoBPurq6mDt3LmbPng0AkpgIDMOgadOmOHDgAAoKCqCmpgZVVVXk5eVJTi2MGzcOwCfthKzqyJiYGBQVFcnkqMUhP4gIr1+/xqpVq7B8+fLvOq0xDAMTExNs2rQJ06dPh5eXFxYsWABdXV2FbDoMw2D48OFwdHTEzZs30bVr11ITGi0sLLBo0SJMnjz5h7FCPicvLw88Hg8aGhpgWVbiW9GxY0fs27cPwKe5rq6ujh07doCIJPPnf//7H4BPWgl1dXWcP38ewKf5JY2PBhHh1atX4PF4Mh03Lg46OjpSZbrkKN9wmoFShGEY2NnZ4fr161KbCpo1awY9PT3cunVL6snJ4/FgYGAAIyMjGBkZfZGJTZwVzcDAADo6OtDQ0ICRkRH09fWhr68vuUbWNK4sy+LgwYOwtbWV+TQCh3zIz8+Hl5cXBg4ciA4dOvzweTIMgxo1aiAoKAh5eXmYPn06MjIyFLYxVKlSBZMnT4afnx9ycnIUUse3+P3338Hj8XDv3r1i39vFixexfPly/PPPP3j58qUkPoCmpqZkvujq6kJdXR2GhoaS+aOlpSX5Xk9PTzLXZJlfLMti//796NWrV7GFGGlRU1ODQCDghIFKAicMlDJNmjSBtrY2njx5ItUkU1dXh4uLCzZs2FBm57KlhYgQERGBW7duYciQIWXdnEqNSCTCli1boKamhjFjxhTraDDDMKhSpQpWrVoFAwMDTJgwASkpKQrZHBiGgbW1NYyNjXHw4MFS24A0NTUxduxYBAUFIT8/v1jXdOjQAUZGRrh8+TLmzZsHOzu7UjV/ERGePXuGsLCwL3w+5I2amprS5I/gUDycMFDKqKurw8HBAUePHpXab8DKygrGxsZKmQL2W+Tm5mLp0qUYNWoUateuzfkLlBFEhNu3b+PUqVNYtGiRVG+SDMNAR0cHixcvxm+//QY3NzeFZctTU1PDjBkzsH//fiQkJMi9/G8h1tbp6upi586dxbKPm5iYYPLkyfD09IS9vX2pnpIhImRnZ2Pp0qVwdXWVKT5BcVFVVZWEKOeo+HDCQCkjXnyePHki9ekANTU1eHl54cKFCzh//rxSO/bw+XysXr0aBgYGcHJy4gSBMoKIkJycjMWLF2Pu3LmoV6+e1M+CYRhoampi5syZsLGxgaurq9ROsMWt59dff4W9vT0CAwNL7a1UQ0MDCxYswN9//43g4GCl3vyKiorg6+uLOnXqoH///gqdV5xmoHLBCQNlQK1atdCmTRvJkaLiwjAM6tati+XLl2PVqlW4dOmS0gkE4sRNa9euxfPnz7FkyRIuqVUZUlRUhCVLlqBr166wsbEp0eahrq4ONzc3jBw5Eh4eHrh//75CBAJXV1c8e/YMt2/fLpWNmWEYNGjQAD4+Pli6dClCQkKUcl4VFBRg5cqVePPmDRYuXPjVSRB5wzBMiY4Uc5QvOGGgDODxeBg6dCiOHz8utf2fYRi0a9cOK1euxIoVK7B///4yz/wmRhzMxtvbG2FhYQgKCkK1atU4rUAZwbIsDhw4gLS0NEycOFEuIcRVVVXh6OiI2bNnY+bMmbh8+bJcN05xVL2pU6di1apVyM7OllvZP6u3U6dO8PHxwZIlS3DkyJESBQOSJ0SEzMxMzJ07F9HR0QgMDIShoaHC5xXLsuDxeNz8rSRwwkAZII4bUK1aNVz5P/bOMyqqq2vAz52hSa+CIIIFe++9xW6MJSpgN6ix967YNfZO7AU0sWtijEmMxsTee48NBUUB6TDAzJzvh5n54psYBQaYgXnWete7gnPP3feetu8+uxw9mqmMhLVq1WLNmjXs2bOHiRMnZptj18eiVqu5desW3bt35+eff2bmzJm4ubkZF5JcQgjB9evX2bp1K3PmzMHGxkZnfSGTyWjVqhULFixg7ty57NmzR6c+LJIk0axZM9zd3XO09LUkSdSvX5+goCC2bdvGlClTiIyMzPV5de3aNfr06YOpqSmrVq3CxcUlR+aVSqUy1qDJRxh7OpcwNTUlICCALVu2kJKSkuHrJUmidOnSbN26FUtLS/z9/dm/fz/Jyck5ungJIYiMjGTRokUMHTqUNm3a0KxZMwYPHsz27duNGcxyiZiYGAIDAxk2bBilSpXS+eah+ZL++uuv2bBhA+vXr9dpGJqpqSnjx49n7969/Pnnnzk2hiRJoly5coSEhCCTyfD39+fgwYM5Hm8vhODVq1fMmzePkSNH0q1bN+bOnZulWgYZ5WNKsxvJOxiVgVxCkwvezMws005LGpPqzJkzmT9/Prt27cLX15fvv/+e2NjYbDvvE0KgVqsJDw9n9erVdOnShdevXxMSEsLgwYNZtGgRixYt4siRI/j7+/Prr79me1pbI/9Peno6CxcupEyZMnTo0CHbNg/NxrlhwwZ++uknFixYoLNshZqqmf7+/ixcuDBHTfaSJOHk5MScOXOYNWsWISEh+Pv78+OPPxIfH5/t8yosLIzly5fTtWtXEhIS2L59O127dsXMzCxHLW3GY4J8hsggCQkJolmzZuLp06cZvTRPkpKSIlq0aCEePHiQ4WvVarU4duyYaN26tYiPj8+SHGq1WqSkpIijR4+K7t27i8aNG4t58+aJy5cvi6SkJKFWq4Varc5S+yqVSrx580b89ttvYsSIEaJBgwZi5MiR4ubNm0KpVP7j9wqFQvz000+ibdu2omfPnuLKlStCqVRmSQ4j/41arRb79+8XrVq1EpGRkTl2z5cvX4pu3bqJ0aNHi/j4eJ31cXx8vPjss8/Ed999lyvjRq1Wi+TkZPHTTz8JX19f0bRpU7FgwQJx5coVnc6rqKgocfToUTF06FDRqFEjMW7cOHHnzp1/zKuc5NKlS6JTp04iLS0t12QwknNIQmRMxU1MTKRjx45s3Lgx29JgGhIKhYL27duzevVqfHx8Mnx9amoq/fv3p2nTpvTu3VsnWnh6ejr379/n4MGDnDx5EpVKRbly5ahduzZly5bF1dUVW1tbTE1N38lECP9fTEX8FRUQGxtLWFgY169f59y5czx58oSCBQvSokULWrZsSaFChf7z60EIQWJiIvv372fLli3UqFGDIUOGZLiMs5EPI4Tg4cOHBAQEsHTpUqpVq5Zj71j85Tw6efJkUlNTWbhwIY6Ojlm+vxBCW0fh22+/zTU/FCEE6enp3Lt3j++//55Tp04BbzMY1qpVizJlyuDq6oqNjc0H51VKSgqxsbE8f/6c69evc+bMGZ4+fYqHhwctW7akRYsWuLm55fp5/cmTJ1m3bh1bt27Vpic3kncxKgNZJKvKAMDVq1cZNWoUO3fuxM3NTWeyaTb0J0+ecOXKFS5cuMCjR49ITk7G1NQUS0tLnJycsLCwoECBAqjVahQKBYmJibx584bU1FSUSiWOjo6UKVOG2rVrU6FCBdzd3bX12jMiy+vXr9myZQuHDx+mffv29OrVyxhtoEMSEhLo168fzZo1IyAgIMc3EyEEycnJfPXVV9y/f59ly5bh4eGR5f5VqVTMnj2bpKQkvvrqq1zfmDQb+uPHj7ly5QoXL17k0aNHpKSkYGZmhqWlJfb29lhbW2vrFygUChISEoiJidHOK2dnZ0qXLs2tW7eoUqUKEydOfEeRyG1++eUX9uzZw7p164y+A/kAozKQRXShDKhUKqZPn44kScyYMSNbJp7465xTqVSSkJBAdHQ0cXFxhIeHM2PGDL744gtcXV2xsLDA2toaJycn7OzscHJyokCBAhne/N+HWq3m8ePHBAUFcf36dfr168dnn32GlZWV3iyChohKpWLx4sU8fPiQVatW5Wpuh9TUVIKCgjhy5AhLly6lTJkyWe7bqKgounXrxoQJE2jatKnejBXNvEpPTychIYE3b95w5coVli9fzujRo7Ue+RYWFtjY2LwzrywsLDAxMeHOnTsMHjyYHTt26FWZ7++++45jx46xYsWKXLdSGMl+jLYfPUAmkzF06FD8/f25cuUK1atXzxbvb0mSMDMzw8nJCScnJwCKFy+Oo6Mjfn5+2ZraVINMJqN48eIsWrSIq1evsnz5cnbt2sXw4cNp0KCBXn0ZGQpCCH7//Xd++eUXQkJCcj3Jk7m5OcOHD8fV1ZVBgwYxb9486tatm6V+dXJyYuzYsSxcuJAqVarg6OioQ4kzj2ZemZubY25ujpOTEw8fPqR8+fJ07tz5ozbR0qVLU69ePbZs2cKkSZP0ZuNNTk7GwsLCOB/zCfox6vI5kiRpF86FCxd+dMEUXZCamopKpcLS0jLH7ilJEiYmJlSvXp1NmzYxYMAAFi9ezMCBA7lx44ZB1F3QJ8LCwpgzZw6BgYF4eHjktjjA2+RE/v7+TJ48mYkTJ3Lo0KEs9askSTRp0oRy5crx9ddf6/UYefjwIUWLFv3oTVQmk/Hll1/yyy+/8PTpU72IuhF/1UDIbLVSI4aHURnQEyRJ4rPPPsPMzIzdu3fn2IKQnJyMmZlZrpzDanLet2nThl27dlG/fn1GjBjB5MmTCQ0N1YtFUd9JSUlhxowZtG3bloYNG+rVwi2TyWjRogXLli1j6dKlbN68OUshgppCRseOHcuWVMi64v79+xnK7aBJM962bVs2bNigN8/15s0bvbHAGMl+jMqAHmFubs6kSZPYvHkzjx49ypFFITY2Fhsbm1w1TUqShK2tLX379mXnzp3Y2trSo0cPVqxYQXR0tN4sjvqGWq0mODiY5ORkBg4cqJdOXpIkUa1aNTZs2MD333/PokWLMpVkS0OhQoUYPXo0c+bMITY2VneC6gilUkl4eDje3t4Zuk4mk9GzZ0/OnDnDw4cP9WLMG5WB/IVRGdAjJEmibNmy+Pr68tVXX+VIzYGYmBjs7Oz0YiORJAk3NzcmTZrEpk2bePjwIb6+vuzZsyfHMyvqO0IILl26xLfffsvs2bOxsrLKbZHeiyaB0MaNG7lz5w6TJ08mLi4u04m2WrVqRYkSJQgKCtK744Lk5GRiY2Mz5QhYqFAh2rdvz/r16/WiUFJMTIxRGchHGJUBPUMmk9G7d29iYmL47rvvsn0DjImJwdbWVm+cluDtO/Dx8WH58uXMnj2bffv20b17d06cOKHTlLeGihCC6Ohopk+fzujRoylevLheHQ/8Gxq/mKCgINRqNUOGDOH169eZ6ksTExMmTJjA0aNH9e644M2bN8jlcuzs7DJ8rSRJdOvWjYsXL+ZoCub3ERcXh62tba7KYCTn0J8dwIgWa2trpkyZwtdff82TJ0+ybVEQQhATE5MjFdAyisbJsHbt2gQHB9O3b1+++uorBg0axO3bt/Xiyym3SE9P56uvvqJq1aq0bdtW7/rufUiShJ2dHfPnz6d06dL069cvUyZxSZJwd3dnzJgxzJ07V6+OC54/f07BggUxNzfP1PWurq589tlnbNmyJVeVgfT0dFJSUozKQD7CqAzoIZIkUaVKFTp37szs2bNRKBTZdq+oqCicnZ2zrf2sonEybNeuHTt37tRmMJw+fTphYWG5/vWU0wghOHDgAA8ePGDMmDGYmprmtkgZpkCBAkyYMIEOHTowYMCATH3da44LfHx8WLVqld4cFzx+/BgvL69MH7tJkoSfnx9nz57N1ciClJQUFAoF9vb2uXJ/IzmPURnQU2QyGX379iUlJYVvvvkm2xYFfVcGNEiShL29PQMGDODbb7/FxMSEbt268fXXXxMTE5MvlAIhBPfu3SMoKIjZs2fj4OCQ2yJlGlNTU/r06cPYsWMZN24cP/zwQ4Y3dM1xwR9//MGJEydyfQwIITIcSfBvFCpUiJYtWxIcHJxrz6RQKEhPT8fGxiZX7m8k5zEqA3qMlZUVM2bMIDg4mJs3b2bLwhAdHa1NQGQISJKEh4cHgYGBrFu3jlu3btG1a1f279+f42VmcxJN3PfUqVMJCAigYsWKBnM88D7kcjlt2rRh2bJlrFixgo0bN2bIaVbjcDpx4kS++uqrTPsg6Aq1Ws3Tp08pVqxYltqRyWT06NGD48eP8+LFCx1JlzESEhKwsLAwSMuTkcxhVAb0GEmSKFWqFIMHD2bq1Kk6PxsVQpCQkGCQ54IymYzSpUuzcuVKpk+fzs6dO+nVqxenT5/Ok06GarWalStX4ubmhp+fn145fGaFv4ceHj58mLlz55KYmJih65s0aUKtWrVYvHgxSqUyG6X9bxQKBZGRkXh6ema5LU9PT2rXrs2+fftyZSxHRUVhb2+f63UgjOQceWNFycNIksTnn3+Oj48PCxYs0Gld9/T0dBQKhcGaAiVJwtTUlHr16hESEkK3bt2YNWsWw4YN4+7du3nGyVAIwa+//sqJEyeYOnUqZmZmuS2STpEkiaJFi7Jx40bCw8MZOXIkkZGRH70JyuVyRo4cye3bt/n5559zTRGMj48nPT1dJ5Y2mUxGr169+P7773PcQVIIwatXr3B2djYqA/kIozJgAJiZmTFp0iRu3LjBwYMHdbbYpaamkpaWZrDKgAZJkihQoAAdOnRg9+7dVKxYkYEDBzJr1ixevHhh8FaC0NBQvvrqK6ZPn55rJXyzG0mScHZ2ZsWKFbi7u9O/f/+PjqSRJAlHR0cCAwNZsmQJz549y5U+f/HiBQ4ODhQoUEAn7ZUuXZoiRYrkioITHh6uV0WTjGQ/RmXAQHBycmLOnDksX76c27dv62RxSEtLIy0tDWtrax1ImPtonAwHDRrEt99+i1KpxN/fn/Xr1xMbG2uQSkFycjLTp0+nY8eOWS72o+9IkoSlpSVTp06lZcuW9O/fnytXrny0QlCrVi06dOjAjBkzsjUC532Ehobi7u6us3N2uVxOnz592LFjR44/T2hoKF5eXnl6vBl5F6MyYCBowg0HDRrEhAkTiIqKyvLmlpqaikwmy5NmZw8PD2bNmkVQUBCXL1/G19eX77//3qCcDNVqNRs3bkStVjNgwIA84yfwX2iOfgYMGMCwYcMYOXIkhw8f/qhIA5lMRr9+/VAoFGzbti1Hj4n+HkmgKyRJombNmqhUKq5evZqj4zY8PFxvil4ZyRny/uqSh5AkiS5dulC5cmVmzZpFampqltqLi4vDyspKL1IR6xpJkpDJZJQrV46goCCmTJlCSEgIvXv35uzZsyiVSr1WCoQQnD17ln379jFr1iydmZ4NAUmSkMvltG/fnsWLF7NkyRJtpMGH+szKyoqZM2eybds2rl+/nmN9LITg8ePHlChRQqdf0wUKFKBjx47s3Lkzx5SbtLQ0YmNjc6SkuRH9wagMGBimpqaMHz+e169fs2nTpiwlW9EUKcqLyoAGzZdmgwYN2L59O507d2batGmMHDmSBw8eoFar9U4p0DhwzZw5kwkTJuDt7Z0vzbWaL+MNGzbw008/MWvWLJKSkv6zvyRJwsfHh6FDhzJt2rQcc75LS0vjxYsXeHl56bRdSZJo06YN165dy7Eww5SUFBITE3FxccmR+xnRD4zKgAFia2vL/Pnz2bdvH7/88kumN7PY2FhsbW3zhcew5jy6S5cu7Nq1Cx8fH/r378+8efN49eqVXikEaWlpzJs3j3r16tGiRYt8qQhokCSJYsWKsWHDBiIjIxk6dOgH8wlIkkTHjh3x8fFhyZIlORJumJycTEJCAq6urjpv283NjRo1avDjjz/mWCVTuVyeZ3yJjHwcRmXAAJEkCW9vb7766ivmz5+fKXOopi5BZgqqGDKSJOHk5MTw4cPZvn07ycnJ+Pr6smnTJuLj43NdKRBCsHv3bsLCwhg5cmSettp8LJIk4eLiwtKlSylRogQBAQHcv3//P/tKE4Fz6dKlHNlEX716hZWVVbZsoJIk0bVrV3744YcccSQMCwvD2dk50/UVjBgmRmXAQJEkiRo1ajB8+HAmTJhAeHh4hhe86OhonJ2d8+WXpyRJFClShNmzZ7Ny5UrOnDmDr68vP/74IwqFIleUAiEEN2/eZP369cyePRtbW9t82Tfvw8rKigkTJtClSxe+/PJLTp48+Z/n6M7OzsyaNYslS5ZkqiBSRggLC8PFxQULCwudty1JEhUrVkQIwa1bt3Te/v/y/Plz3N3djYpoPsOoDBgwMpmMDh060LJlS8aMGZPhHP2GUpcgO5HL5VSsWJG1a9cybtw4Nm7cSN++fblw4UKOOhkKIYiNjSUwMJDBgwdTtmxZoyLwL5iamtKzZ08CAwOZOnUqu3fvfu8xgCRJVK9ene7duxMYGJihzIYfQghBcnIyaWlpqNVqHjx4QIkSJXTW/v9iYWFBq1atOHjwYLY7Ej58+FDnjpBG9B+jMmDgmJiYMHjwYLy8vJg6dSrJyckfvYEZlYG3SJKEmZkZTZo04ZtvvqF9+/ZMnjyZMWPG8PDhwxzx4lapVCxZsoSiRYvy+eefGxfi/0Amk/HJJ58QFBTEli1bWL58+XtDRmUyGb1798bGxoagoCCdVTdUqVQMHTqU1q1bM3jwYHbv3k1KSgq3b98mMjJSp5lC4e0YbdmyJadPnyYhIUGnbf8dIQRPnjzJcn0FI4aHURnIA5ibmxMYGIhCochQyuLY2FhjidK/IUkSVlZW+Pr6smvXLry8vAgICGDBggXZ6mQohODw4cNcunSJyZMnG4vDfASSJFG+fHk2b97M9evXGTduHG/evPnXPjI3N2fmzJkcPXqUX3/9VfsbIUSmj4RkMhmWlpb89ttvrFu3jhMnTrBw4ULq1q1LzZo1+emnn7L8jP9L0aJFcXBwyNacA6mpqURERFCkSJFsad+I/mJUBvIAkiRhbW3NggULuHnzJmvWrPmgB7VSqSQ5OdkgixRlNxonw1GjRhESEkJMTAx+fn4EBweTkJCg04VYE5++ePFiZs6ciYuLi9Eq8JFIkoS7uztBQUFYWVm9N4WxJEkUKlSImTNnMn/+fJ48eYJarebcuXN8+eWXxMfHZ+re5cqVe6ev1Go1CQkJ2NnZUbdu3Sw/3/9iampKixYt+Omnn7JNGUhMTCQhIQE3N7dsad+I/mJUBvIImtzuK1eu5KeffiIkJOQ/TaLp6emkpKQYfF2C7EKSJCRJwsvLi6+++oqlS5dy/PhxfH19+eWXX0hNTdXJgpycnExgYCB+fn7UqFHDqAhkEEmSsLGxYfbs2TRv3px+/fpx4cKFf+2bOnXq0KVLFyZPnsyGDRvo1KkTu3fv5tq1a5m6b7ly5f4RlmtiYsKoUaOypSy4pkLjpUuXSEpK0nn7ABEREdja2mJlZZUt7RvRX4zKQB5CkiQKFy7MqlWr2L59O/v373/vebemYqHRMvDfaLLhVa5cmQ0bNjBy5EhWr15NQEAAV65cQaVSZVopUKvVrF27FnNzc/r27Zsv0g1nBxqfjwEDBjBmzBjGjh3LgQMHtMqwplT35cuX6dSpE3fv3mXo0KFERESgUCj44YcfMtWHRYoU+ccxW61atejYsWO2KXVeXl5YWlpy7969bLEOhIaG4urqagwrzIcYV588hiRJlChRguXLl7N69WoOHz78rwqBxgs6O0Kh8iKaDad58+bs3LmTVq1aMW7cOMaNG6c1O2dkcRZCcOLECQ4dOsTMmTPzVbrh7EIul9OmTRtWrVrFmjVrWLFiBQqFgvT0dGbNmkW3bt3o1q0bt27deucY7eeffyYuLi7D93NxcaFQoULa/zY3N2fs2LHZam0zMzOjfv36HD9+PFvaf/DgASVLljRaqPIhRmUgDyJJEhUqVGDx4sUsWrSII0eO/GOjSkhIoECBAvki+6Au0fhndO/enZ07d1KoUCH69OnDkiVLPrp4lBCCFy9eMHv2bCZPnoynp2cOSJ4/kCSJSpUqsXnzZi5evMj48eNZtWoVQUFBPHz4kN9///0fyvHDhw+5evVqhu9lYWHxTmGiJk2a0LJly2zdSCVJomHDhpw5c0bnmRWFENy7d4/SpUvrtF0jhoFRGcijaGKsFyxYwLx58zh69Og7G5WmSJFRGcgckiRRsGBBxowZw5YtW3j58iW+vr588803JCYm/qdSkJqayuzZs2nWrBlNmzY1foXpGEmS8PT0ZM2aNbx8+ZKJEyf+Z+a+1NTUTMXvy2QyypcvD7xNiDRu3LgcsbSVKlWK2NhYXr16pdN2U1NTCQsLo3jx4jpt14hhYFQG8jCaGu/z5s1j1qxZ/Pbbb9pNyqgM6AaZTEbx4sVZuHAhCxYs4Oeff6Zbt24cO3bsX6vsqdVqvvnmG6Kjoxk6dKjRTyCbEEIQFhbG1atX//EFbWVl9Y55H+CXX37J8FGBJrxRJpPRrl076tevnyOKnZ2dHV5eXty6dUunfgMJCQkkJCTg7u6uszaNGA7GnSCPI0kS9erVY/78+UyaNIn09HRatGhBXFycMd2tDjExMaF69eps2rSJ48ePs2zZMrZt28aIESOoVKkScrkcIQRXr14lODiYDRs2YG1tbXz/2cTr168ZNGgQjx49+se/paam0rdvX16+fMnOnTtJSUnh0aNHXL58mWbNmml/J4RApVKRmppKXFwccXFxJCQkkJycrC0fHh0djY2NDe3atSMqKgp7e3vMzMyQy+XZ1rcymYwaNWpw/vx5WrZsqbN2w8PDsbOzM0YYZRAhhHasKBQK4uPjtSGaKSkppKWlkZaWhomJCWZmZhQoUEBbx8LW1hZLS0tMTEyQyWS5uh4YlYF8gCRJ1K1bl4ULFzJ+/HjS0tKIjIzEycnJuBnpEEmSMDc3p2XLltSrV499+/YxevRoatasyeDBg7G2tmbatGkMHz7c6KSVzSQlJVGhQgXCwsJ4/vz5O2G2SqWS3bt3c/jwYdq1a8e0adO4ffs2P/zwAw0bNuT169fcuXOHc+fOce/ePSIiIrSlsC0tLbG0tMTc3FybkrhcuXIEBwezadMmAAoVKkSZMmWoVasWZcuWpWDBgjpVDiRJolq1aixcuBCVSqUz696jR4/w9PQ0Jr36AEIIlEol0dHRPH78mOvXr3Pnzh2eP39OXFwccrkcuVxOgQIFKFCgAObm5piYmKBSqUhLS0OhUJCcnIxSqUSpVGJhYUHhwoXx8fGhatWqlChRAjc3N8zNzXN0jTAqA/kEzZHB0qVLGTNmDObm5rRt2za3xcqTaGLfe/fuTevWrdm8eTM9e/bE0tKSUqVK0b59e6MikM0ULVqU1atX8+rVK44fP87u3bs5deqUNkvho0ePWLlyJcuWLaNGjRqMHz+e/fv3Ex4eTlRUFIULF6ZWrVoMGDAAb29v7O3tsbS0/MemLoQgJSUFU1NTkpOTiYmJ4enTp9y8eZPNmzfz4sULPD09admyJZ988gmurq46ORry9vYmNjaW+Ph4HB0ds9yepgiSxgfCyLsIIUhLS+Phw4f89ttvnDp1ioiICJycnKhQoQKNGjWiaNGiuLq6YmNjg4WFBSYmJv86z4UQqNVqFAoFSUlJREdH8/TpU+7evav1P7K0tKRmzZp88sknVKxYMUesiEZlIB+h+aJYtWoVfn5+REdHo1QqjX4D2YTGyXDChAlYWVmxYsUKUlJS2Lt3L5999hmWlpZGpSCb0CSNKlSoEP7+/nTp0oXHjx9z8OBB9u7dy82bNwkJCaFatWrcuHGD58+f06pVK1q2bEnjxo1xdHTUtvEhNGWLzc3NcXBwoGjRojRp0gS1Ws2bN2+4fPkyBw8eZP369dSuXZs+ffpQqlSpLFUFdHBwoECBArx48UInyoBKpeLBgwc0bNjQOCb/hlqt5vXr1xw6dIhDhw6RkJBAvXr1GDBgABUqVMDR0VHbjxl5b3K5HFNTU2xsbHBzc6Ns2bK0adNGmxPj4cOHnDp1ikWLFpGYmEjjxo3p3LkzJUqUyL4jKJFBEhISRLNmzcTTp08zemmeJCUlRbRo0UI8ePAgt0X5aNRqtejTp48oUaKEWLp0qUhNTc1tkfIsarVa3Lt3TzRo0EBcuHBBnDt3Tvj5+Yn27duL3377TaSmpgq1Wp3bYuYL1Gq1UKvVIiEhQQQHBws3Nzfh5eUlli1bJsLCwoRKpcqWvlCr1UKlUolnz56JZcuWiUaNGonRo0eLJ0+eZPp+KpVKDB06VOzZs0cnMickJIhGjRqJ0NDQLLeVF1CpVOLp06ciMDBQNGjQQAwbNkycOnVKxMfHa8dRdqNWq0Vqaqq4ffu2mDdvnmjcuLEICAgQ58+fF+np6TqXwfhJmA9Rq9UkJyczZ84cdu3aRWxsLBMmTKBAgQLGrwIdIoQgMTGRwMBAevfuTbVq1ZAkiS1btnD06FEWLlxIoUKFGDlyJOXKlct1B6L8QGpqKjt27CAkJIRx48bRuXNn3NzcMDMzy7Z7aiwMhQsXZsSIEfj7+7NlyxZ69epFv3798PX1xczMLEN9L0kSJUuW5MGDBzqR8dWrV5iammZLGmVDQghBTEwMGzdu5IcffqBFixaEhIRQpEiRj7YU6QpNorOyZctSpkwZBgwYwKFDh5g8eTIlS5Zk9OjRFC9eXGcyGeOa8iHp6elax6d169YRGhrKuHHjiImJybYCKPkRtVrN6tWrcXBwoHv37trN3sLCgrZt27Jz507q1q3LsGHDmDp1Ks+fPze+/2xCCMHr168ZPnw4R48eZf369YwcOZIiRYpkqyLwdzSbiaurK+PHjycoKIjvvvuOMWPGEB0dnaG+lyQJHx8f/vzzT53I9uTJE1xdXfNtJkzxVzTAH3/8gb+/Py9evCA4OJgpU6bg7e2d64q6pnhar1692L17N6VLl6Zv375s2rTpveW7M4pRGciHKJVKkpKSsLOzw9nZmVWrVmFpacmgQYN4+fKlcUPSAUIIjh8/ztGjR5k2bdo/ktFIkoSdnR0BAQHs3LkTS0tLevToQVBQ0HtL8RrJHEIInj59Sv/+/SlcuDAbN26kdOnSuZrjQZOwaMuWLdjZ2TFgwADCwsIy1O+FCxfm9evXpKWlZUkWIQQ3b96kfPny+dIyJYQgNTWVlStXMmvWLEaPHs2iRYsoVqyY3uUBkSQJR0dHhg4dyrp16zh27BgjRowgMjIyy2uGfj2pkRwhPT2d9PR0rQObpupbjRo1CAgI4Pbt28bNKIuEhYUxd+5cAgMD/zOJi8bJbcqUKaxfv5579+7h6+vL3r17SU5ONvZDFhFC8OzZMwYNGkSbNm2YNGkSNjY2erHpaRTCadOm0ahRowwr466uriQmJma5gqFarebOnTv5MpJACEFSUhJTpkzh4sWLBAcH06JFC70Pr5TJZJQtW5YNGzZQuHBh+vXrx7Nnz7K0XhiVgXxIcnKyNgGGBgsLC0aOHEnPnj0ZPHgwx44dy3B6ViNvSUlJYfr06bRt25YGDRp81MYjk8koVaoUy5YtY9asWezdu5eePXty4sQJ0tPTjUpBJhBCEB8fz9ixY2nbti39+vXTy0Xe3NycwYMH07BhQyZMmPDRm7sm1DExMTFL909NTeXJkyeUKlVKL5SknEJjEZgxYwYJCQl8/fXXFC5c2KDegZWVFZMmTaJFixYMGTIkS5ZdozKQD4mPj8fS0vIfC6OJiQl+fn7MnTuXOXPmEBwcTHp6ei5JaZio1Wq2bt2KQqFg4MCBGQof0yS2qV27Nlu3bqVnz57MnTuXoUOHcufOnXcS5xj5MEIIVq9ejZubGwMGDMi2EFqVSsWtW7e4ePEib968yVQbpqamDBs2DHNzczZu3PhRiripqSn29va8fv06U/fU8Pr1a4QQuLq6ZqkdQ0MIwbp16wgPD2fhwoXY2dnlmiIg/spjoKmy+bEbumbN+PLLL6lfvz6TJk0iOTk5UzIYlYF8SHx8/HsrFspkMurXr8+6des4cOAAM2bMIC4uzvhl+hEIIbh48SI7duxg9uzZWFlZZaodSZIoUKAA7du3Z/fu3VStWpXBgwczY8YMo5NhBrh16xZHjhxh4sSJmJubZ9t91Go1Fy9epEePHvz666+ZbsfCwoIpU6awf/9+Hj58+MF+NjU1xdHRMcsFix4/fkzBggW1+RLyA0IILl26xIEDB5g/f77OFAGN/0VwcPBHK++RkZHMmTOHYcOGMXToUL744ov3lp5/HyYmJgwfPhyAbdu2ZWqNMCoD+RBNkaL3fbVqwpY2b95MbGwsAwYMIDQ01LgJfYDIyEimT5/OuHHjKFasWJYXF0mSsLe3Z8CAAezYsQO5XE737t35+uuvjU6GH0ClUrFhwwb8/f2zvfCOqakp/v7+uLm5ZalPJEnC29ub9u3bs3nz5o9qy8nJKcORCH9HCMGNGzeoWLGiQZnHs0paWhrLli1j8ODB2rBBXaFJZ/2xm/nt27c5e/YsM2fOJCgoiPbt2zN06NB/ravxPjQfEJMnT2bHjh2Eh4dnWG6jMpAPiYmJ+WDWMk0oy5IlS6hbty5ffPEFZ86cMfoRvIe0tDTmzZtH9erVad26tU4XF42T4bRp01i3bh03b97Ez8+P7777TmdhRXmNiIgIrl+/TocOHTLcF5owxN9//50//vhD66kthCAuLo6YmBgUCgX379/n2LFjvHjx4h/Xx8fHExMTQ2xsbIaOdyRJonPnzpw9e/aDRw6SJOHs7Ex0dHSGnu/vqNVqbt26RcWKFTPdhiFy/fp1YmJiaNOmTYbGR2pqKjExMcTHxxMbG8uJEyc4e/as1tlXqVRStWpVJk2ahFwuR6lUasdBcnIyFy9e5PfffycqKko7b0uVKsW8efNwdXXF3NycqlWrkp6enuEjJ024ae3atTlw4ECG1wWjMpAPiYqKwtnZ+YO/08TEDx06lHHjxjFp0iQ2b96srdhm5C1CCPbt28fjx48ZM2ZMltLMvg9JkpDJZJQuXZpVq1YRGBjI9u3b6dWrF2fOnPlHmd78zpUrVyhevDgFCxbM0HVCCM6ePUv37t25dOkSZ8+epVu3bly9ehWFQsGyZcto2LAhkyZNYvLkyUyaNIkZM2a8s/CmpaUxd+5cWrVqxYwZM4iMjMyQDO7u7ri7u3Pjxo0PLujOzs5ERUVlqP2/k5qaytOnT/OV86AQgh9//JE2bdpk+Cjv4sWLBAQE0KpVK9auXcvDhw8JCgpi4MCBJCYm8vDhQ0aMGEHr1q2JiYkhIiKC8ePHU6dOHRYtWsS1a9f46aef6NKli/bLv1ChQlSuXFlbPTMkJIQmTZpQrly5DD+bJEl8/vnnHDlyJMMhp0ZlIB8SGRn5UcqABrlcTqtWrdi0aRM///wz48aN00lca15ACMGdO3f4+uuvmTNnDvb29tm6qGochurXr8+2bdvw8/NjxowZDBs2jHv37qFWq439Aly9epXq1atnOE48OTmZSZMm0bJlS8aMGcP48eOpXbs2s2fPRi6Xa+tMxMfHExwczJ49e6hdu/Y7bURFRZGWlsbixYtZtmxZhh3zTExMqFSpEjdu3Pjgbx0dHTPttAhvMw/mN+fB9PR0bty4QZ06dTI8V+vVq0f37t0JDQ2lc+fO9O3blyVLlnDx4kUOHjxI6dKlGT58ODExMajVajw8PJgwYQKxsbFUrFiRfv36MWfOHJycnFi6dOk7VqPTp08ze/Zs/vjjDzp16pSpBFCSJFGqVCkSEhIyrCQalYF8hhCCN2/eZDjtqCRJlChRgk2bNmkr8l25ciVfbz4ac/DUqVPp378/FSpUyLGvK0mSsLS0pFOnTuzevZty5crRv39/Zs2ale8TRwkhCA8Px9PTM8PXRkREcPPmTaKjowkODiYkJISYmBguX75MfHw88PbdN23aFGtra7y8vPjiiy+0/f7o0SN69+5N7dq1qV+/fqZS2EqShJeXF8+fP//gbwsUKJBp73GAP//8k8KFC2fa2dUQSUtL482bN3h4eGT4Wk1furm5acMQnZycKFGiBCdPnvxHX2v+29zcXLs+mJiYUKNGDc6ePfvO13uzZs3YtGkTS5YsYfLkyRw7dixTz1egQAGsra0zrCQalYF8hubcMzNfsJokKTNmzCAgIIBRo0Zpjw3y4+ajUqlYsWIFhQsXxtfXN1fMrJIk4eDgwJAhQ/j2229RKpX4+/uzYcOGfB0Fkp6enqk0wyqVCrVaTaFChbTm+s8++4ytW7e+421vaWn5r9f/8ccfeHt7s2HDhix9sZubm3/UcZyFhUWmj+2EEFy9epVKlSrlmyMCeOsnoVarsxRqKpfLtVYnzQb/X2HYmt9o0PxeUwtBoVAgSRJyuZwKFSrg7e3N4cOHMyWbJEkfPX7+ToaVAY2mm18XGUNHqVSSmJiIvb19ptswNTWlU6dOrF+/nl9++YURI0bku69RIQS//vorp06dYsqUKTmW3/59SJKEp6en1iP54sWL+Pr6cujQIRQKRb7qGwAbGxvtl3xGKFiwIN7e3tjZ2dG8eXOaN29OsWLFOHLkyEdtmD179mThwoXIZDIWLFiQ6TwdMTExHzVHLSwsSE9Pz1QOCrVazY0bN6hcuXK+UgZMTEwwNzfPUuZGjVOgphhZaGgolStXfu/v09LStOmmhRDcvXuX8uXLY2Zmxvr16/nxxx+1czQtLY24uDjs7OwyJZtarSYhIQFbW9sMXZdh1UgzaPLb4vI+NMqRoXjZq1QqEhMTMz3QNGjOpjZt2sSqVavo2bMnkyZNonHjxtmW3EVfEEIQGhrKggULmDNnDq6urnqzmMrlcsqVK0dQUBBnzpxhxYoVfPPNN4waNYpq1aplXy10PULjVX3v3j2EEBl6Xjs7OyZNmsSaNWtwdHTEwcGBTZs20aJFC0xMTLh37x7JycmEhoYSFhaGh4cHQggeP35MUlISL1++RJIkBg8ezODBgylTpgxt27bNkCOjEIJ79+59VHpgMzMzrTUjo2jkLVGiRIavNWTMzc3x8PDg/v37FC1aNFNtJCUlERISQoMGDTh8+DDW1tZ07tyZhIQEHj16RGpqKn/++ad2nVWr1ezbtw94m9fh0qVLfP3118jlcszMzFi4cCGmpqa4ubnx/fffk56ejr+/f6Zki4qKIj09PUN+YZAJy4CmepMxG9pbDE05UiqVpKSkYGNjk+W2JEnC1taWiRMnMm3aNBYsWMDs2bPzdPVDIQQpKSlMmzaNzz//nLp16+rd5qopfdqoUSO2b99Ox44dmTJlCqNGjeLBgwcGo7hmherVq3Pp0qUMe1RrQvuWL1/Os2fPuHr1KoMGDaJr167a5EJdunQhJSWFmzdvAm8X+suXL9OhQwdUKhVhYWEoFAoGDx5MREREhuLF4a0T482bN6lSpcoHx5ZMJsu0386LFy8wMTHJcMSFoSOTyWjYsCG//PJLpudC4cKFad68OZcvX8bT05MdO3bg5uZGVFQUoaGhBAQEcPnyZRQKBfDWguPv78/Dhw+JjY1l27ZtWsfT/v37s2DBAp4/f87JkycpX748Bw8epFSpUhmWSwjB+fPnKVq0aIY/+DL8CWdiYoJMJstypay8gkY5MpQFVnM2pcuMbHK5nIYNG7Jt2zYWLFhAr169CAwMzJQ3t74jhGDDhg1IkkRAQIBeP58kSVhZWdG1a1eaNWvG9u3b6d+/Py1atCAgIAA3Nze9U2R0Rbly5UhJSeHu3bv/ab79N+RyOZUrV/7HdXK5nD59+vzj9yYmJvTs2fOdv1WoUCGDEr9FCMH169eRy+X4+Ph88PcaZSAz97l58yY+Pj65fsSV00iSRIsWLQgODub58+d4eXllqo2yZctSqVKld/5etGhRxo8f/87fNOmi3dzcqFmz5j/asra2pnHjxjRu3DjDcvwvqampfPvtt/Tr1y/Da1OmfAZMTEyMysBfaOK/DSXOOyEhAXNzc50vAJo67QsXLqRv376MHz+epUuX5iknNiEEZ86c4cCBA8ycOdNgar9rPJ6HDx/Otm3bSEpKws/Pj82bNxMfH59n+ufvWFtb06lTJzZu3GgwcxPeOj5u2LABPz+/f5S9/jdkMpn2HDqjXLlyhapVq+ZZhfC/8PDwoEWLFgQFBWVofFy4cIE9e/bw5s0bVq9e/UEnvZcvX7Jq1SrS09NZuXIlERERWRX9vQghOHz4MEIIGjZsmOF+zZQyYG1tneVKWXkFjXJkKAtOQkICFhYW2fI1oImB79ixIyEhITx8+JBevXppQxANnYiICGbOnMnEiRPx8vIyuEVUkiSKFCnCnDlzWLlyJadOncLPz4/Dhw/nOSdDSZLw9fXl/v37nDhxwiCeTeOU+vr1a9q3b/9R4yujPhEalEolt27dyneRBBpkMhlffvkl165d026gH0OZMmWYP38+v/76K76+vh+sgunk5MTo0aM5deoUw4cP/2Dm18wihODRo0esWLGCCRMmZOpDJVM2TgcHhyyFzeQ1TE1NDcZS8l9FinSFxrN95cqV9OjRg9GjR7No0SKD9iVITU1l9uzZNGjQgObNmxvsAqoJX6pYsSLr1q1j7NixrF+/ni+++IJLly4ZjFL7MTg4ODBhwgTmzJmj9wWeNIv5okWLmDx58kf79KhUKu1RZUZ48+YNCQkJeHt7Z0LavIGzszNz585l0aJFnD9//qPGh42NDd7e3nh7e+Pu7v5BU7yZmRleXl54e3tTpEiRbPkIE0IQERHB6NGj6dGjB9WrV8/U+pQpy4Czs3OGU2zmZSwtLbOU+CMnyUrISkbQOLF17tyZ7du3Ex4eTrdu3Thx4gQqlUqvF+b/RQjBzp07iYiIYMSIEdmSbjin0fRPkyZN+Pbbb/n0008ZP348Y8eO5dGjRwbVP+9DkiSaNGnCZ599xujRo9/JB69P/H0x79atW4Yy46nV6kwpA48fP8bJySlH1gJ9RZIkqlevzpQpUxg/fjynTp3Sy/HxXwgheP78OUOGDKFu3br06dMn035MmbrK1dVVm8bSCAZ1bPKxdQl0hcZKsGTJEoYNG8asWbOYPHmyweQl0FR127hxI3PmzMlw7K6+o3Ey9Pf3Z/fu3RQuXJg+ffqwcOFCbZ17Q0YulzNo0CAqVKjAoEGDtLHe+oIQgqdPnzJw4EDq1auX4cVcqVQik8kydI0QgmvXrlGhQoU8Hwb8ITTOhIGBgUyePJlvv/2WtLQ0vRoj70OtVnPhwgW++OILGjVqxOjRoz94bPFfZMoyUKhQISIiIgzihWU3kiRlOsFJbpDTyoAGU1NTWrduzY4dO7C0tKRbt27s2rVLr8+qNdnBAgMDGTp0KGXKlDHY44EPIUkSLi4ujB49mpCQEKKiovD19SU4OJiEhAS97aOPwdzcnIkTJ9KgQQO++OILzp49m+tptIUQqNVqTp8+Tb9+/WjVqhWjRo3KsBlZoVBgamqaYWXg0qVLVKtWLc+O54wgk8lo1qwZa9euZc+ePYwYMYKnT59m2jEzuxFCEBsby9KlSxk3bhwjR45k6NChWT6CyJRloHDhwoSHh+cJpzBdYGNjQ0JCQm6L8UGEEERFRWW4LoGukCSJggULMnXqVBYtWsS+ffvo378/N27cyPXF+d9QKpUsWbKEEiVK0LFjx3yxcMpkMooWLcr8+fNZsmQJx48fx8/PjyNHjhh02mlzc3OGDBnCiBEjmDRpEsuWLdNmkMtpNPVBFi5cSGBgIBMmTGDAgAGZWsxTU1MxMzPL0NhMTk7m2bNnlClTJsP3y6toQgW3bt2Km5sb7dq1Y/Xq1URHR+vNmBdCkJyczKFDh/D39+fJkyeEhITQtm1bnRxdZkoZKFiwILGxsQbjNJfd2NnZ5drCklHi4uJwcHDI1Y1NLpdTvXp1tm7dyieffMLw4cOZM2eOXpmlNWE6V65cYdKkSVkyvxkicrmcKlWqsH79eoYPH87q1avp378/V65cMTifDw0mJia0bduWrVu38vTpU/z8/Ni7dy+JiYk58jyawla7du3C19eX169fExISQvPmzTO9mCsUigznDHn16pW2/oKRt2iSif3++++cPn2aypUrc/v2bbp27cqqVat4/vx5rox7jXUiJiaGAwcO0K1bN7Zu3cq4ceNYtmyZTqOaMnVg5ODgALz1SH1fwY78giRJ2NvbExYWltuifBCVSkV8fLy2/3ITzVl17969adasGatWrcLf358vv/ySdu3aUaBAgVxTWDSe3UuWLGHx4sU4OzvnC6vA/6JJTtWiRQvq1q3LgQMHGDduHFWrVmXw4MF4e3vrddKlf0OSJLy9vVm6dClnz55l3bp1bN68mQ4dOvDpp5/i6uqq05TNQghUKhUvXrzgxx9/5MCBA7i5uTF79mxq1KiR5TP7jOagF0Jw+/ZtihUr9lF5DPI6QgjS09M5e/Ysq1atAmDKlCnUqVMHmUzG7du3+eabb+jevTsVK1akXbt21KhRAzs7u0w5bn4sarWalJQU7t27x48//sjvv/+Oh4cHQ4YMoX79+lhYWOj83pkaiVZWVlhbWxMREUHhwoV1KpAh4ujoqE2uo8+bhj4pAxokScLDw4N58+Zx5coVFi9ezO7duxk1ahS1atXKlS/ypKQkAgMD6d69e6bDdPISGr+Ynj170qpVK7Zu3Urv3r1p3749vXv3NjhlSZMPo0GDBtSqVYvr16+zY8cOvv32W7y9vWnVqhXVqlWjcOHCmJubZ2jR1/gCKBQKwsLCuHjxIkePHuXp06fUqFGDefPmUbFiRUxNTXXyzmJiYjI8ny9fvkyVKlUMTpHTNSqVips3b7Jy5UpevnzJl19+ScuWLd/ZaCtVqkSFChWIiIjgt99+Y8uWLcybN4/ixYvTuHFjKleujKenJ9bW1piYmGSqTzUKo0Kh4MWLF9y9e5eTJ09y/fp1zMzMaNq0KUFBQZQoUSLT9/gYMqUMyOVySpYsyd27d41OKLxVBmJiYrRhPvqKpkiRvnnEa2LfNUcHP//8MzNnzsTHx4cRI0bg4+OTY+9VpVKxZs0arKys6NWrl173Z06j8fkYO3Ysn3/+OatXr8bX15cvvviCDh06YGVlZVBrgcbyUaNGDapXr05kZCTnz5/nl19+YfPmzQB4e3vj4+ODj48PBQsWxM7O7p0MnmlpaSgUCuLi4nj16hV//vknf/75J6GhochkMkqXLk2XLl2oWbMmTk5O2sJmuiKjyoBmA2zVqpVB9ZUuUavVPHnyhKCgIK5evUqPHj3o0qULNjY2//pOZDIZ7u7udO/eHV9fXyIiIrh8+TInTpxg586dREZG4uHhQdGiRSlWrBhFihTByckJGxsbLCwsMDU1xcTEBJVKhVKpJDU1lcTERGJiYggPD+fRo0c8f/6cFy9eIJfLKVKkCA0aNKBfv354eXllixXg38i0japMmTLcuXNHl7IYLA4ODsTGxuq9Q2V6ejpqtVpvzYOSJFGgQAE6dOigLbLTr18/bS79QoUKZeukEEJw4sQJDh8+TEhIiN6+p9xGJpNRrFgxFi9ezNWrV1m+fDm7d+9m2LBhNGrUyOBy3Ws2aFdXV9q1a0e7du1ISkoiPDycP//8k/v373P06FFev35NcnLyO1UCZTIZJiYmWFpaUrBgQW7fvk2FChVYs2YN7u7u2mPU7Bq3MTExGcqtHxMTQ3R0NMWKFcsWefQZIQQvX75ky5Yt/PLLL7Rr146JEyfi4uLyUf2jsSh5enpSuHBh2rdvT2RkJF26dKFt27bY2Njw6NEjfv75Z968eUNycjJKpRK1Wo1ardZ+9MhkMiwsLLC3t8fd3Z2SJUvSokULvL29KViwoPaINKeVtUwpA5IkUaFCBb7//nuUSmW+c676X6ysrEhPTyctLU2vF8LExERMTU11WqQoO5AkCQcHB4YNG0aHDh1Yv349/v7++Pn54efnh729vc4nihCCFy9eMHv2bKZMmULhwoXz7ZfTx6BZ2KpVq8amTZv47bffWLZsmbZccvny5Q0yOZOmz62trSlVqhQlS5akbdu2wP+fL6tUKm3VVrlcjomJiXYNPH78OKtXr6ZIkSLZPs80jmWOjo4fnbr4wYMHuLi46NVRYXajCcXbvXs33377LXXq1CEkJCRLzneSJCGEYO/evZQuXZo+ffr8w/9DqVT+QxmQyWTI5fJ/HBPpw1qTacuAl5cX8fHxxMTE5LsSmP+LxjyamJiItbV1bovzXgxFGYD/nxyenp7MmjWLu3fvsmrVKvbv30/fvn1p164d1tbWOptEqampzJw5kxYtWtCkSRO9mJyGgMbU3qpVK+rVq8fevXsZMWIEtWrVYvDgwRQpUsSg3+X/Ltgfmjs1a9YkISGBe/fu/aOina5RKpUZ9gE6f/48VatWzRcfcJpQvMOHD7Nu3TqKFy9OUFAQZcqUybLznxCC0NBQdu7cyYYNG/71LN/U1NSg3nOmD0QdHBywt7fnyZMnupTHILGyskImk+l9roHExMRsqViYnWi06XLlyrFq1SrmzJnDTz/9RNeuXfn+++9JTk7OcriPWq1m27ZtxMbGMmTIEIP8os1tJEnC1taWvn37snPnTmxtbenZsycrVqzQq1jt7MbKyooWLVqwf//+bH9mjTLwscVvVCoV58+fz1C6Y0NECEFaWhq//fYb3bp1Y9++fcycOZPVq1drLVZZfX6VSsXKlStp27YtPj4+eeJ9ZloZMDExoUqVKly8eDHfTPT3YWJigq2trd4Xb4qPj3+vk4whYGpqSq1atdi4cSPjx49n+/btdOvWjZ9//pmUlJRMjUMhBFevXiUkJITZs2d/dIEYI/+OJEm4ubkxadIkNm7cyKNHj+jatSu7d+/WieJmCLRv354TJ04QExOTrfdJT08nOTn5o+sLREZGEhERQfny5bNVrtxCCIFSqeTy5cv069ePpUuX0q9fP7Zu3UrdunV19pWuyeB4/fp1AgIC8oyTcaafQpIkateuzblz5/TecS670aRofvHiRW6L8p9ER0fnWvZBXWJubk7jxo3Ztm0bgwYNYsOGDZlWCqKjowkMDGTUqFGULFkyG6XOX8hkMkqWLMmyZcuYO3cuBw4coHv37vzxxx+kp6fnWaVAkiSKFSuGu7s7p0+fztbnTEhIwNTU9KPL1V65cgUvL69sK6Obm6jVah48eMCYMWMYP348zZs3Z+fOnXz66ac698ZPSUlhyZIlDBo0KE+spxqypNKUL1+esLCwbNeA9R2NMhAeHq7Xi1xupiLWNZrIgxYtWrB9+3YGDBjAhg0b6N69O4cPHyYpKemDfZGens6CBQu0yUQM1WKiz5iYmFCrVi22bt3KF198wfz58xk0aBC3bt0y2EyGH0Iul9O5c2f27t2rdTTMDt68eUOBAgU+KupFCMHRo0dp2rRpnjoGE0IQFhbG7Nmz6d+/P8WKFWP37t306NEjW6ygQggOHjyIXC6nbdu2eWrNyJIy4OLigouLC7dv386Tk/pjkSSJwoUL630Wwujo6FwpUpSdSJKEpaUlrVq14ptvvuHLL79ky5Yt+Pn5ceDAgfemmhVC8N1333Hv3j3Gjx+f76u3ZSeSJGFhYcGnn37Krl27qF27NkOHDiUwMFDvqgjqAkmSaNiwIaGhoTx9+jTb7hMVFYWdnd1Hmb/j4uK4du0a9evXzzZ5chIhBNHR0QQFBdGtWzfUajXffPMNw4cPz7YkWEIIXr9+zfr16xkzZkyeCz3OkjJgYmJCgwYNOH78uK7kMVi8vLwICwvT2yMTTXGU3K5LkF38r6Vg1KhR7Nmzhy5durB9+3bevHmj3XSEENy7d4+VK1cya9asPPtO9A1JkrCzsyMgIIAdO3ZgYWFB9+7dCQoKeqd/8gKOjo7Ur1+fQ4cOZdtzPX/+HE9Pz4/67fXr13F0dKRIkSLZIktOIYQgMTGRb7/9lq5du3Lv3j3WrVvH9OnTsz0cWAjB+vXrqVGjBlWrVs1za0aWlAGNBnzu3DkUCoWuZDJI3NzciIyMzFazYFZQq9XaIkV5Gc1XaJMmTdi6dSuBgYH8/vvvdO7cma+//pqIiAji4+OZNm0affv2pVKlSnluUus7mmO1qVOnsn79eu7cuYOvry/79u3LU06GnTp14qeffiIpKUnnbQshePr0Kd7e3h/12x9//JEWLVoYVKjb3xFCoFAo+Pnnn/H39+fw4cPMmzeP5cuXU7p06WytE6C5/507dzh69ChDhw7NM06DfyfLtlEfHx+EEDx8+JDy5cvn24XVwcGB9PR0EhIS9PJcXqMM5EXnoX9DExNep04datasye3bt9myZQu+vr5YWVlhY2ODn59fnpzUhoAmw1qpUqVYuXIlFy5cYNmyZezYsYMRI0ZQp04dg9244O3zlStXDgsLC65cuUKDBg10ujYKIQgPD6dq1aof/G1sbCwXL15kwIABBrk+p6enc+nSJVatWkVCQgJDhw6lcePGGS7dnFUZli5dSo8ePfJsQrIsr4SWlpbUq1ePX3/9VRfyGCyaKlb66kypUQbs7e1zW5QcRZIkTExMqFixIkuXLqVPnz48evSIsLAwxo0bx/nz50lNTc0zX6OGhqZ/NFnhevbsyZw5cxg6dCi3b9/W22O3j8HMzIyOHTuyd+9enT9Heno6L1++xNPT84Mb07lz53Bzc/soK4I+oVKpuH37NsOHD2fq1Km0b9+enTt30qJFC8zNzXNsQxZCcOzYMV6/fo2vr2+eVARAB8qAJEm0bt2aY8eO5eujAhMTE1xdXQkPD89tUf4VlUpFWlpavi45HRYWRnBwMOvXr+fAgQNUqVKF6dOn061bN7777jtiY2ONSkEuofH5aN++Pbt376ZKlSoMGjSIGTNmaKN0DK1vJEmiefPmXLt2jVevXum0bU1xJFdX1//8nUql4sCBA3To0MEgogg0/fzs2TOmT5/OoEGDqFChAnv27KFr1665UgwrPj6eFStWMGrUqDydh0QnNtKyZcuiVCq5d++eLpozSORyOV5eXjx+/FgvF63k5GRtgYz8hua8cfr06Xz22WfUr1+fggULEhAQwN69e+nfvz979+7l888/Z8WKFTx9+hS1Wq2X/ZjXkSQJe3t7vvzyS3bs2AGAv78/69atIz4+3uD6xM3NjQoVKvDrr7/qVPaoqCjMzc0/uDmFh4dz//59GjdurPdftJoIgWXLltGjRw/MzMzYuXMngwYN+uj6C9kh0zfffIOXlxcNGzbU+3eYFXSiDFhaWtKsWTO+//57g5usukKSJIoXL87Dhw9zW5R/JTExEblcbhB1CXSNEILNmzeTlpbGl19+qf1CkiQJa2trWrVqxdatW1m6dCmvX7+md+/eDBkyhDNnzmQ6s6GRrCFJEh4eHsyYMYM1a9Zw5coVbQpqQ+oTmUxGly5d+O6770hLS9NZuy9fvsTe3v4/Ew4JITh8+DA1atTAxcVFZ/fWNUIIEhISCA4OpmvXrjx79oxNmzYxdepU3N3dc3UDfvr0KTt27GD06NEG7cPyMegkuFqSJD799FOGDBmSL8+lNZQsWZIjR44ghNA7DTIpKQkTE5N8ZxkQQnDhwgV2797N5s2b33tMYmpqSqVKlahQoQKvX7/mp59+Yv78+QB07NiR1q1b4+rqmiulRfMzmroUQUFBnD17lhUrVmgrI9aoUeNfC8ToE5IkUb16dZKSkrh7967OolcePHhAiRIl/rOt5ORkDh48yIwZM/TyHWksdr/++itr167FxcWFxYsXU7FiRb3I+6FUKlm5ciXt2rXDx8cnt8XJdnT2xkuUKIGbmxsnT57k008/1cvBl924u7vz5s0bFAqF3p3NJyYmagsq5SciIyOZNm0a48aNo1ixYh8clzKZDDc3N/r06YOvry+XL19m165dBAcHU61aNbp27UrFihW1NceN5AympqY0aNCA6tWrc/jwYaZPn46Pjw/Dhw+nZMmSej2uraysaNWqFfv379dJJUMhBPfv36ds2bL/+ZuLFy9iampKxYoV9WqsamoInDt3jlWrVpGens64ceOoV6/eP0r75qaMFy5c4MaNG0yZMkWvx5eu0JkyYGJigr+/Pzt27KBVq1Z53qTyb7i4uJCenk5MTIzeKQOahEP5ibS0NObOnUvt2rVp1apVhhYZTWbD+vXrU7duXV68eMHhw4eZPXs2AO3ataN169YULlw422OcjbxF0yeff/45TZs25dtvv2XAgAE0a9aMfv36UahQIb3sB0mSaNeuHQMGDCAmJibL4b1KpZInT57Qvn379z6vSqVi+/bt+Pr66s3RoBACtVrN7du3WblyJc+fP2fgwIG0bNlS75Tr5ORklixZwpAhQ/QyVDw70Jm6o0lA9OrVK+7fv6+rZg2KAgUK4OzszPPnz3NblH+gKVKkTxMuOxFCsGfPHkJDQxk9enSmzY6SJCGXy/H09GTAgAHs3buXwMBAHj16RO/evRk4cCA//fQTMTExBnOObehIkoSjoyNDhgzhm2++IS0tjW7durFx40bi4uL0sh+8vb0pXLgwJ0+ezLJ8KSkpREZG/mc2wcePH/Po0SNatmypF3NerVbz5MkTJk6cyPDhw6lVqxa7du2iQ4cOWFpa6oWMGjSpys3MzGjTpo1eyZad6NT2YWtrS8uWLdm9e7dBxwdnFhMTE4oVK8aDBw/0bkHKKxULPwYhBLdu3WLt2rXMmTPno0u8fghN+FutWrVYsGABu3fvpnnz5oSEhNCpUyemT5/OlStXDMrBzZDR1ASZOXMmq1at4vz58/j6+vLDDz+gUCj0qg9MTEzo3Lkze/bsyXKW0levXmFqavpeC4NarWbnzp00b94815OMCSGIiIhg4cKF9OnTBycnJ3bt2kW/fv2wt7fXy4321atXbNy4kbFjx+qNVSUn0KkyIEkSn3/+OX/88YfO42oNhTJlynDnzp3cFuMd/l6XID8QFxdHYGAgAwcOpFy5cjpfcCRJQiaTUbBgQbp06cK2bdtYt24ddnZ2TJkyhc6dO7N69WoePHiQp8v16gMay0358uVZs2YNEyZMYPPmzfTt25fz58+jVCpzW0TgrZwNGjQgPDycJ0+eZGlMPH36lEKFCr3XGfj169ccO3YMPz+/TN8jqwghiI2NZePGjfj5+REdHU1wcDDjx4/XOuLqIyqVivXr11O7dm0qV66st3JmBzr3iihatChVq1blwIED+W4RlCSJMmXK8ODBA72yjAghtGeVeX1wK5VKli1bhpeXF126dMn255UkCVNTU3x8fBg9ejT79u1j2rRpREREMHDgQHr06EFwcDDPnj3Tm40pL6Lph8aNG/PNN9/Qvn17pkyZwqhRo/jzzz/1Yj7a29tTv359fvjhh0y3IYTgxo0b7039LoTQJtTy8vLK8fkuhCA5OZkDBw7g6+vL+fPnWblyJfPnz8fb21uvHfE09QeOHTvGkCFD9FrW7EDnTytJEn369GHfvn3Exsbqunm9p0iRIsTExBAfH5/bomj5uzKQlxFC8Msvv3Du3DkmT56co06smpBDS0tLatasyZw5c9i/fz/9+vXjypUr9OzZky+++ILdu3fz4sULVCpVvlOWcwJJkrCyssLX15fdu3dTvHhxAgIC+Oqrr4iIiMjVdy6Tyfj888/5+eefSUpK0joCPn78+D+vS01N5f79+8TFxaFUKrl9+zbly5cH/j9jn4a4uDj27t1L7969c3QzE0KQlpbG77//Tvfu3dm5cyeBgYGsWbOGChUqIJfL9f5DJC0tjSVLltCrVy88PDz0Xl5dky3KQLly5fD09OTnn3/Odwueo6MjZmZmenVMolariY2NzdPKgBCCJ0+esHDhQmbMmEHBggVzbTJrFAN7e3uaN2/O8uXL2bdvH127duXo0aP4+fkREBDAnj17jIpBNiFJEk5OTowYMYKQkBDi4uLw8/Nj69atJCQk5Mr7FkJQunRpzM3NWb16NX379qVu3bp89913/3ldXFwcHTt2pG7dunTv3p2TJ08SHx/Pq1eviI6O5o8//tD6SBw6dAgvL68cKxonhEClUnH16lX69+/PokWL+OKLLwgODtarUMEPIYTgt99+Izo6mq5duxqEzDpHZANqtVqcPHlStGrVSsTHx2fHLfQWlUolBgwYIA4cOCDUanVuiyOEEEKhUIimTZuKR48e5bYo2YJarRaJiYmie/fuYtWqVUKlUuW2SO9FqVSKiIgIceDAAdGvXz/RsGFD0b17dxESEiIeP34s0tLS9Gbc5CWUSqW4evWq6N27t2jTpo04fPiwUCgUOfKu1Wq1SE1NFTdu3BAzZ84Unp6eQpIkAQhAzJkz5z+vj4+PF5UqVdL+HhDm5ubCw8ND1KhRQ9jY2IhPP/1U/Pjjj6J58+bizJkzOfJcKpVKPHjwQIwcOVI0adJEbN68WcTFxRnc+FWr1SImJka0bNlSHDt2zODk1xXZkuZJkiRq1qyJs7MzP/74Y56u9PS/SJJExYoVuX79Ou3bt89tcQC0Xw3/lbrUkBFCsGHDBkxMTPjiiy/0+qxPLpfj6upKhw4daNeuHdHR0Vy+fJmff/6ZTZs24eTkRNOmTWnatClFixbVejPnl/mTXcjlcipVqsS6des4ceIEq1atYvv27YwaNYoqVapke66I48eP06tXL16/fv2Pf/tQgTdNyPLfSU1NJTw8HHNzcxISEjh06BC//vorbm5uKJVKlEpltmVnFELw8uVLNm/ezJEjR/jss8+YNGkSLi4uBjtOt2/fjre3t85LTRsU2aVlqNVqcfr0adGiRQsRGxubXbfRS06cOCE6d+4slEplbosihBDixYsXomnTpiImJia3RdE5arVanDhxQjRu3Fg8ffrUILV6tVotVCqViImJEX/88YeYPHmy+OSTT0SbNm3EggULxIULF0RcXJxQqVQG+Xz6hlqtFgkJCWL79u2iSZMmYtSoUeLhw4fZalFKTk4WQ4cOFTKZ7J0vfECMHTv2P/tVrVaLnj17/uM6Hx8fMWzYsH/83dbWVvTp00fcv39fp+NFrVaL6OhoERQUJBo0aCAmT54snj59qteWuA+hVqvF48ePRYMGDcS9e/fy9fzKtgTQkiRRo0YNChUqxKFDh+jWrVu+0biKFStGZGQkCQkJelGnISkpKU9WLBR/xTDPnDmTCRMmUKRIEYMcY3/3MWjYsCH169cnOTmZu3fvcuzYMWbNmkVycjIVKlSgSZMmVK9enYIFC+p9Xn59RVOgqlu3brRo0YLg4GD69u1L27Zt6du3b7Z84RYoUIDZs2cTFhb2Dx+Bjyn97unp+c5/m5mZMXnyZM6ePfuP38bHx3PixAkGDhyYJZk1CCFISkrixx9/ZMOGDZQsWZK1a9dSqlQpgyiL/F+oVCpWrFjBZ599ho+PT76eT9laDcLExITBgwczefJkWrVqlW+S3jg5OWFpacnz58/1QhlITk7G3NxcL4p/6JK0tDRmz55N48aNadasWZ6ZyDKZDGtra2rUqEH16tVJS0sjLCyMM2fO8P3337N06VLc3Nxo1KgRDRs2pGjRotp0rnnlHeQEkiTh4uLC6NGj+fzzzwkKCsLPz48+ffrQsWNHrK2tdfo+7ezsWLlyJS9evODChQvav6empn6wuNn/KgNt2rShQ4cO2jLPf6dMmTJs3bqVGjVqZEl+8VeEwB9//MHq1auxtrZm9uzZ1KhRwyCiAz6EEILz589z69Ytpk6dqtfHizlBtu4OkiRRtWpVypYty7Zt2xgxYoTBD6CPwdzcnFKlSv1nPHBOEhMTg52dXa7LoUuEEHz77be8evWK+fPn5zlFR4MkSZibm1O8eHGKFStGt27dePPmDbdu3eLYsWOMHTsWpVJJxYoVady4MVWqVKFgwYKYmZnlqf7OTmQyGd7e3ixYsIDr16+zbNky9uzZw7Bhw2jUqNE/3qVmk8zoO9ZkTFy/fj2ff/45jx49Av5fGfiv6woVKoSJiQlKpZKCBQsyffp05HI5oaGh7/y2SpUqBAcHf9S6o7nn//5O/BUhcOXKFVauXElcXByDBw+madOmeWpcaeoPDB48ON98qP4n2X0OoVarxYMHD0SDBg0M9kw3M3zzzTdi+PDhevG8+/btE0OHDjXos72/o1arxZUrV0T9+vXFnTt39OId5zRqtVqo1WqRlJQk7t27J4KDg0Xfvn1F48aNxWeffSZmz54tTpw4IaKiooRSqcyX7ygzqNVqoVAoxM8//yzatm0revbsKS5fvvyO/49CoRDDhw8Xp06dytR7VavV4siRI8LZ2VkAwtfXV6Snp//nNefPnxcWFhZCJpOJuXPnCpVKJZ48eaJtAxD16tUTDx48+CiZ0tPTxa5du0RkZOQ7f1epVOLOnTtiyJAhomnTpuKbb74RCQkJeW78qNVqsW3bNtGtWzeRkpKS2+LoBdmuDAjxdoDNnTtXjB8/Xm+c6rKbGzduiNatW+vFQNuwYYOYNm1anpnQUVFRom3btmL37t155pmyisYJ8c2bN+LMmTNi8eLFolOnTqJRo0aiR48eYtWqVeL8+fMiJiYm38zBrKBWq0V8fLwIDg4WjRo1EmPHjhWPHz8WarVa/PTTT8LS0lKUKVNG3L59O1NjUKVSic2bNwtLS0vRvn17kZaWpr2vUqkUaWlpIi0tTavIPX78WNjb24s6deqI6OhooVarxdmzZ4W5ubmQJEk0b95chIaGfpQsmnvb2tqKRYsWaR1Tnz17JqZOnSrq168vVq1aJaKiovLs/Hr58qVo1KiRuHz5cp59xoySI7ZVmUxGQEAAfn5+XL58OctnWYZAkSJFSEpKIioqisKFC+eaHCKP1SVIT09n0aJFlC5dmg4dOuT5cfSxaPwFHBwcqF27NrVr12b48OG8fv2amzdvcvbsWebMmUN8fDxeXl7Url2bGjVqUKJECWxtbbXv0fg+3yJJEjY2NvTs2ZNWrVqxadMmevXqRdu2bTl06JDWwbNfv37s2rWLwoULf9S7E3+Z5oUQtG3blj/++IPr16+zfPlyIiIiiIyMJDU1FaVSiRACExMTTE1NMTMzQ61WU716df7880+8vLx4+PAh6enpdOjQga+//vqjcv4LITh48CBjx44lPj6eoKAgPvnkE06cOMHevXtp1qwZO3bsyNMZ+NRqNevWraNu3bpUqlQpzz5nRpGEyJlUXOKvkrK7d+8mJCQES0vLnLhtrqFSqejVqxd9+/alWbNmuSaHEIJJkyZRrlw5evbsmWty6ALxV2nR9evXs23btnxVkjmriL/OuV+/fs2tW7c4c+YM165dIzExEU9PT62zoo+PD/b29lovceP7fYtarebRo0cMHjyYo0ePvvNvbdu2JTg4+D9rfwghSE1N5dGjR/z222+cPXuW8PBwLC0tsbW1pWrVqnh6euLi4kKBAgUwMzNDJpORlpZGamoqr1+/5vTp08jlcp49e0ZUVBSvX78mISGBr7/+mkaNGmFrawu8v8+EEJw4cQJ/f39evnyp/W2RIkX47LPPGDJkCD4+PnnakU78VdF06NChfPvtt3h4eOS2SHpDjikD8LYOd0BAAK1bt6ZHjx55fqFZvHgxSqWSCRMm5NqzqtVqBg4cSPv27Wnbtm2uyKALhBD8+eef9OvXj6VLl1KtWrU8P36yE41y8OrVK+7cucPFixe5du0aUVFRODk5UaVKFWrWrEm5cuVwcXHBzMwMyN/KwevXr/nkk0+4devWO3+XyWT06tWLVatWYWVlpX1H4q+6ARERERw+fJjvvvsOhUJB3bp1adSoEWXLlsXBwQETE5MPeucLIbSJhJRKJQkJCRw7dowXL15w4sQJYmJiaNiwIZ07d6Z06dL/aE8IwdWrV+natavWcVGDk5MTx48f1wtn5+wmNTWVAQMG0KhRI/r27ZvnnzdD5OSZhBBCXL16VTRs2FA8f/48p2+d4/z++++iS5cu2vPA3ECpVIrOnTuLs2fP5poMuiA+Pl507dpVrFu3Ls84QuoTmpS5ERER4uTJk2LZsmWiZ8+eonHjxqJVq1Zi+PDhYuvWreLq1asiOjpae5adX85bVSqV+Oqrr/41aRAgTExMxPjx44VCoRBCCO0Z/Jw5c0TDhg3F8OHDxenTp3XmjKd595p+u3//vli4cKFo0qSJ6Nevn7h06dI7fXTv3j1RsWLFf5UdEP379/+gE6Oho1arxaFDh0S7du1EQkJCboujd+R4PFbFihVp2bIlixYtYvHixTlaWS6nKVOmDBEREcTGxuLi4pIrMgghSEhI0JoQDRGVSsWaNWuws7OjV69eedqMmVtIkoSZmRmurq64urpSr149VCoViYmJPHv2jNu3b3Pp0iV27dqFQqHAycmJSpUqUa1aNUqUKIGrqytWVlbZntY3t0hLSyMpKYnatWvz/PlzoqOjUSgU2tLISqWSFStWULBgQfr168fevXsJCQmhYcOGbNmyBS8vL52+m7+3Y2ZmRsmSJRk7diwBAQF8//33jBs3jho1ajB8+HDUajUBAQHcuHHjH+3IZDJMTEz4448/ePToEaVKldKJfPpIbGwsq1atYuLEiVhZWeW2OHpHjh4TaIiJiaF79+4MHTqU1q1b58nFA946u/n7+zNy5Ejq16+fKzIkJyfz2WefsXHjRry9vXNFhqwghOD48ePMnTuXkJAQ3N3d8+x40WfEXybv9PR0oqOjefz4MVevXuXq1as8ffoUIQSurq5UrlyZypUrU6JECdzc3LCwsMgzCWo0zx8bG0tERAR//vknd+/e5d69e9y/f5/w8HBSUlIoX748RYsWZcKECZQtWzbHlVchBJGRkaxdu5ajR4+iUqk4f/48pqamODo64urqSokSJShVqhQlS5bEx8eHQoUKUahQIe1xUF5DrVazevVq7t27x4oVK/L0R2hmyRVlQAjBqVOnmDFjBt988w1ubm45LUKOIIRgwYIFmJqaMnr06FxZEDUlOXfs2EHBggVz/P5ZQQhBeHg4vXr1IjAwkMaNGxv8ppKXEEKgVqu1Dm4PHz7kxo0b3L59m+fPn6NSqfDw8KBkyZKUK1eOEiVK4OHhgbW1tcGUtv0Qf38HBw4cYNasWfTq1YshQ4bkeqIvpVLJhg0bWLNmDR4eHkyfPh1PT09tmfW8asX5X8Rf5c379OnDpk2bKFGiRL547oySK8oAvDX9Tp8+nfT0dObOnZsnM8gJIfjjjz9Yu3Yt27ZtyxVtNCwsjF69enHw4EGsra1z/P5ZQaFQMHToUEqWLMmYMWMMPg96fkDzBa1QKHj9+jWPHj3izp073Lx5k2fPnqFQKLCzs9MqCD4+PhQuXBhnZ2fMzc0N0oqgVqs5fPgwCxYsYNasWTRq1EgvjrI0ffH8+XNGjx5NxYoVmThxorYSZn5BqVQyZswYihQpwqhRo/Sib/SRXNuBZTIZI0eOpEePHhw5ciRPHhdIkkSZMmV4+fIlcXFx/yhDmhMkJydjYmJicOY/tVpNSEgIiYmJDBo0yKgIGAiafAeWlpZ4e3vj7e1N06ZNgbfn7jExMYSFhXH37l1u3brFwYMHiY2NRa1W4+HhQYkSJShbtizFihXDw8MDOzs7vVYShBCcPHmSBQsWsHTpUqpXr643cmr6okiRIqxdu5YhQ4awatUqRo4cmSc/vv4NIQTnzp3jzp07TJs2zagI/Ae5NiIkScLJyYnAwECmTJlChQoVPjpxhyHh5OSEk5MT9+/fzxVlID4+HhsbG4OaBEIILl++zPbt29m0aZPBWTSMvItmTpubm+Pm5oabmxvVqlUD3ip9iYmJxMTEEBoayoMHDzh37hw7duwgNjYWmUxGwYIFKVKkCKVLl6ZEiRJ4enri4OCgjcfX9ZqhVqt5/fo1zs7OH9w0nz17xowZM5g5c6ZeKQJ/R5IknJ2dWbZsGX369KFs2bJ58uPr39DUHxgyZAiOjo65LY5ek6vqoSRJ1K5dm9atWzNv3jyWL1+e50xYcrmcWrVqcfr0aerWrZvjE/DNmzfY29sb1MSPjo4mMDCQUaNGGc/38iiaPpXL5djZ2WFnZ4e3tzcNGzYE3pp2k5KSiI2N5dmzZzx58oR79+7xyy+/EBUVRVpaGnZ2dhQsWJDixYvj4+NDkSJFcHd3x9bWVqso/O/9PgaFQoG/vz8lS5akf//+VKpU6V/LRaenp7NgwQLatm2rU3+Wx48fs3TpUlJTU1m8eDF2dnZZblOSJNzd3Zk5cyZTp06lWrVquLq66kBa/UUIwYEDB7C0tKRVq1bGdeQD5JrPwN+Jj4+nd+/edOrUKc8lIxJCcObMGZYuXcqOHTty3Fy/c+dOLl26xKJFiwzivaalpTF58mTMzMyYOXOm0evXiBaNs15KSgpJSUlEREQQFhbGo0ePePz4MWFhYURFRSGEwMbGBkdHR7y8vChevDienp4UKlQIR0dHLC0tsbS0fOfo6e9z4/Xr19SsWZPQ0FDs7Oxo2bIlAwcOpHbt2lhYWCBJktb8PGPGDHbt2qXTUuXp6emcO3eOXr16cf78eZ06/qpUKiZNmoSzszPjxo0ziDUhMwghePXqFX5+fixbtozKlSvn2WfVFXpxcGRjY8Ps2bMZNGgQFSpUyFP5oiVJonTp0kRHRxMZGZmj6S+FgdUl0Gjy9+7dIyQkxKgIGHkHSZKQy+VYW1tjbW2Nq6srlSpVAv4/Q19qaiqJiYlERkby4sULnjx5wt27d/ntt9+IiooiISEBU1NTrKysKFiwIJ6enhQuXFh7fOHs7Ex0dDQJCQkAxMXFsXv3bg4dOkS9evUYOHAgzZo1w8rKiuDgYHr06JGlL3eNk5/m+SRJwtTU9F+tef/727///8cik8no168fX375JQEBAXm2dK8QgrVr11KvXj0qVqyYZ/aT7EQvlAFJkihXrhxDhw5l6tSphISE4ODgkGc60MHBgSJFinDjxo0cz4X95s0bnJ2d9f5dCiG4d+8eq1evZtWqVQajwBjRDzSbqKmpKdbW1ri5uVGhQgXg/y0K6enpWifGqKgoXr16xfPnz3n27BmXLl0iKiqKmJgY4uPjiYuLe6f95ORkfv31V/744w+qVq1Kly5duHXrFtOnT8/w3Hr27BmHDh3C3Nyc4sWL8/PPPxMZGalNGf6/zrLir9TRe/fu5cyZM6jValxdXenWrRs+Pj4Zur8kSRQrVgx3d3cuXrxIq1atMiS7ISD+qj9w/Phxvv32W6Pz8UeiF8oAvB2kHTt25PLly8yfP5+5c+fmmS9DSZJo2LAhf/zxR46fXUVHRxtEVrH4+HimTp1Kv3798pRlyEjuo7EoyOVyLCwssLW1xcvLS/vvmi9ulUqFUqnk8OHD+Pr6/mtbaWlpXLhwgWvXrlGyZElSU1MRQmRovNrY2GBubs64ceOYPXs248aN4+7du/Tv3x8rKytt9MXfCQoK4siRI3z99dfY2NiwcOFCtmzZwrx58zL8PuRyOQ0bNuTMmTO0bNkyz821tLQ0Fi9eTJ8+fXB3d89tcQwGvXIxNzMzY8KECdy9e5ddu3ZpU30aOhpHyWvXrqFQKHLsvkIIoqOj9d4UqFQqWblyJW5ubvj5+eW5xcmIfiNJEjKZDFNTUwoUKEBycjJ/d6WSy+U4OjpSvXp1Bg8ezLZt2xgzZgyffvopRYoUyfD9HBwcKF++PFZWVrRu3RonJyfq1KlDlSpV2LZtG//rxhUbG8vGjRvx8/OjaNGiuLi4MHz4cJo3b57p5y1dujSPHz9GpVJlqg19RQjBkSNHiIuLo0uXLsa1JAPojWVAg6OjI/Pnz2fgwIGULFmSGjVq5IkOLVq0KCqVitDQUEqXLp0j9xRCEBcXp1PnJl0jhODo0aOcOHGCkJAQg8uHYCRvoVGgHR0d8fHxoU6dOtq69x4eHpibmyNJEkuWLEEmk2UpZNfCwkJ7HCaTyShUqBCXL1/+hzKQkJBARETEO6HXnp6eeHp6ZvreDg4OxMfH/+Neho6m/sCUKVOM9QcyiN4pA5IkUbZsWcaPH8/kyZPZunUrhQsXzm2xsoylpSWVKlXizJkzlCpVKkcUHI1Dlb5OCiEEoaGhzJ8/nzlz5uDm5pYnFD8jhk3Hjh1p3749hQoV0oY6/285YLlcjlKpzPARwd9RqVSkpaVp24yPj8fR0fEf7WmONv7uxxAXF0d4eDhlypTJ1P2VSmWeO0tXq9UEBwfj4+OTK2Hcho5eHRNokCSJNm3a0Lx5c6ZMmUJiYmJui6QTPvnkE37//fccO/5QKBQolUq9TdqTkpLC9OnT6dChg3HyGtELJEnCy8uLokWLasMI/3dcSpKEm5sbL1++zNKXdVxcHOfOnUOlUvHixQsuXLhA+/bt/3E/Jycn2rZty6FDh0hOTiY9PZ1Nmzbx3XffZeq+QghevnyJi4uLQSUj+xCPHz9m3759jBo1Kt9kWNQlejsS5HI5w4YNw9zcnMWLF5Oenp7bImUJSZKoUqUKz549Izo6OkfuqVAoUKlUemkZUKvVbN68GbVaTf/+/Y2KgBGDokyZMty/fz9L65KtrS0PHjxg0qRJDBs2jHbt2tGlSxeePn3KihUrUKvVLFiwgDdv3jBjxgxsbW0ZPnw4I0eOJCwsjAEDBmT63teuXcuViorZRXp6OitWrKBTp04UL17cuJ5kAr1WnwoUKMDcuXPp27cvO3bsoEePHgY9eJ2dnXF3d+f69es0a9Ys2wesxlnRwsIiW++TUTQJW/bs2cOWLVuwtLQ0Tl4jBkXx4sVJTU3l8ePHlC5dOlPj19TUlICAAODtnLC3t0cmk+Hh4cHcuXOZM2cOMpkMBwcH5HI5S5YsIS4uDiEEdnZ2/5oV8WNISUnh1KlTzJkzJ0/MO816cu/ePWbOnJknnik30OudVZNTe/HixWzcuJGTJ08atMOLXC6ncePG/Pbbbzlyv8TERCwtLfVKgdLUWp8xYwbjx4+naNGixslrxOCwtrbmk08+YdeuXRlekxQKBZGRkSiVSiIjI7Gzs8PJyUlbjMnMzAxXV1fc3NwoWLCgdtM3MTHByckJZ2fnTJeA1mycpqamlC1bNsPX6yPJycksXbqUYcOGGfOTZAH92SXegyRJlCpVihkzZjBt2jTu3r1rsAqBJEnUr1+fy5cvk5ycnO33i4mJwc7OTq+UgfT0dObMmUPdunXzZIyzkfyDv78/v/76K3/++WeG1qTQ0FB+//13WrRowc6dO7XZDnOClJQUVq9eTUBAgN5ZDDODEIJ9+/ZhZWVlXE+yiF4fE2iQJInGjRsTERHB6NGj2bhxIx4eHgbZ8UWLFkUmk/Hnn39me3KdN2/e6JUyIIRg165dPHv2jFmzZhmdfIwYDJrERImJiTx79owLFy5w8uRJ4uPjmT17NuvXr6dAgQIfNZ9LlSrF4sWLc0Dqd1Gr1WzduhUrKytatGhhkOvn3xFCEBERwebNm1m+fLkxLDmL6Mcu8RHIZDK6du1K8+bNGTNmDLGxsQZpIbCwsKBevXrZflQghCAmJkZvKhZqUoSuX7+eOXPm6KQSmxEj2YUmhXFycjL379/nm2++YdiwYXTs2JHRo0dz//59OnXqxP79+zExMWHFihUolcrcFvu9CCH47bff2LVrFzNmzMgTVgG1Ws2aNWto0KABFSpU0It1zpDRi6qFGUGhUBAYGEhycjILFy40SOezs2fP8tVXX7F3795s02aFECxfvhylUsm4ceOy5R4ZISYmhj59+uDn52fMMmhE79B8+aelpREWFsbVq1c5ffo0t2/fBqBChQrUqVOHqlWr4uHhgZmZGTKZTPt1OmDAAJo1a8agQYP07gtVrVZz8uRJpk6dyrx586hfv77Bzz8hBNevX2fkyJF8++23xrTDOsDg7LTm5uZMmzaNkSNHMnfuXKZPn46ZmZlBDe5y5cppzY0lSpTItvtERUVla/sfi1KpZOnSpRQtWpTPP//coPrKSN5Fs/m/fPmSmzdvcvLkSW7cuIFSqaRkyZLUrVuXQYMG4enp+cGcA0FBQYwYMYI3b94wduxYrK2t9WKcK5VKDh48yLJly5g1a1aeUATgbf2BJUuW0LdvXwoVKpTb4uQJDE4ZkCQJa2trFi5cyKBBg1i5ciUjR440qKJG1tbWVK1alRMnTmRrTGx0dDS1a9fOlrY/FiEEhw8f5sKFC2zbtk3vvpqM5B+EEKSnpxMZGcmtW7c4deoU165dIykpCW9vb+rXr0/Pnj3x9vbGysrqXzf/f0OSJDw9PVm/fj1Tp04lICCA2bNn4+Pjk2v+OppjwpUrV3Lu3DlWrFhBlSpV8oQioKk/kJCQYPy40CEGpwzA28nn6OjIsmXL6N+/Pw4ODvTt29dg0mtKkkSLFi3YsmULvXv3zja537x5g6OjY7a0/TEIIXj06BFLlixhwYIFuLi45JosRvIfQgiUSiVv3rzhzp07nDlzhkuXLhETE0PhwoWpW7cuHTp0oESJEtjY2Hz05v9vaMKgV6xYQUhICP3796dLly706NEjR/12hBCkpqZy/PhxVq5cSenSpQkJCcHFxSXPbJqa+gNTp07Vy4RqhopBKgPwdvK5u7uzatUqvvzySywtLfH19TUIhUCSJKpWrcrcuXN5+fJlttReUKlUJCcn52oq4qSkJKZNm4afnx81a9bMM4uREf1FpVIRExPD/fv3OXPmDBcuXOD169cUKlSIWrVqMXHiRHx8fN7ZoHU1LiVJwsLCgv79+9O0aVOWLFlC586d6dGjB23bts3WDVkIQXJyMmfPnmXDhg2kpKQwfvx4GjRooM1fkBcQQrB161ZKlSpFnTp18sxz6QMGqwzA28lXrFgxVq5cyeDBgzE3N6djx456E0r3Xzg4OFCmTBlOnTqFr6+vzgd1amoq6enpuaYMqFQq1q1bh4WFBX369DFOWiM6R+P0FxcXx8OHDzl79iznz58nLCwMJycnatasybBhwyhTpgyOjo7adSG7x6IkSRQvXpxVq1Zx/fp1NmzYwJYtW2jQoAFt27alQoUK2nmZWVk0ft9paWmEhoby66+/8sMPP2jnW/PmzQ3SufpDPHr0iP3797NlyxZjaLKOMfi3KUkSZcqUYfny5QwfPpwCBQrQunVrvZ8Ecrmctm3bsnfvXrp06aJzi4ZGGbCxsdFpux+DEILTp09z6NAhgoODtc5XRoxkhb/H+j958oQLFy5w+vRpnj59iq2tLVWrVqVPnz6UL18eZ2fnTKfr1QWajIHVqlWjcuXKhIaGcvDgQb766iuSk5MpW7YsdevWpXz58hQqVAhra2tthcT3oVQqSUpKIioqivv373P+/HnOnDmDUqmkTp06zJo1i4oVK2rLLOc1lEoly5cvp1OnThQrVixPPmNuYnChhe9DCMGFCxcYN24cgYGBOZL7P6u8evWKLl26sHPnTp2Hxrx8+RI/Pz9+/PHHHLUOaCqi9erViwkTJhhEPxjRTzRLU3JyMqGhoVy6dImTJ0/y+PFjzM3NqVixIg0aNKBixYoULFhQ76OKNOf5oaGhXLlyhbNnz/Lo0SMSExOxsrLC2toaZ2dnbGxssLCwQCaToVAoSE5OJioqivj4eBITE5HL5RQpUoSqVaty/PhxGjRowPDhww3CIppZhBCcPHmS2bNns2vXrlz1hcqrGLxlQIMkSdSsWZP58+czYcIEAL3fiJydnSlVqhSnT5+mc+fOOpU1JSUFMzOzHPehSEtLY9asWTRt2pSmTZvq9fs3ol9oNv+UlBTCw8O5fPkyp06d4v79+8hkMsqXL0+bNm2oVKkS7u7uBvcFrPEpKFWqFKVKlcLPz4/U1FSSkpJ49eoVMTExREVFkZCQgEKhQK1WY2FhgaWlJc7Ozjg4OODi4oK9vT3m5ubIZDKaNWtG//79admyZaYLJhkCSUlJLFmyhOHDhxvrD2QTeUYZgLeTrU6dOnz11VdMmjQJSZL45JNP9HaCyOVy2rRpw8GDB+nUqZNON+6YmBhsbGxyVBlQq9V88803REdHs3DhQoNw5jSSe/z93PvFixdcu3aNM2fOaGP9y5YtS/369Rk2bNh/xvobKhrlwMLCAicnp0y1UapUKXr37s3cuXPZsGEDBQoU0LGUuY8Qgr1792Jra5sn0ijrK3lKGYC3E6xevXrMmzePyZMnI4Tgk08+0VsTWp06dVi2bBmvXr3S6VFBbGwsdnZ2ObYhCyG4du0aW7ZsYcOGDbniq2BE/9HE+r969Uob63/lyhVSU1Px8fGhdu3a9OnTBy8vL60DnHHxfz+SJNGtWzeOHj3Krl276N27d557Xy9fvmTLli2sXLnSmKckG8lzygD8f3XA+fPnM3HiRNLT02nVqpVeKgQuLi6ULl2akydP0rVrV51MZE3CEVtb2xx75jdv3jBt2jSGDx9OqVKl8tyCZCRzaGL9o6KiuHPnjnbzj4+Px9PTk3r16tGlSxeKFi2a5Vj//EqBAgWYOnUqgwYNol69epQoUSLPvEOVSsWaNWto3Lixsf5ANpMnlQF4qxDUrVuXxYsXM27cONLS0vjss8/0TiGQy+V89tln7Ny5k88//1xn4TIxMTE4ODjkyORJT09n0aJFlC1blg4dOhgnbD5Gs/nHxsZy7949zpw5w8WLF4mKisLNzY169eoxZcoUfHx8tMqqcbxkDUmSKFeuHP7+/sybN481a9bkiUJEQghu3LjByZMn2bFjh3GcZDN5VhmA/3cqXL58OaNGjSI1NZXOnTvr3Vl27dq1WbRoEeHh4Xh5eemkzaioKJydnXXS1n8hhODgwYPcuHGDbdu2GVRaaCNZR1PdLy4ujgcPHnDu3DnOnTvHy5cvKViwIDVr1mTUqFGUKlUKBwcH4+afjfTq1YvffvuN/fv34+/vb/DvOTU1lcWLF/PFF1/g5uZm8M+j7+RpZQDeKgRVqlTRFhJJTEykd+/eepWwwtHRkUqVKnH8+HGdnflFRUVRtGhRHUj3foQQPHjwgOXLl7N8+XJjuE8+Qa1WEx8fz+PHjzl//jxnz54lNDQUe3t7qlevzpdffknZsmVxcnLSKt7GhTx7kSQJKysrpk6dyvDhw6lTpw7e3t4G+96FEPzyyy8kJycb6w/kEPqzI2YjGjPa2rVrGT58OImJiQwaNAhTU1O9GGSSJNG+fXvWrVtHt27ddOIkEx0dnWkP5Y8lMTGRwMBAevfuTdWqVfXiXRrRLRqP/6SkJJ4+fcqFCxc4c+YMjx49wsrKisqVK+Pv76+N9dco2caxkPNIkkTFihXp2LEj8+fPZ9WqVQbpcKfxeVq9ejXTpk3D0tIyt0XKF+QLZQDeTpQSJUqwfv16hg0bRlxcHOPGjdOL7HiSJFGtWjUiIyMJDQ3Fx8cnS+0JIUhISMDW1lZHEv4TlUrF6tWrcXBwoEePHrn+Do3ohr/H+j9//pzLly9z8uRJHjx4gKmpKRUrVqRdu3ZUqVKFggULarPmGftfP5DJZAQEBNCrVy9++OEHOnXqZHB9o6k/UKZMGWP9gRwk3ygD8HbBKly4MOvWrWPs2LFMnjyZmTNnar2YcxM7Ozvq1KnDzz//nGVv4LS0NBQKRbaF9wkhOH78OEePHiUkJOSDaVSN6C+azT81NZUXL15w9epVTpw4wd27dxFCUKZMGZo2bcro0aPx8PCgQIECuT5XjPw3NjY2TJkyhXHjxlGzZk0KFy5sMH0mhODx48d89913bNmyRe/8u/IyeSYdcUbQFDeZOnUqiYmJLF68GCcnp1ydMEIILl68yMyZM9m7d2+WkofEx8fTqVMntmzZgqenpw6lfCtnWFgYvXr1Yvr06TRq1MhgFhojb9HE+kdERHD9+nXOnDnDtWvXUCgUlCpVivr161O1alW8vLwoUKCA3kXgGPkwKpVK65S8dOlSg3HsTU9PZ+TIkZQsWZJhw4YZx14Okq8sAxokScLOzo4FcWK7PQAAJCRJREFUCxYwf/58vvzyS5YuXUqRIkVytbBJ+fLlUavV3Llzh2rVqmW6rbS0NNLS0rKlJoFCoWDGjBm0adOGBg0aGBUBA0AT7hcZGcnt27c5ffo0ly5dIikpiWLFilG7dm38/f0pWrQolpaWRo//PIBcLufLL7+kR48e/Pzzz3z66ad636dCCM6cOcPDhw+ZM2eOURHIYfKlMgDvet9u3LiRfv36sWjRIipVqpRrk6ZAgQK0aNGCgwcPZskhLzU1FZlMpnPnIbVaTXBwMCkpKQwaNMhowtNTNJv/mzdvuHfvHqdOneLSpUvExMRQpEgRatWqxaxZsyhWrBg2NjbGzT+PYm9vz5QpU5g6dSrVqlWjUKFCet3PSUlJLF26lGHDhmFvb5/b4uQ78q0yoMHc3JyBAwfi6urKsGHDmDlzJo0bN84VrVSSJFq3bs2QIUOIj4/Hzs4uU+3ExcVhZWWl081aCMGlS5fYsWMHmzZtwsrKSmdtG8kaQghUKhVxcXHcv39fm+jn1atXuLi4ULduXcaPH0/JkiWxt7c3bv75BEmSqFWrFo0bN2bx4sUsXLhQr0Kq/44Qgj179mBvb0/z5s2N4zMX0M+RkcPI5XI6deqEi4sLgYGB9O/fHz8/v1w5ZytevDjOzs6cP38+05MiNjYWGxsbnU18IQRRUVFMmzaN0aNHU7x4ceNkzUU0iX4SEhL4888/OX/+POfOneP58+c4OjpSq1YtBg8eTJkyZXB0dEQulxv7K58il8sZMmQI3bt35+jRo7Rs2VIvx8LLly/ZunWrwYZD5gWMysBfyGQyGjZsyNq1axk7dizPnz9n5MiROR7jamJiQseOHdm3bx+ffPJJpr7uY2Njsba21pllID09na+++orq1avTpk0bvVxM8jJCCIQQJCYm8uTJEy5evMjp06d58uQJtra2VK1ald69e1OuXDlcXFwwMTEx9pERLY6OjkyaNIlZs2ZRpUoVXF1dc1ukd1CpVAQFBdG4cWPKlStnHLu5hFEZ+BuSJFGmTBk2b97M+PHjGTNmDLNnz87RSANJkmjSpAlr1qzhxYsXGY4G0CTs0NWZmxCC/fv38/DhQ4KDg/XWzJjXEEKQlJTE8+fPtYl+/vzzTywsLKhYsSKdO3emYsWKuLq6ai1YxkXUyL+hKdymqZA6Z84cvZrH169f5/Tp0+zcudPoh5SL5MvQwg+h+QqbP38+t27dYtGiRfj4+OTYYqtWqxk9ejQVKlTgiy++yNB9hRCsWrWK5ORkJk6cmCU5hBDcuXOHgQMHsnr1aipWrGjccLIBzRRUKBSEhYVx5coVTp06xZ07d5DL5ZQvX5569epRtWpVChUqZEz0YyRTREZG4u/vz6RJk2jatKlejB+FQkFAQACtW7eme/fueiFTfkV/1EM9QpIkbGxsmD59Otu2baN///7MmjWLBg0a5IhjoUwmo1OnTixZsoQePXpkOKlPVFQURYoUybIc8fHxTJ06lX79+hkVAR2i2fzT0tJ4+fIl169f5+TJk9y6dYv09HRtrP+wYcPw8PDQHlUZ37+RrODs7MzEiRNZsGABlSpVypFCZv+FEIKffvqJ5ORkOnbsaBzfuYxRGfgPzMzM6Nu3L97e3kybNo0+ffrQvXv3HKlpULVqVRQKBXfu3KFy5coZul9UVBRVq1bN0v2VSiUrVqzA3d0dPz8/40TNAprNPz09ncjISG7cuMHp06e5du0aSUlJFC9enHr16tGnTx+8vLywsrIyxlgb0TmSJNG4cWN++eUXVq1axbRp03LVLP/mzRu+/vprZsyYYaw/oAcYlYEPIJPJaNq0KZ6enkyYMIF79+4xadIk7OzssnWDtLKyok2bNuzdu5fKlStn6NrY2Ngs+QwIIThy5AgnT55k27ZtxnTDmUAT7hcVFcXt27c5c+YMly5dIjY2lqJFi1K7dm0+//xzihcvrvMwUCNG3odcLmfMmDF0796dM2fOUL9+/VxR9NVqNVu2bKFs2bLUqlXL+LGhBxh9Bj4SjWPerFmzCA8PZ/78+RQrVixbB/Hjx4/54osv2Lt3L87Ozvy9q/5+X423uSRJKJVKunTpwrRp0zJlHRBC8PTpU/r27cvcuXOpW7eucaJ+BJrNPyYmRhvrf+7cOd68eYO7uzs1a9akbt26+Pj4YGNjYwz3M5JraMzzq1evZvv27TleelwIwcOHDwkICCA4ONigSy3nJYzKQAZRKBRs3bqVnTt3MnXqVJo0aZJtX3VKpZL+/fvTpk0bOnbsyOPHj7ly5QqdOnV6JxY3MjKS+fPnY2Zmho2NDTt27GDIkCGUL18ee3t7vL29Pzo1cVJSEoMHD6ZatWoMHTrUaK5+D5pY//j4eP7880/OnDnD+fPnefnyJU5OTtSqVYu6detSqlQpHBwcjJu/Eb0iPT2dcePG4eLiwsSJE5HL5QghSE5OxtLSUqdjVbP5u7q6YmNjg1KpZMSIEZQpU4ahQ4ca54WeYFQGMoFarebkyZPMmDGDjh070r9//2wphSyE4LvvvmP58uV4enpy5MgRbUKiv1ckTEpKolGjRly+fFn7N83mU7BgQY4dO0bp0qX/tf3r16/j4+ODpaUlQghWr17NpUuXWLt2rfEc729oNv+kpCQePXrEhQsXOHv2LE+fPsXW1paaNWtSp04dypUrh5OTkzHW34heI4QgPDycnj17Mn/+fCpXrsyhQ4fYu3cv69ev12nFU5VKhZ+fH2/evGHq1KkolUqWLFnCzp07jWmH9Qijz0Am0CQo2rp1K1OmTOHmzZvMmDEDd3d3nWwAarWa8PBwfvjhB7Zs2cKVK1dQq9XA2/oFKpXqnd8XKFCAunXrvqMMaH7ToEEDihcv/q/3SUpKYuDAgXh7e/PVV18RHh7O/v372bp1a5aqJuYFNEcvycnJPHnyhMuXL3Pq1CkePnyIlZUVVapUwdfXlwoVKlCwYEFjrL8Rg0KSJDw8PBgxYgSBgYG4u7uze/duTE1NCQ0NpXz58jq7V2JiInfu3OHOnTtcuHABBwcHpk6diq2trc7uYSTrGJWBTCJJEkWKFGHt2rWsXr2a3r17M3PmTOrUqZNl03pycjLDhg3jhx9+0CoBGtLS0khNTX3nbzKZjMaNGxMUFPTO7y0sLOjXr9+/JhgRQnD//n1u3brF+fPnuXbtGjY2NsyYMQMvL698ualpNv+wsDAuX77M6dOnuXfvHqamppQvX5527dpRuXJl3NzctMc0+fE9GTF8hBCkpaWRmJjIxYsXiY2NBd4eg16+fFmnysCrV68IDw8H3ioGiYmJzJo1i9jYWAICAnB0dDTOIz3AqAxkAU3lw3HjxlGxYkUmT56Mv78/vXv3ztKxgZWVFbNmzeLu3bs8ePDgnX9LT08nJSXlH9dUqVIFR0dHoqKitH+rVasWderUea8cv/32G0lJSQDcv38fCwsLzp07R/369bG1tc3zE1QIgUKh4OXLl1y5coXTp09z+/ZthBCULl2aRo0aMWrUKDw8PLCwsACMm78Rw0dzRBAYGMjOnTtRKBTv/NvJkyfp2bOnTvyFhBA8ePBAu85oCA8PZ8qUKbx+/Zr58+frVUbE/IqxB7KIJEnI5XJat25NyZIlmTZtGhcvXmT69Ol4enpqNw9NelkLC4sPDnxJkqhQoQIbNmzAz8+Ply9fav9NqVT+qzJQqFAhypQpw8mTJ4G3PgMBAQHvPfdPS0vjyJEj7/xNoVAwb948Ll++zNdff52nLAR/j/V/9eoV169f59SpU9y4cYOUlBRKlixJvXr1GDBgAJ6entqqjHnl+Y0Y+TsJCQncv3//H1ZGgIsXL5KUlKQzv4EbN26gVCrf+ZtcLsfPz4/x48cbw2r1BKOruI6QJInixYuzfv16ypQpQ69evTh69CgqlUr7BTpy5Ei+++47PsZnU5NPPCgo6B0nm/dZBszNzalfv772v0uVKkXr1q3fu5mFhYVx9erVf/xdLpdja2tr8BNUc+afnp7Oy5cvOXr0KNOnT6dz58707NmTffv2UaJECebPn8/333/P2rVr6dmzJ2XKlMHa2hpJkoyKgJE8iSRJlC5dmgMHDtCvX79/VAl8+vQpoaGhOrmXEIJr16698zcLCwvGjx/PmjVrcHFxMc4zfUEY0TlKpVL8/vvv4pNPPhFz5swRsbGxYsOGDcLMzEwUK1ZM3L17V6jV6o9ua/369aJAgQICEGZmZuLUqVP/+tuffvpJmJiYCEmSxLx58957D7VaLbZu3SokSRKA9n/u7u5i7dq1Iikp6aPl0xfUarVQq9UiPT1dvHr1Svz+++9i3rx5omPHjqJBgwaie/fuYvXq1eLChQsiJiZGKJXK3BbZiJFcJyUlRaxevVo4Oztr1wFJksTWrVt10n58fLyoWLGitm17e3vx9ddfi9TUVJ20b0R3GJWBbEKtVovw8HDx5ZdfitatWwt3d3fthGjXrp2Ii4v76A03LS1NzJ49W5iamgpJksSRI0f+9Xfh4eHC3d1duLu7i0ePHr23vfT0dOHn56eVRy6Xi1atWolr164JlUqVqefNDdRqtVAqlSIqKkqcPXtWLF26VHTp0kU0bNhQdO3aVSxatEicPn1aREVFifT0dINTcIwYyQlUKpX4/fffRaVKlbRrQkBAgE7WgsePHwtHR0cBiCJFiojvv//eqIjrKUafgWxCkiQKFSrE3LlzadGiBS9evND+2+HDh1m5ciWTJk36KHO8qakpY8aMITIykqCgIGJiYoiOjiYpKYnk5GRSUlJITU0lKSkJV1dXPDw8SEpK4smTJ1hZWWFtbY25ubnWISgqKoozZ84Ab4uXjBs3joEDB2JjY6PXJjvxt0Q/jx8/5uzZs5w9e5YXL15gb29P9erVGTJkCGXKlMHBwcEY62/EyEegCZU+ePAg48ePZ9++fVq/ASsrK9RqNQqFgsTERJKTk0lOTiY1NZXU1FRUKhWmpqaYm5tjYWGBlZUVlpaWWFtbY2pqyoMHD0hISKBy5cqsX7+e6tWrG+eknmJMOpSNqNVqVqxYwfjx4//hQGNvb8/u3btp1qzZv04O8deZd0pKCuHh4dy5c4fTp0+zadMm3N3dcXV1RQiBqakpFhYWmJubY2JiQnh4OBYWFsjlcq1zkCRJODo6UrRoUcqVK0diYiIjR46kZs2aLF68mBo1auilj4DmHWgUm/Pnz3Pu3DkeP36MpaUlNWrUoG7dupQrVw4XF5ccKSBlxEheRQhBXFwcM2fOZOvWrQwbNoy4uDhCQ0NJSEjQ/k6z3piZmSGTyVAqlaSmpqJQKLTrnEwmw8XFhaioKO7cuUNQUBANGzbE1tYWmUxmnKd6iFEZyEZu3rxJ69attTG2/0uFChU4dOiQNupAs/nFxMRw4cIFjh07xvXr1wEoVqwYlSpVwsvLCxMTEypXroyVlRXm5ubvTKykpCTMzc2Ry+UolUqSk5OJi4vj5cuXPHz4kBs3bvDTTz8RHx9PnTp1aN++PQ0aNMDDw0MvUuaq1WpSUlIIDQ3l8uXLnDlzhvv372Nubk7lypWpW7culSpVws3Nzbj5GzGSRTQfHHfu3OH333/nzJkzREdHY2VlRYkSJWjQoAFFixbFxcUFGxsbLC0t37tOiL9yFyQlJREXF8eLFy84e/YsL1++5MGDBygUCooXL06jRo2oX78+hQsXNlrv9AijMpCNxMTEcPr0aX7//XdOnDihNZn9PTFQjx49WL9+PXK5nBs3brB7924uXLiAh4cHTZs2pW7dunh5ef0jb0FmJpD4q5jO06dPMTMz49q1axw9epSbN2/i6elJly5daNSoUaaPCzRm/IxYGcRfkRZhYWFcu3aNU6dOcefOHSRJoly5ctSrV4+qVavi7u6urZ5oXDyMGMk8mnn67NkzDhw4wK+//gq8zVZav359ypUrh52dHUCW4v81W4v4K6rn1atXXLt2jWPHjnHjxg3c3Nz4/PPPadq0KQ4ODsZ5ncsYlYFsRvN6NV+7586d4+jRo1y8eJHnz5+jVqsZOnQoYWFhxMbG0rFjR1q2bImnp2e2f6n/3RJx6tQpduzYQUxMDL6+vnTq1ClDZZrT0tL48ccfSUhIoGfPnu+9TghBamoqr1694urVq5w6dYpbt26hVCopWbIkDRo0oGrVqnh6empTIhsXCSNGso5GCbh16xbr16/n1q1bNGrUiI4dO1KqVKkcmW+aNSc2Npbz58+za9cunj17xqeffkq3bt1wdXU1zvdcwqgM5DCayfDmzRt2797N9OnTcXV1ZdiwYXTr1k0b454bcqWnp3Pjxg3Wrl3L8+fPGTJkCK1atfpHHPL/XhceHs6cOXMICQmhUaNGfP/999prNO1GRkZy48YNTp8+zdWrV0lOTqZ48eLUq1ePGjVq4O3tbUz0Y8RINiGEIDQ0lBUrVnDt2jX8/Pzo0KEDBQsWBHJnzmkslQ8ePGDz5s1cunQJf3//XF0H8zNGZSCHEX/lv9+wYQP79++nX79+tGvXDktLS60ZPLflUyqVnD17lkWLFlG4cGGmTJmCh4fHO5NTs8kfPnyYqVOncvv2bQA8PDw4c+YM5ubm3Llzh5MnT3LlyhViYmLw8vKiTp061K5dm2LFimmPI4yT3oiR7EFjiduzZw8bNmygXbt29OnTB2dnZ72ZdxqLxd27d1m8eDFxcXFMnTqVKlWqGEuo5yBGZSAHEULw8uVLJk2ahCRJTJ8+HW9vb72ZlH9HCEF8fDxr167lyJEjzPm/9u49KKr6/QP4+ywsl42rglwUwgUBkbFoQkAn8ZsowYxNqeM4xaiNeUvxkgzSeM0kKzWoLG+MSo2zmKKkiYh5QQsIGzVRjARRWYRdWMBlWfd6Pr8/cnf0ZxlLLizyvGb8R/ec3RU+z3nO5/M5z7NhA2JjY80bHe/evYvMzEzk5uZCrVabj7Ozs8OYMWMA/JUYxMbGIiYmBsOGDYO7uzvtJCakhzDGoFAosGbNGshkMqxduxaRkZE2e4E1bUA8cuQIvvrqK7zzzjtISUmhTYY9hJKBHsIYQ21tLVJTUzFu3DgsWrQIIpHI5n/JjUYjTpw4gY0bNyIjIwMTJkxAUVERVq5caW7q8//NmjULn332GTw9PW3iCQVC+hvGGKRSKRYvXoyIiAisWLHC5uuImLAHHVXT09MxatQopKWlPfbUFHn6KBnoAaaBOWfOHEydOhWzZs3qU126GGO4cOECli5dCn9/fxQVFT3Whexhr776KgoLC21i2YOQ/oYxhqamJsydOxcJCQlYsGDBE/f92CLGGORyOZYsWYIRI0YgIyMDQqGwtz/WM42SASszFc2ZN28eXn75ZaSmpvZ4IqBQKCCTySASibrdiVCv12PHjh3YsGEDgoOD4ejoCIVCAaVSifv370OtVkOj0cBoNMLX1xdlZWUIDAy0wrchhDxJZ2cnFi5ciLCwMKSlpfXaRdS0F4AxBo7jLF4iNCUEppuoJz2lRP67vnN72oft3bsXjo6OmD9/fq/MCNy4cQPZ2dlQKBQoKirqVrVBoVCI9957D0KhEOfOncO2bdsgFAqhVquhUqmgUqnQ0dGBlpYWtLW10awAIb2AMYZvv/0WPM9jyZIlTy0RYIzht99+Q2trKyZOnPivF2WdTocDBw6gtLQUer0eRqMR8fHxmDZtGpycnLr0nhzHYdCgQfjkk08wb948REdHIzw8nBICK6FkwIpMywPff/89cnJyujwInrbY2FgkJydj9+7d/+k8AoEAKSkpKCoqwvnz55GcnAxnZ2cMHDjwKX1SQsh/IZVKIZFIsGvXLnPdgKelqqoKt27dwoQJE/71gtze3o7s7GxkZ2cjKioKtbW1ePvtt6HT6TB79uwuX9A5jsPw4cORkpKCrKwsfPPNN31qibUvsc1tpc+Q/Px8jBkzBiEhIV0eAKaqfCqVClqtFlKpFOXl5bh79y54nkddXR3Ky8shk8ke2cBnMBhQW1uL0tJS/Pnnn9Dr9X97fr1eb76bN/Uv6CqRSIQ5c+YgNzf3H89PCOl5jDEcOHAAY8eOxbBhwyy6g9ZqtVCpVNBoNOZy6FVVVeYxbjAYMHnyZKSlpYHjuEder1Ao8Ouvv6K6utrcm8DFxQXr169HXFwcRCIRIiMjERMTg6KiIhiNRou+F8dxmDZtGmpra1FdXW3RsaTrKMWyIq1Wi59++gnr1q2z6HEexhj27NkDiURi7knQ0tKC4uJizJs3D0qlEk1NTSgrK4NEIsGQIUOg0+nw2WefobKyEnFxcaioqIBYLMbq1asfm7I/d+4c1qxZg4CAAEybNg2TJ0/u8mfjOA5jxozB5s2bIZVKIRaLu3wsIcR6TPEmMzPT4scHCwsLsXPnTjg6OiI2NhYikQjFxcWIiorC6tWrceHCBWRlZcFoNEIikeDAgQPIzc2Ft7c3XnjhBTg5OaGwsBAJCQl4//33IRKJkJSUZD4/z/O4d+8egoKCuvVoo4eHB/73v/+hqKgIERERtFRgDZZ3PSZdJZVK2dixY1l7e7tFx/E8zwwGA3v33XfZpEmTmFarZRqNho0fP56lpKQwnU7H1Go1i4uLYxKJhDHGWHFxMQsJCWE3b95kPM+z+vp6FhYWxk6ePMkYYyw3N5fFx8czrVbL9u3bxz788EOmVCoZz/MWfy+DwcDmzp3LfvjhB4uPJYRYx+3bt1l8fDxTKpUWH8vzPNuyZQsLDQ1ljY2NjOd5du3aNRYYGMjOnTvHeJ5nBQUFbNSoUayzs5PxPM9WrVrFoqKimEKhYDzPs/LychYQEMAuX7782LkrKytZTEwMu379erdiDmOMnTlzhk2fPp3p9fpuHU+ejJYJrEgmk8HT09PitTtTVT6O4xAREQGhUAgHBwd4enoiNDQU9vb2cHBwwIABA9Da2grGGE6dOgUHBwdUVFTg0KFDKC0thUAgQElJiXkpQafTYevWrSgoKMDy5cu7XfJTIBAgKCgId+7c+ds6A4SQnieTyeDl5dWtvUmmeBMcHAxvb29wHIegoCB4eXmhtLT0HyuFDh8+HB4eHuA4DqGhoXB2dsaFCxfM/84Yg0wmQ2ZmJlatWoWwsLBu39UHBARAoVBYvLRJuoaSASvS6XTmnt/dZdosYxqMD7ftfXhQaTQaCIVCc5Efe3t7bNiwAVOmTDG/pqamBo2Njbh06RLKysq6/Zk4joOzszM0Gk23z0EIebo0Gs1j3U0tJRQKzfFKIBDAzs7uiePcwcHB/H52dnYQCATmizVjDC0tLVixYgWmTp2K5ORk8993h5OTE/R6/SNdX8nTQ8mAFbm4uECtVps31VgLx3GIiooCYwwJCQmYPHky3nzzTbS2tqK1tdU8WENDQ7FhwwYsXLgQGRkZkEql3RqY7EHXMTc3t6f9VQgh3eTm5vZYi3RLNTc34/79++YxrlAoMGLEiH98fWNjI3Q6HRhjaG5uhkqlQnh4uLkZW3p6OhISEvDGG29Ap9Nh06ZN3d54rFQq4ezsTE8TWAklA1bk6+sLpVIJpVJp0XHsQbENpVKJtrY2tLa2QiaTQaVSQaFQoK2tDU1NTejs7ERzczPa29sxadIkBAUFYfPmzaisrMThw4dRWFiI8PBwKJVKyOVy6PV6yOVyvPXWW3B1dcUHH3yAuro6i4OH0WjEjRs3LN6xTAixHl9fX7S3t6Ojo6Pb52hqasL+/ftx9epVfP755xg2bBjGjx9v3rSs0WgglUrNMeP27dvIz89HZWUlNm/ejJiYGMTGxkKtVmPx4sW4ceMG2trasH37dmzbtg2nTp3qdrJSU1MDPz8/qmFiJZQMWJGHhweGDBmCixcvWnQHzhhDWVkZgoKC4ObmhitXruD8+fMYOXIkhEIhqqqqUFJSgujoaOh0Ovzxxx/w9PTEnj17EB4ejoKCArS0tODLL7+En58fampq0N7ejnHjxqG4uBgymQxxcXHw9/fH0aNHLc7U5XI5pFIpIiIiLP0vIYRYycCBA+Hr62txvHlYZGQkQkJCcOzYMQQFBWHv3r3w8PBATU0N7ty5g8TERJw4ccIcM6Kjo+Hj44Njx47hpZdewo4dOyASiaDVahESEoLY2FjcuXMHdXV1aGhowIQJE7pV9IzneRQXFyM+Pt5mGy31dVSO2IoYYzh48CCOHj2KnJycPlcf/O8wxrBz505cu3YN2dnZNDAJsRHsQZ0B02OClsabrKwslJSU4PDhw/8648cYw5o1a9DQ0PCfi5l1RV1dHWbOnIm8vDz4+/tb/f36I4rkVsRxHBITEyGXy3H+/Pk+v/OePWjBLJFILKoiRgixPo7j8Nprr0Emkz3yFFFXnD59GmfOnEFdXR327dv3r4WBCgsLUV5ejqqqKhw8eNCqm/oMBgO+/vprJCUlwc/Pz2rv09/RzICVMcZw8uRJbNq0Cd999x18fHz67EVUq9VixYoVGDBgAFauXNmt6T5CiPUwxnD69Gls3LgRubm58Pf371K8kcvlUCgUAP6qMhoYGPjE4xobG9He3g4AcHV1xeDBg60S1xhj+PHHH7F161bs27cPAwcO7LPx09ZRMtADDAYDPv30U9TU1OCLL77ok7vwDQYDtm/fjrNnzyInJwfu7u40KAmxQUajEVlZWbh48SK2bt0KT0/PPjlW2YPW6cuXL8eWLVsQHR3dJ79HX0HLBD3Azs4Oy5Ytg6urK9LT09He3t6nlgz0ej1ycnJw9OhRbNmyhRIBQmyYQCDAokWLEBAQgKVLl6K5ublPxRvgr0SgvLwcaWlpyMjIoESgB1Ay0ANMRXoyMzPh4uKCOXPmoK6uzuYHKGMMSqUSH330EQoLC7Ft27Z/nT4khPQujuPg6OiItWvXQiwWY/bs2aiqqrL5eAP8FXP0ej3279+P9PR0rFq1CklJSRRzegAtE/QwjUaDPXv2IC8vD8uWLUNycvIjVQVtAWMMjDFcvXoV69evh4+PD9atWwcvLy+b+pyEkH/GGIPBYEBeXh527tyJWbNmYfr06RCJRDY5jhljaGhowKZNm1BbW4vMzEyMHDnSJj/rs4iSgV7A8zwqKirw8ccfw8fHB6mpqRgxYgQEAkGv/+Kbaonv3r0bx48fx/z58zFlypRu1TsnhPQ+xhiuX7+OjRs3Qq1WIzU1FaNHj7aZmxDGGO7du4f8/Hzk5uYiKSkJ8+fPN/c8ID2DkoFeYpqCz8vLg0QiQVRUFGbMmIHIyEjY29v36CAwzQQ0NDTg4MGDKCgoQFxcHBYsWEDLAoQ8IzQaDY4fP45du3ZhwIABmDlzJkaPHt0rMwWmmCOXy3Hs2DFIJBIMHToUixYtQmRkJD2p1AsoGehlpjvx/Px8FBQUwNvbG6+//jri4+MxaNAgq80WmAZjR0cHLl++jEOHDuHSpUsYPXo0ZsyYgbCwMJuYqSCEPD2mMV9cXAyJRAK1Wo3ExEQkJiZCLBabCxVZM+aoVCr8/vvvOHLkCCoqKjBy5EjMmDEDL774IoRC4VN/X9I1lAzYCNNMQWlpKQ4fPozq6moEBARg3LhxiImJwZAhQ+Dq6mruStid8/M8D41Gg8bGRlRWVqKkpASVlZXw9PREUlISEhMT4e/vT1UFCXnGMcag1Wpx9epVHDlyBL/88gscHR0RGxuLsWPHIiQkBN7e3ualhP8Sc+7fv4/GxkZzWfXKykq4ublh4sSJSEpKQkBAAN142ABKBmyMaQDJ5XJcvnwZZ8+exZUrV6DRaODt7Y3g4GCIxWI8//zz8PLygouLC5ycnGBvbw87OzvwPA+DwQCdTofOzk60tbVBKpWitrYWN2/eRH19PTiOg1gsRnx8PGJiYhAYGGgz64eEkJ7F8zxUKhWqq6vx888/o7y8HHK5HI6Ojhg6dCiCgoIgFovh5+cHd3d3PPfccxAKheaYYzAYYDAYoNVqoVKp0Nraivr6ety8edPck8DOzg7BwcF45ZVXEBMTg4CAgEfaH5PeR8mADTP9aHQ6HVpaWnDr1i3U1NSgtrYW9fX1aG1thUajAc/z5ik4UxbPcRwcHBzg7u4Of39/iMViBAcHIzg4GL6+vnB2du52xk8IeTaZbkY6OjrQ0NBgvomoq6uDTCZDR0cH9Hq9Od48HHMEAgEcHR3h6emJwYMHQywWm/8MGjQITk5OFHNsGCUDfYzpx2UaiHq9Hnq9HkajETzPg+M42NnZwd7eHo6Ojo8MPhqEhBBLPRxzeJ6HTqeDwWCA0WgEYwwCgQB2dnYQCoWPLStQzOk7KBkghBBC+jnaKUYIIYT0c5QMEEIIIf0cJQOEEEJIP0fJACGEENLPUTJACCGE9HOUDBBCCCH9HCUDhBBCSD9HyQAhhBDSz1EyQAghhPRzlAwQQggh/RwlA4QQQkg/939EV6wLd2TbxQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
- "from cdt.metrics import SHD, SHD_CPDAG, SID, SID_CPDAG\n",
- "from numpy.random import randint\n",
- "\n",
- "for method, graph in graphs_nx.items():\n",
- " print(\"***********************************************************\")\n",
- " print(\"Method: %s\"%(method))\n",
- " tar, pred = graph_sachs, graph\n",
- " print(\"SHD_CPDAG = %f\"%(SHD_CPDAG(tar, pred)))\n",
- " print(\"SHD = %f\"%(SHD(tar, pred, double_for_anticausal=False)))\n",
- " print(\"SID_CPDAG = [%f, %f]\"%(SID_CPDAG(tar, pred)))\n",
- " print(\"SID = %f\"%(SID(tar, pred)))"
+ "graphs = {}\n",
+ "graphs_nx = {}\n",
+ "labels = [f'{col}' for i, col in enumerate(labels)]\n",
+ "data = data_sachs\n",
+ "\n",
+ "from causallearn.search.ConstraintBased.PC import pc\n",
+ "\n",
+ "cg = pc(data)\n",
+ "\n",
+ "# Visualization using pydot\n",
+ "from causallearn.utils.GraphUtils import GraphUtils\n",
+ "import matplotlib.image as mpimg\n",
+ "import matplotlib.pyplot as plt\n",
+ "import io\n",
+ "\n",
+ "pyd = GraphUtils.to_pydot(cg.G, labels=labels)\n",
+ "tmp_png = pyd.create_png(f=\"png\")\n",
+ "fp = io.BytesIO(tmp_png)\n",
+ "img = mpimg.imread(fp, format='png')\n",
+ "plt.axis('off')\n",
+ "plt.imshow(img)\n",
+ "plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "The graph similarity metrics show that the scores are the lowest for the LiNGAM method of graph extraction. Hence, of the three methods used, LiNGAM provides the graph that is most similar to the original graph."
+ "Then, let us try GES."
]
},
{
- "cell_type": "markdown",
+ "cell_type": "code",
+ "execution_count": 16,
"metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAGFCAYAAAA2FqLNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjn0lEQVR4nOydd1RUV9fGnzszDL2D9CK9iShiQxHF3ism9h41msQkxo4lajQxMbEkMTGxxJJo1Fiw9y4KCkgv0nuHoUw73x9+d15UYAozMOD81nrXuyJ3zj135tx9991n72dThBACFSpUqFDRJmC09gRUqFChQoXkqIy2ChUqVLQhVEZbhQoVKtoQKqOtQoUKFW0IldFWoUKFijaEymirUKFCRRtCZbRVqFChog2hMtoqVKhQ0YZQGW0VKlSoaEOwWnsCKl5DF6YKhUIIBAIIBALw+XwQQsBkMsFkMsFiscBkMkWfoSiqtaarQomh1xK9hvh8PoRCoWgNsVgsMBiv/TXVGmp7qIx2K0EIgVAoRElJCVJTUxEXF4fs7GxUVFSAz+cDAJhMJiiKEhlyJpMJdXV1mJqawsHBAW5ubrC2toaGhobq5nvPIYSgsrISSUlJiIqKQkZGBqqqqkTrhsFgiNYRi8WCvr4+OnbsCG9vbzg4OEBTU1O1htoIlEp7pOUghIAQgvz8fNy7dw/h4eEAACcnJ7i7u8Pa2hqGhobQ0NAQGWwaoVAILpcLDoeDgoICJCcnIz4+HoWFhTAzM0O/fv3g7e2tMuDvEYQQ8Pl8xMbG4tKlSygoKICjoyM6d+4Me3t7GBgYQF1dXeRVA6+979raWpSUlCAlJQWRkZHIzs6Gra0thg4dCicnJzAYDNUaUmJURruFEAqFSEpKwqlTp1BRUYE+ffqgR48eMDIykukmoX+2uro6pKam4ubNm0hNTUXv3r0xZMgQ6OjoqG68doxQKMTLly9x/PhxGBoaYsSIEXB2doaamprEvzu9hmpra/Hy5UuEhoaCwWBg2rRp6Nixo2r9KCkqo61gCCEoKSnBoUOHUFpaiuDgYLi7u7/jScvjPOXl5bhy5QoePXqEcePGoU+fPm/EwFW0fQghqK6uxqFDh5Cfn49Zs2bBzs7uDW9a1nGFQiFiY2Px119/oWvXrhg/frxUDwEVLYPKaCsQQggiIyNx4MABjB07Fn379gWLpdhtBEIIioqKcODAAaipqWHBggXQ0tJS3XjtAEIISktLsWPHDnTr1g2jRo2Cmpqa3M9RW1uLI0eOoLS0FEuWLFHFu5UMldFWEIQQPHjwAP/99x8+//xzWFhYtNjCp72mCxcuIDw8HF999RV0dHRa5NwqFEdVVRU2b96MESNGoE+fPgpdTwKBAP/99x+Sk5OxbNkysNlshZ1LhXSo8rQVACEE8fHxOH36NFavXi2VwaYNbmPPUkIIuFwuSkpKwOFwGjyOoigwmUyMGjUKPXv2xJ49e8Dj8Zp1TSpaF6FQiD///BP+/v7NMtg5OTl4/vy52PXAZDIxduxYGBoa4ty5c42uRxUtj8poK4C6ujr88ccfWLp0KQwNDaW6wbKysrB///5G/15aWoo1a9bg7NmzCAkJwd27dxu9oRgMBoYMGQJNTc0mj1Oh/CQmJqKoqAjDhg1rloddV1eH9evXo7y8XOyxTCYTU6dOxYMHD1BUVCTzOVXIF5XRljOEEDx58gTOzs6wt7dv9AbjcrnIyspCUVERnj59itTUVAiFQrBYLAQEBEAoFCInJwdFRUV48eIFYmNjRTm348ePx6xZs9C/f39cvHixyfnQN97FixdV3nYbhRCC0NBQjB8/vsmNZXrT+/Hjx4iPj4dAIEB5eTlycnKQmZmJhw8fwtjYGNra2qLU06ysLHC53EbH1NLSQlBQEG7cuKF66CsJKqOtAO7fv4+BAwc26RHV1NRgx44d2LJlC7hcLrZu3YoXL14gKioKW7duRW1tLY4dO4alS5eCw+Hgzz//xMWLF6Gnpwc/Pz+EhoYiNDQUkydPFjsfY2NjGBsbIzMzU56XqaKF4HK5yMnJgaura5NrqqSkBCtXrgSHw8HJkyfx33//IT09HTNmzMCRI0dw8uRJJCQkAAB4PB52796Nixcvorq6utExKYqCn58foqOjVUZbSVAZbTkjEAhQVlYGMzOzJo/T19eHi4sLvL290bt3b/Tp0wcXLlyAj48PBAIB2Gw2OnfuDAcHB/Tu3Rtjx47Fv//+C0IIGAwGfH190a1bN1y+fFmim6ljx47IyMiQ12WqaEE4HA7YbDY0NDSaPO7JkyfIzc1FXV0djI2N8d9//8HZ2Rl6enqYPn06tm3bBg8PD/D5fPzxxx9wcXHBvHnzYGBg0OS4BgYGqK2tFVXqqmhdVEZbAdCGVRLo111CSINe1Nvj5OTk4NWrVzA3N8fAgQNx7969Jl9vgdfeEovFUt10bRShUChRHJuiKBgaGsLJyQn9+vXD3LlzwWAwoK6uDg0NDairq0NNTQ1cLhempqa4evWqRLFtiqJE1bwqWh+V0ZYzTCYTWlpaKCsrE3ssIQQPHz7EgwcPcP/+fYwcORIZGRkoKytDQUEBACAqKgoPHjzAmTNnMGnSJBQUFGDHjh149OgR/vnnHwQEBIhNxyKEICsrCxYWFvK4RBUtjJaWFurq6sTuSfTo0QNaWlpIS0vDs2fPUFxcjIKCApSXlyMlJQVCoRCFhYXg8Xjo3r07HB0dsXXrVrGbjBwOB2pqagqvMVAhGapfQQH4+Pjg0aNHGD9+fJMeEkVR6N69O9TV1bF27VrY2dkhNjYWX375JYRCIQCgc+fO0NbWxrx58+Di4gJCCD7//HMUFBRg+PDhcHFxEeuFVVdXIyMjAx07dpTrdapoGTQ0NKCrq4vs7Owmf0NDQ0Ns27YNCQkJsLGxgbOzM3JycrB8+XKw2WyRt7x8+XJoampi/PjxKCkpafJhQAhBXFwcOnbs2OyqSxXyQWW05QxFUejfvz82btyIoKCgRuOFpaWlSEhIgJ6eHoKDg0XFL15eXgAg2ojMycmBlZUVOnToIPqss7MznJ2dJZoPIQSXL1+Gr68vtLS0mndxKloFiqIwaNAgnDt3DkuXLm3UeFIUBQMDA/To0UP0b7a2trC1tRX9t7W1NaytrSU+t0AgwMWLFzF79mzZL0CFXFE9OhWAgYEBRo4ciV9++aXReLOuri5CQkKwbNkyaGpqvvN3NpuNBQsWYPv27TA0NJRpHrSX9OjRI4wdO1ZVitxGoTM4CgoKWjSLgxCCa9euQSgUwsbGpkXOqUI8qjJ2BSEQCET6DQsXLoS6unqLGk3aYO/btw9ffPEFbGxsVEa7jUHfmhwOB1FRUTh9+jTS0tLwww8/KPz3JIQgKioKv/76K0xNTVFTU4POnTujb9++sLa2Vsm3tiIqo61A+Hw+Tp06haioKCxcuBDW1tYtstB5PB6uXLmCW7du4bPPPmux86qQD4QQ1NTUIDY2Fnfu3EFWVhZcXFwQGBgIPp+P33//HQsWLICnp6dCflehUIiHDx9i69at+Pbbb+Hh4YGysjI8e/YM9+/fB5fLRffu3eHv7w9TU1NQFKVaXy2IymgrGKFQiMjISPz111/w9fXFyJEjoaenJ/dFTmuWxMfH49ixY7CyssL06dNVutptBEII6urqkJiYiNu3b+PVq1fo2LEj+vXrB1dXV9GbGiEEmZmZ2LVrF3x8fDB+/Hi5qfDR8r7Hjx9HQUEBfHx8cPv2bXTt2hWjR4+Gnp4eCCEoLCzEgwcP8PjxY2hrayMwMBBdu3ZVrbUWQmW0WwDac7py5Qru3r0LT09PBAUFwcbGplm62vVfn58/f46rV69CTU0NkydPhrOzs2q3X8khhIDH4yE1NRW3b99GYmIiLC0tERgYCA8PjwaNMW1Yd+/ejfz8fKipqWHw4MHo06ePaDNbmvVEr6HS0lJcv34dDx8+xJAhQxAUFAQ1NTVUV1fj6tWruHPnDgIDAzF48GDRHoxAIEBGRgZu3ryJ2NhYdOzYEYMGDYKjoyNYLJbKgCsIldFuQWjj/eTJE9y+fRvV1dVwcXGBj48P7O3toaenJxKdb+hmBf7XLqqgoABxcXGIjIxEUVERXF1dMXjwYNja2qrijUoM3SIsPT0dd+/eRUxMDExMTETt4rS1tQE0bHjpOPOBAwcwcuRIBAYGoqysDBcvXsTz589hbW2Nnj17wsXFBfr6+iKt7fpj0Wl/PB4PJSUliIuLw5MnT1BcXIzevXtj4MCB0NXVfeczFRUVOHfuHJ4/f47Ro0fD399fZJhpDe6oqChcu3YN5eXl6Nu3L/r06SO1YJoK8aiMdishFApRVlaGuLg4REdHIy0tDcnJyXB2doa2tjZ0dHTAZrPBZDJRV1eHiooK8Hg8kU6EoaEhSktLYWZmhiVLlrT4RqcKySGEQCAQICcnB3fv3sWLFy+gr6+Pvn37okuXLmLDZbQc74kTJxAfH49FixbByspK9BnaaCYlJeHp06dISUkBh8MBAFhZWYlSPQkh4HA4qKqqQnl5OV69eoXJkyejR48esLe3F9ulhhCCgoIC/PPPP8jNzcXUqVPh4eEhcjLoB0JRURFu3bqFp0+fwsLCAsOHD4ezs7PcuzW9r6iMthJAZ3qcOHECS5YsQU1NDaqqqlBXVwehUIjS0lKcO3cOK1euhK6urqjxb21tLb7++muMHz8evr6+qhtCiaANWEFBAR4+fIgnT56AzWajb9++6NatGwwMDCTawCOEIDc3F7/88gucnZ0RHBzc5AOaPu+jR4/w4MEDUQHNnj178MUXX0BXVxe6urrQ1NTEpk2b8Nlnn8HS0lKqaxMKhUhNTcVff/0FHR0dTJs2Debm5u945zweDy9fvsSlS5dQXl6OAQMGwN/fXxX7biYqo60ECIVCfPvttxg+fDg6der0zoKurq7GunXrsG3btjfaS9Hymlu3bsXKlStbtDuOioahH7JhYWF48OABBAIBevTogV69ekmdaSEUCnH//n2cOnUKM2fOhI+Pj0T7FIQQ7NmzB71794avr69o/Xz77bdvaN3QzaDnzZsnU2NpgUCAsLAw/Pvvv/Dz88Po0aPfaW1HP0Ty8/Nx9epVvHjxAl5eXhg6dCgsLCxU+y4yoKqIVAJycnJQVlYmetV8Gw0NDbDZbJSXl8PExET07xRFwczMDLNnz8auXbsQEhKiqnpsYWifp7KyEhEREbh37x4qKyvh4+ODjz76CJaWllLvMdB7H4cPH0ZRURFCQkJgZGQk8RhcLhdpaWlNVjFSFIVevXrhwoULqKiogL6+vsTzoz/PYrHQq1cvdO7cGefPn8fatWvxwQcfoFu3bqKHA/2QsrCwwIwZMzBx4kQ8evQIu3fvhr6+PkaPHg1XV1dV6EQKVEa7lSGE4Pz58xg+fHijAvf0os/JyXnDaNN/8/HxwatXr/DHH39g8eLFqg7sCoY21DU1NYiJicHt27eRm5sLT09PTJkyBXZ2djIbIVrca8+ePejWrRvmzp0rdSZGZmYmDA0NRZuajaGpqYnu3bvj7t27GDlypEzzpSgK2tramDx5MgICAnDo0CHcuHEDs2bNeufNjz42KCgIgYGBiIuLw5kzZ8DhcDBy5Eh069YNbDZbZbzFoDLarUxpaSmSkpIwe/bsRhcrRVFwcnJCcnIyvL29G/z76NGj8eOPP+LKlSvNbkmlomHoDcGUlBRRaMHe3h7Dhg2Ds7Nzsw0OHQ45ffo05s6dCy8vL5nCFmFhYejevbvYYymKwsCBA7F9+3YMGTKkWc17acfiq6++wrNnz/Ddd9+hb9++GD58+DsxeNpL9/LygqenJzIzM3Hu3DmcOXMGAwcORN++fd8Js6j4Hyqj3YoQQnD16lUEBARAXV29yWMdHR1FDVYbWswsFgsfffQRNmzYgI4dO8LNzU216OUAHbvNzMzE3bt3ERUVBVNTUwQGBmL27NlyMS50Yc2RI0eQm5uLkJAQmVPlhEIhoqOjsWzZMok+b2JiAgsLC7x8+RJdunRp1rXQDaW7d+8OT09PnDhxAuvXr8fcuXPh7Oz8zth06MTOzg5LlixBYWEhLly4gLVr1yIgIAADBw5UbVo2gMpotyJ0zvaGDRvELkxzc3MUFhZCKBQ2Gv7Q0dHBJ598gh9++EHqOKiK/1E/8+P+/fsICwuDtrY2AgICMHbsWOjp6QGQroilqXMVFBRg9+7d8PDwwIoVK8Sm3jVFcXExgNct5iSBoiiMGDECJ0+ehI+Pj1yuiaIo6OjoYPbs2UhOTsYff/wBV1dXBAcHN/qQoygKHTp0wOzZs1FeXo7Lly9j3bp16N27N4YOHfpO7vj7jGrrtpWg07I8PT1FRqAptLW1IRQKxfbzs7W1xaRJk7B7926xHW1UvAkhBGVlZbh+/To2bNiAH3/8ESwWC19++SXWrVuHwMBA6Ovry01rgxCCFy9eYOvWrRg9ejQ++OCDZoVY6PE6deokVVaGk5MTOBwO8vPzZTpvY9BhvQ0bNkBHRwchISGIiYkRacU39hkDAwNMnjwZmzZtAgCEhITg5MmTqKysVHXPgcrTbjX4fD6uXLki8Wssk8mEiYkJ8vPzoaur2+hxFEWhd+/eSElJwbFjxzBz5kxVWlUT0Jka0dHRuHXrFgoLC+Hj44O5c+fCyspKYVkNfD4f586dw5MnT7BixQq5pWuGhYXhww8/lGosJpOJ/v3749q1a5g+fbpcr5eiKGhoaGDixInw8/PD77//DgcHB3zwwQdNhpYoioKenh4mTZqEYcOGiTzvwMBADBo06L2Oeavu5laCLl8W1wC4Ph07dsSrV6/EHsdgMPDhhx8iMzMT9+/fV3knb0FvKMbGxmLv3r1Yu3Ytnj17htGjR+Obb77BtGnTYGdnpxD9DLoqcffu3cjMzERISIjcDDaHw0FJSYlUTQ6A/6X/PX/+HLW1tc2eR2PnsLOzQ0hICPT09LB+/XokJSWJXZsURUFXVxcTJ07Ehg0bUFlZibVr1+L69euoq6t7L9e2ytNuBYRCIc6dO4fg4GCJb1b6VTMsLAwDBw4U+zk1NTUsWbIEmzZtgo2NDezt7d9bzwT4nwoiXUoeEREBExMTBAUFYc6cOXJTyhM3h9zcXPz000/o3bs3RowYIde+iwkJCejYsaNMWSC6urpwdHTEixcv0LNnT4V8FxRFQV1dHRMnTkSXLl2wb98++Pn5YcyYMWLDQnTYZNq0aRg2bBhOnTqFq1evYtKkSejatet7leet8rRbGEIIMjIywOVyG9xRbwobGxtkZ2dL5F1Q1OvO3AsXLsSePXtQWVnZnGm3SegNxZKSEtHr9a+//goTExOsXbsWK1euRPfu3VvkVZsQgujoaGzbtg0ffvghRo8eLVeDTQjB48eP0atXL5nzrYcMGYJr164p3HulKAqOjo7YuHEjKioqsHXrVuTn50u8rk1MTLBgwQJ88sknuH37Nr7++mskJyc3GStvT6g87VaALqaRNtasr6+PmpoacLlcaGhoiD2eoiiR+t+vv/6KZcuWvVEG314hhKC6uhpRUVG4desWSkpK4Ovri48//hjm5uYtroIoFApx/fp1XLt2DStWrIClpaXcz09LvM6YMUPmMTp27AgOh4PCwkKpwnayQFEUtLS0MGfOHERERGDr1q0IDg5G7969JbovKIqCtbU1vvzyS8TFxeHAgQOwsLDAhx9+CGNj43btdauMdgtTWlqKtLQ0zJ8/X+qFxWazoaOjg5KSEolFfugCiuTkZPz333+YOHFiu1zQtORpSkoKrl+/jpSUFLi4uGD8+PGtqu/M5XJx9OhR5ObmYt26dQpLXcvOzoaBgYFIU1sWmEwm/P39cefOHUyaNKlFvi8GgwFfX1/Y29vjl19+QWxsLKZPnw4NDQ2x56ezeDw8PLBhwwbcu3cPX3/9NQIDAzFs2LB2q3ypCo+0IIQQ3LhxA3369BFbTNMYNjY2yMjIkOozTCYTs2fPRkREBCIiItrN5g0dp87Ly8PJkyexatUqnDp1Ct26dcOWLVuwcOFCuLm5NSvvuTlzq6qqwvfffw9CCL788kuFdCyiz/X06VP4+vo2axyKouDv74+wsDDweDw5zU6y8xobG2PFihXQ19fHpk2bkJOTI/E6pSgKbDYbAwYMwObNm1FaWoqQkBC8fPmyXYZMVJ52C1JbW4tHjx4hJCRE5rijs7MzkpOT0aNHD6nG0NTUxKeffoqtW7fC0tLyHSnNtgRtEMPDw3Hr1i3U1dWhd+/eWLVqFYyMjADIp/ClOfMrLCzEDz/8gICAAAwdOlShaZeEEERGRmLJkiXNvm4jIyMYGxsjOTkZHh4ecpqheGjDGxwcDFdXV3z77beYMmUK/Pz8JP7u6EyT2bNnIy0tDQcOHMDNmzcxffr0dtWMQeVptxC0N+Ts7Cy1olp97O3tkZaWJvXnaEXAWbNm4aeffkJNTY3Mc2gN6DS96Oho/PTTTwgJCUFKSgpmzZqFzZs3Y9SoUaJYZmsb7FevXmHLli2YMGEChg0bpvA8+bKyMvB4PJiamsplvKCgINy8ebNV3sgoikLnzp2xZs0anD9/Hv/884/UXj9FUbC3t8e6devg5eWFjRs34u7du+Dz+Qqadcui8rRbCIFAgMuXL2PhwoXNMiomJiYoKysDn8+XelORoih06dIFqamp+PPPP7Fo0SKlVgSksz/y8vJw69YtREREwNzcHEFBQfDw8FC6mCXdDuzPP//Exx9/LHV2kKznfPnyJdzd3eXyW1IUBS8vLxw/fhw1NTWtIvVLl7SvWbMGhw4dwvfff4+PP/5YKh0SiqKgpqaGAQMGoHPnzjhw4ADu37+PefPmoUOHDkq1bqRF5Wm3EMnJydDU1JS68OFtNDU1wWKxZE7hoygKY8eORU1NDa5evaqU8W06/HHnzh1s3LgRu3fvhqGhIdatW4cvv/wSXbp0kWijqiUhhODBgwc4dOgQVqxY0SIGm+bJkyfo3r273M6nqakJR0dHxMTEtOr60NTUxPz58+Hj4yN1nJuGjpd//vnnCAoKwjfffIPr16+3aa9b5Wm3ALRm9siRI5v9qkxRFMzNzZGTkyOK30oLrQi4ceNG2NvbK4UiYP3sj2vXriE1NRWenp6YNWuW0jcrFgqFoo7la9eubdH4aW1tLXJzc+Hg4CDXcfv374/Q0FB069ZNruNKC5PJxJAhQ2BhYYHt27dj/vz5UkvW0uqDPXr0gJubGw4cOIBnz55h/vz5bTI9UOVptwCFhYUoKCiAp6dns8eiCxNSUlKaNY6uri6WLl2KX3/9FSUlJaJQBJ2RUVdXBw6Hg7KyMpSVlYl6VgoEAtFxzYU+V0FBAU6fPo3Vq1fj1KlT6N69O7Zu3Yq5c+eiY8eOSl3tJhQKcfbsWTx+/BirV69u8Q2vtLQ0mJmZSZS3Lyl09W1+fr5SFGVRFAVvb2+sWLECBw8exJ07d2TKCqGrKj/55BP06dMHmzZtQlhYWJvLMFF52gqG1szu37+/3ApbnJyccPHixUa1tSWB1oKgFQFnzpyJ+Ph4xMXFoaCgADweTyRWD7yOyQuFQrBYLBgbG8PFxQXe3t6wtraWOqWO1o+Ojo7GlStXUFFRgd69e2PFihUiOVllNdL1EQgEOHHiBNLT0/HVV1+1SCl8feiGBz169JD72Gw2Gx4eHnjx4gX69u3b6r8HRVGwtLTEunXrsHPnThQWFmLcuHEyVZUymUz06dMHrq6u+OWXXxAZGYlp06a1+O8nKyqjrWBqamoQHh6OjRs3ym1BmJubo6CgoEltbXEQQlBRUYHCwkJERESgtrYWvr6+GDp0KMzNzaGtrf1GQQrdDKC6uhqFhYWIi4vDsWPHUFZWhi5dumDQoEGixrWNnY9u8Hrz5k2Eh4fD1tYWEyZMgJOTU6sVv8gKn8/HsWPHUFhYiM8++0yunq6kCIVCxMbGytwqrCkoikLfvn1x8uRJ9O3bV65jywpFUdDX18fKlSvxyy+/4MCBA5g5c6ZMefgURcHU1BSrVq3C2bNnsWnTJnz88cewtrZW+nWoMtoKhE7zc3Nza1JOVVp0dXUhEAhQU1MjdQUcLUV64cIFPHz4EL169cL+/fthYmIi1sNlMplgs9kwMDCAk5MTRo0ahfLycjx48ADbt2+Hm5sbgoOD3ygioVP1IiMjceXKFXA4HPTr1w8hISEibeq2Bp/Px8GDB1FdXY0lS5bIXCjVXIqKisBkMmFoaKiQ8e3t7VFSUiJT419FQVEUNDU1sXTpUhw6dAh79+7FokWLZMokonPDJ06cCDc3N+zYsQPBwcHo1auXUssZK+/M2gFCoVAhPRuZTCaMjIxQUFAg1ecIIUhJSUFISAh4PB42b96M4OBgdOjQQeqNPtrAGxgYYPjw4diyZQssLS2xfv16REREQCgUorCwECdOnMCqVavw8OFDTJ48GZs3b8bQoUNhYGDQJg02j8fDn3/+CS6XKzIWrQHd8MDb21th36Oamhrc3NwQHR2tkPGbg5qaGmbPng0LCwt8//33TTYHEQed5hgSEoJr167hr7/+UuoGIiqjrSBoA6murt7sNL+GsLe3l0hbu/58wsLCsHfvXnz00UeYMmWK3Prv0UL3w4cPx4oVK/Dvv/9i+fLl+Pbbb6GpqYl169bh008/hYuLS5sLg9SHx+Phjz/+gFAoxPz581tdfOvZs2fw8/NT2PdJURT69OmDBw8eKGVqKJPJRHBwMDp16oTvvvsOVVVVMs+TTg1ctWoVBAIBtm/fjrKyMqW8bpXRViChoaEYMWKE3F+16pezS7KoaK/s5MmTWLNmDZycnBSml2xubo41a9aAzWajf//+GDVqVLsoIebxePj999/BYDAwd+7cVjfYHA4HxcXFCnEI6tOxY0fk5+c3y5NVJAwGAyNHjkT37t2xffv2ZrckU1dXx6xZs9C7d29s2rQJmZmZSme4VUZbQZSUlCArKwudOnVSyPg2NjbIysqSaEGVlpbi4MGD+OKLL6TKS01PT8ezZ8+kKkSgKAra2tpYtWoVrl+/LlPJvbLB4/Gwf/9+sFgszJ49u9UNNvC6WMvOzk6mhgfSoK6uDjs7OyQmJir0PM2BwWBg6NCh6NOnD7799ltUVVU1e7wBAwZg7ty5+P777xEVFaVUhltltBUAIQQ3b95E3759FXZTGRoagsPhiI29EUJw8uRJjBw5UmqRKB6Ph40bN4LD4Yj+ra6uDnfv3oVAIGj0c7Rwz6xZs3DkyJEmj1V2aIPNZDIxZ84cpTDYdMMDaUXDZKV37954+PChUhmut2EwGBg8eDD8/f2xY8cOcDicZs2XlnxdsWIFDh8+jNu3bytNPrfKaCsALpeLR48eoV+/fgq7qdhsNrS1tVFaWtrkcZWVlUhISBCbaysUCpGamoo7d+4gJSUFhBBYWVlBU1MThBBkZ2cjPT0dqamp2L59O1JSUpoUnaIoCp6enqirq0NOTo7M19ma0DFs2mDLs9NMc+Dz+UhOToabm5vCz0U30khNTW1RuVZZoLvvdOvWDT/88ANqa2ubbbgtLCywbt063Lx5E+fOnVMKB0RltOUMLRpka2sLAwMDhZ7LxsYGmZmZTR6TkpICBwcHsVkO5eXlOHbsGLS0tLB7927ExMSI/lZXV4ddu3bh7t27SE9PR3l5OWJiYt7wwBuCyWTC19cXkZGRkl+UkkCn9RFCMHv2bKUx2ACQn58PLS0t6Onptcj5dHR0oKen1yYevgwGAyNGjICbmxt+/vnnZj9o6NzwVatWIT4+Hn///Xer65aojLacIYTg8uXLck/zext6M1JcR+usrCzY2dmJnYuGhgY6duyIiIgIFBUV4eXLlwBevzXs2bMHfn5+mDZtGrp37w5LS0sMHz4cJiYmYudpb2+vlJs5TcHn83H48GHU1dVh3rx5ShESoSGE4Pnz5+jcuXOLbe7S3WXCw8PbxO/IYDAwfvx46Ovr4+DBg832junWaMuWLUNhYSEOHz7cqoZbZbTlTF5eHjgcDhwdHRV+Lkm0tQUCgURVk2FhYbh9+zamTJmCHj16iBY6l8uFvb09zp8//4YOhVAolGjhMhgMpYkFSoJAIMDff/+N8vJyLFiwQKkMNk1ERAR8fX1bNCPHx8cHkZGRbcJoA6/f8mbOnAkOh4PTp0/LZQ2qq6tj8eLFqKmpwYEDB1rNcKuMthyhdUaCgoJaRKfa1NQUpaWlTXoStCKguJvN2NgYFRUVCA8PR0REBDIzM5GRkQGBQAA/Pz+YmZlh27ZtqKyshJqaGk6cOIH79++LnWNubi7MzMzaRMqfUCjE6dOnkZOTg8WLFys8M0MWqqqqUFFRIXGPUHlhZmaG6urqZmdmtCRqampYuHAhXr58ibt378rlgcNms7FgwQLweDwcOnSoVQy3ymjLkZqaGkRGRqJnz54tYqQ0NTXBZDKbVGJzcnJCQkKC2FdEDw8PfPPNN9DV1cXKlSsxYMAAsFgsrFu3DlpaWpg2bRqGDx8OLS0tbN26Fd7e3ujZs2eTYwqFQoSHh8Pb21um62tJhEIhzp8/j8TERCxdurTVKh3FkZSUBHt7+xZ/A2CxWLCzs0NycnKLnre5aGho4LPPPsO5c+cQHx8vF8OtpqaGefPmgcPh4Pjx4y2+Oak8uyttHEIInj17Bjc3t2Z1xJYGBoMBMzMz5ObmwtDQULQgeTweioqKkJSUhJiYGERGRiIqKgpdunRp9GHCYDAa1GRuLMxjZ2fX5NwIIcjKykJlZSU6duwo5ZW1LPQb0vPnz7F8+XJoamq29pQahBAianjQ0lAUBV9fX0RERDS5jpSN+nKsO3fuxNq1a0U6O82BzWbjo48+wo8//ohz585hzJgxLaZXovK05QQthD906NAWW9C0tnZsbCxSU1MRGhqKb7/9FqtWrcLPP/+MV69eoXv37vjhhx9w5MiRFn21pdPlgoODlSrz4m0IIbh16xbu3buHL774olXaa0kK3SSitZpWuLq6Ijk5uU3tUQD/kyH+8MMPsWvXLtTV1cllXHV1dSxduhQvXrzAnTt3Wizer7x3UxsjIyMDDAZDoWXF9KKoq6tDdnY2oqKicOvWLURHRyMoKAheXl4YN26cKL+aFnUihGDQoEHYvXs3li1bpvBWXTweD7/99htyc3NhbW0tmreyeWd0kcqVK1ewevVquWmxKAo61U+eipHSYGBgAEIIysvLZe6a1FpQFIXu3bsjJSUFR48exezZs+XiGWtqamLZsmXYvHkzjIyMFCrgRaPytOUA/Xo9cOBAub8iEULA4/GQnZ2Ny5cvY9u2bVi9ejWOHz8uKvrw9fXFqlWrMGbMGLi4uEBbW/sN1T666MDZ2RnffvutwoRwCCGorq7G999/j+TkZAQFBWHHjh3YvHkzHjx40CxBH3lDCEFkZCROnjyJ5cuXvyEnq4zQqX4+Pj6tNk8GgwF7e3ukpqa2yvmbC4PBwKRJk5CVlYXHjx/LZS3Sedyff/45/vjjD2RnZyt8jas8bTnA4XAQHx+PadOmNfuGopsFVFRUICEhAU+fPsWrV6+gpaUFb29vTJw4EdbW1iLRfXr3ura2Ftra2o2Oy2AwMGHCBHTo0AEbN27EBx98gG7dusmllRc95/j4eBw4cEBUCZmamopFixaBz+fj5s2bOHXqFBwcHBAUFAQnJyeZxOvlASEEiYmJOHDgAFauXNlm+gQ+f/4cM2bMaNW5du7cGZGRkS2ecigv1NTUsHjxYmzevBmOjo5y6cxOV07Onz8fP/30E0JCQhT6NqQy2s2EbnTg6ekpczyUbmqbk5OD8PBwPH/+HDU1NXB2dkavXr0wY8YM0av72wuMxWLB0NAQhYWFTRpt4LXhDggIgIuLCw4fPoyLFy9i7Nix8PT0BJvNlnrx0t1skpOT8d9//6G6uhoLFy6Eg4MDhEIhIiIisHfvXnh5eWHKlClgMpl4+fIlzp49i+LiYnTt2hX9+vWDubl5izXuJYQgIyMDe/fuxeeffy61HktrweFwUF5e3uKpfvWhe0deuHChWa3uWhOKomBiYoKpU6fi119/xerVq+WSiUNrcgcGBuK3337Dp59+qrC9HJXRbiZCoRDXr1/HRx99JHWfxNraWiQnJ+Phw4dISkqCjo4OunbtioULF8LMzExiL5jW1ra3txd7LC2funz5cqSkpODcuXM4cuQIXF1d0bNnT9jZ2UFHR6fRPHO6Y05WVhYiIiIQGRkJPT09jBw5El5eXqI5M5lMdOvWDZ06dcLly5cREhKCcePGoXfv3vDz80NpaSkeP36MvXv3ih4m3bt3V2g3G0II8vLy8MMPP2Dx4sUSVYoqCykpKbCxsWn1Yh9DQ0NwuVxUV1e3WJaUvKEoCt26dUN4eDguXbqEUaNGyU1XfujQoUhKSsKlS5cU0gYOUBntZpOVlQUGgwErKyuxxxJCUFVVhdjYWNy/fx/Z2dmwsrJCr1698MEHH0BXV1fqpra09xMVFYXAwECJPkufw9nZGZ9//jlSU1OxZs0aVFdXIy8vDwKBAFpaWtDQ0ICGhgbU1NRQV1eH8vJy5OXlwcDAAGZmZvDx8cFXX33VaDNeujnCmDFj0Lt3bxw+fBh37tzBnDlzYGlpiWHDhmHIkCHIycnBrVu3sGnTJpibmyMoKAienp4ytZBqDEIISktLsWPHDsyaNQuurq5txmDTDSwU2fBAUlgsFszMzJCdnQ1XV9dWnUtzYDAYmDZtGkJCQtC1a1dYWVnJ5btlMpmYO3cuNmzYAHd3dzg6Osr9N1MZ7WZACMG1a9cwYMCABjcg6Q2JqqoqREZG4sGDBygoKICDgwMGDRoEZ2dnuWRy2NraIjQ0VOZrOHv2LBYuXIh+/fpBKBSipqYGVVVVOHbsGIyNjdG1a1eoq6uDEIJffvkFX3/9tVQGlaIodOjQAcuWLUNERAR27NiBfv36Yfjw4VBTU4ONjQ2mT5+OyZMnIyEhATdu3MDRo0fh6emJAQMGwMbGplmxd0IIOBwOduzYgXHjxrXqZp4sCAQCJCUlYeLEia09FVAUBTc3N8THx8PFxaVNfY9vo6Ojg2nTpuGPP/7AmjVr5BbO0NHRwYIFC7Bv3z5s3LhR7mmkKqPdDGpqahATE4MPPvjgjcVLG4mYmBjcuXMHeXl5cHd3x+jRo+Hg4CBT/LgpDA0NUVVVBS6XK1UlH93RprKyEn369BGFNXR0dEQhkm7dusHT0xPA61CQnp4eCgsLYWNjI/U86fHc3d1x7NgxbNy4EQsWLICtrS0oioK6ujo6deqETp06oaqqCuHh4Th48CBqa2vRu3dv+Pv7w8jISOoMnbq6Ovz444/o06cP/P3925yhKSoqgpqamtI013VxccG5c+daexrNhqIodOnSBXfv3sX9+/flJqVMURRcXFzg5+eHEydOYObMmXJdcyqjLSO0wXN2doa2trao63hCQgJu3ryJjIwMODk5YcSIEXBycpK7oa6Puro6tLS0UFZWBjMzM4k/V1tbi6NHj+Kzzz57J4ZNCEFZWdkb8rJ0LPDp06ewtraW6XooioKOjg7mzZuH2NhY/PTTTyKvu37/SF1dXfTr1w8BAQEoKCjA/fv3sX37dujp6WHAgAHw8fGBlpaW2DnweDzs27cPjo6OLVr4JC9oqV8vLy+lmbuFhQUKCgogEAiUunBKEugwyZYtW9C1a1e5yd1SFIUxY8Zg/fr1SEhIkGs4TpWnLSN0aCQoKAjp6ek4dOgQVq9ejStXriAgIABbt27FokWL5B6bbQxra2ux2tr1IYQgNDQUPj4+DRpgoVD4zmYTbbQjIiKanYvKYDDg6emJTZs2ITs7G9988w0KCwvfGJeiKDAYDJibm2PChAnYunUrJk+ejOjoaKxduxZ79+5FXFwceDxeg/MRCAQ4cuQINDQ0MGnSpBYrM5Y34eHhSpVip62tDYqi2pR4VFOYmJggMDAQZ86ckWuOtbq6OubOnYuDBw/Ktbt7235MthKEEGRmZuLx48fgcDjQ0NBAYGAgxo8fL8rPbMkbrL62tqQ3d0FBAR48eICvv/66weMFAgF4PJ4oH5ymQ4cO4PF4KCkpkUhPW9y8dXR0sHDhQjx58gSbN2/G1KlT4efn946BpSgKampqcHFxgbOzM2pqahAdHY0zZ86guLgY3bp1E6UP0lWg//33H4qKihSafqVoamtrUVhYCFtb29aeigha84belG7r0MVna9euRV5enlzTQJ2cnODo6Ihr165hxIgRchm3ba7kVoDOpU5KSsKVK1dw6dIlBAYGYubMmbCwsJA660PedOzYEWFhYRIdKxQKceTIEYwfP77R3O7a2lqoqam9Y+yYTCa8vLwQGRmJAQMGyOWaGQwGevbsCQcHB+zduxfx8fH44IMPGg0p0aL0PXr0QPfu3UXpg7t37waLxUJAQAC4XC6ioqKwYsUKpZRYlZSMjAyYmZkpneqgg4ODSAelPaChoYGxY8fin3/+waeffiq3cSmKQnBwMNavXw9/f38YGho2e8y2+b7YgtDViZcvX8batWtx5swZ9O7dG66urli4cCGsrKxarDCkKUxNTVFcXCxWJpIQgtjYWFRUVKBXr16Nzpt+g2jI4+3ZsyceP34st7nT43bo0AFr1qwBAHzzzTcoKSkR+7pKURSMjIwwbNgwbN68GfPmzcPNmzexYcMGAEBCQkKzewW2FoQQhIeHo2vXrq2+vupDURQcHBzw6tWrNvm9NgS9rnNzc+XeaUlPTw9DhgzB6dOn5TKuymg3ACEEQqEQ6enp+PXXX7FhwwYUFxdj2bJlWLVqFbS1tWFtbS2Xp6a80NLSAoPBEBtn5PP5OHbsGKZNm9Zko4bS0tJGr8/W1hbFxcVyj2nSGSTTp09HUFAQNm3aJLadWv3PMhgM8Hg8VFdX49SpU5gwYQJu3bqFVatW4c8//8SrV6/A5/PbjKEhhCAmJgadOnVq7am8g4WFBfLy8trMdykJLBYL48aNw7///ivXcSmKQv/+/REbG4v8/Pxmj6cKj9SDFmeKiYnB+fPnUVtbi+HDh2PWrFmifGpCCK5fv46BAwcqlfdTX1u7sTgjIQQPHjyAmZmZ2KT/kpKSRpXc2Gw2HBwcEB8fDz8/P3lM/w0YDAb69OkDKysr7Nq1C5MmTUKvXr2a3EgkhCA/Px+7d+/G0qVLYWNjA1tbW3Tq1AmVlZWIiIhoMH2wtcNaTVFeXg4ul9vsvQNFoK+vj5qaGvB4PKUL3cgKRVHo2rUrTp8+jdzcXLlKBqirq2PkyJE4ffo0Fi1a1Kw1p/K08T91uqtXr2LNmjW4ceMGgoODsWnTJvj7+4tkToHXhTLp6emi3GVlgdbWTklJafSY6upqnD17Fh9++KHYTIqCggKYmpo2GlP29/fHw4cPFeZpURSFjh07Yt26dbh06RLOnj3baOiHDmF9//33mDlz5hsPJIqioKenh379+mH9+vVYtmwZuFwutm/fjq1bt+LRo0fgcDgi0StlIiEhAU5OTi3Suk5a1NTUoK6u3m4ySGjU1NQwdOhQhIaGynU9UBSF3r17IyUlBYWFhc0a67022rQ28L///ou1a9ciOzsbX375Jb744gu4urq+kTdMHx8eHg4vLy+l9C5oo93QYiOE4OLFi/Dz84OpqWmT4xBCUFRU1ORxLi4uSE9Pl5ugfEPQ8erVq1cjKSkJf/31F3g83jvH1dbWYufOnRg6dGijXVXqpw9OnDgRW7duRXBwMCIjI0XpgwkJCeByuUphvOlOSMpQut4Q9G9TVFTU2lORK3RsOzY2tsk2frLAZrMxcOBAXLp0qVlr7L002oQQlJSU4MiRI9iwYQMoisL69esxe/ZsURPahm4UQghu374tt6wJeWNpaYnc3NwGF0RZWRkePHggsThOUzFt4HUMvUOHDmK7wTcXOlPks88+Q01NDX777bc3DCufz8dvv/0GDw8P9O/fX2LtFTp9cOHChdiyZQv8/Pxw+vRprF69Gv/88w9ycnIgFApbzYDz+XykpaXBycmpVc4vCfR6a29oamqia9eucn+TpCgKffv2xYsXL8DhcGQe570y2oQQFBcX4+DBg/j6669haGiIzZs3Y8KECRKpyxUWFqK2tlamEu6WQE9PDzweDzU1NW/8OyEEp0+fxuDBgyVWZisvLxdbNt2rVy88evSoRQwbm83G/PnzoaWlhb1794LL5UIoFOLEiRNgsVgYP368TMUz9EOhe/fuWLVqFVavXg1dXV3s2bMH69evx40bN1BeXt7i4RO6S42yKulRFAVra2tkZWUpxZuJPKEoCkFBQbhz547cW6tpa2vDy8sLT58+lfl7ey82IumS7PPnz+P58+cYNGgQtmzZ8kasWpIx7t+/j549eypljBF4vfttYGCAoqKiN/KvCwoKEBMTgylTpkh0vXRhTVMNbimKQqdOnXDhwoUWK2dmsViYPn06jh8/jp9//lnUs/Crr75q9vnp78XIyAjDhw/H0KFDkZWVhdu3b+PixYuwsLDAoEGD4ObmpvAKV0IIoqOj0alTJ6V8o6MxNTVFeHh4a09DIZibm0NNTQ2ZmZkSSR5LCkVRGDRoEH777TcEBATIZEvatadNS6H++++/2LhxIwwMDLBlyxYMGzZMIt2K+ggEAoSFhaF3795KfSPZ29u/EbIghODUqVMYNWrUO9WNjcHj8SAUCsXG7Q0MDKCpqYm8vLzmTFkqWCwWPvzwQ1RWVmLnzp34+OOP5b6/QAtn2dnZYcaMGfjmm28wZMgQ3Lx5E6tXr8aBAwcUnj744sULpVcjNDIyQklJSWtPQyFQFIWAgADcu3dP7r+xlZUVhEKhzOl/7dJoE0JQV1eHa9euYe3atRAKhfj6668xatQoqY01TUZGBjQ1NZUy/YqG1tZOTk4WLbTc3Fy8evVKqodNY4U1DZ2PFpBqqVdkQgiysrJQVFSEAQMGyH2X/23qqw8uW7YMGzZsQMeOHXHw4EGsXbsW58+fR1FRkVzj33TpuiKbRMsDbW1t1NbWii3oaovQ6X9RUVGiln7ygsFgoFevXjLHzNud0RYIBHj+/DnWrl2L1NRUrFu3DsHBwaIGA7JAb0DKS7pRkdjZ2SEjIwPA/7zs0aNHS1XKXVlZKVFnctpoh4eHt4jRpvckfvzxR3z88cf4/PPPkZ2djYsXLyr8/PTmtJ6eHgIDA7F+/Xp89tlnqK2tbTB9sDlkZWXB1NRU4jej1kJdXR1CoVDuRk1ZMDAwgJaWltzfJCmKgp+fH8LDw2WKmbebmDYhBNnZ2Th06BAAYMmSJSKd5ubC5XIRExODCRMmKL3RNjIyQmVlJbhcLoqKipCZmSl1KzS6sEaSz3To0AFcLhelpaUwNjZuztTFUlNTgx9//BGTJk0SCfAvXboUmzdvhqWlZaPpfvKGNuDm5uaYNGkSxo0bh1evXuHGjRs4efIkHB0dRc2L304bFQfddb2lrqU5MJlMqKmpoba2VukfMLJAe9vh4eFyTz4wNTUVZbGJS8F9mzZvtOnCmDNnzuD58+f44IMP0LVrV7nqgaSkpKBDhw5y09pVJGw2W6Stffr0aYwaNUrqvoJFRUUSh4HeFpBSFLQudteuXd8I9Whra+Ozzz7D1q1bYW5uLhLvaikaUh+MiorCmTNnUFJSgm7duiEgIECkHCduboQQvHz5Eh999FELXYHs0Jk3HA6nXaj9vQ1FUfDx8cGhQ4cwZswYua4rBoMBd3d3xMbGol+/ftJ9Vm6zaAUEAgGePXuGtWvXQl1dHZs3b0a3bt2a1ZrqbeqHRtoCFEXBysoK4eHhSE9PR/fu3aX+LgoLCyV++tcXkFJUiEIoFOLkyZNQV1fH6NGj37geiqJgZmaGOXPmYNeuXaitrVXIHCShvvrgqlWrsGrVKujo6GD37t1Yv349bt68KUofbAwOhwMOh4MOHTq04MxlR1NT850U0/aEubk5ysvL5X6NtBf//Plzqe+bNulp068VBw8eRE1NDZYvX64wD4vumD5jxgylf10F/rcZuXPnTnz55ZdSy5LS1ZBdu3aV+DN2dnYoKioCh8ORe14x/dBMSkrCihUrGkztoygKnTt3Rnx8PI4dO4bZs2e3asMDep0YGxtjxIgRGDZsGLKysnDr1i2EhobC0tISQUFBcHd3fyd9MDU1Fba2ts1KYaRzyvl8PrhcLioqKlBbW4vy8nKoq6uDzWaLxm/OmqYoCrq6uqioqJB5DGWHzWbDyMgIeXl5cHBwkOvYdnZ2yM7Oljpltk0ZbVp97/79+zh9+jTGjh2Lvn37ytWzfpuEhARYW1s3qjutjNBysU1JrzaFJIU19akvINWtWzepz9cYtIxsaGgo1q1b12RqH0VRGD9+PDZt2oTo6Gh4e3srxUO2fvrgzJkzweVyER8fjxs3buCvv/6Cl5cXBgwYAGtrazCZTEREREjdpYY20qWlpYiNjUVUVBRycnJEEgO0Qfj2229Fm4ZaWlqwsbFB586d4ebmJnPzDl1dXbmXeysbzs7OSE5OlrvRpvuwVlRUNCrO1hBtxmjT3vX+/ftBURRCQkIk3ixrzjnv3r3bJrJGaGjNCnV1dalj2fTnORyO6CaWBFoM5/79+3Jri0UIQV5eHvbt24fly5dLVLGqpqaGBQsW4Mcff8SmTZuUrpqQTh/s3LkzvL29UVlZiWfPnuHAgQOoq6tDr1698OLFC4wcORKEEIni31wuF8+fP8eVK1dQVVUFDw8P9OrVCzY2NtDV1YWamto7+jlcLhfl5eVIS0tDREQETpw4ARMTEwwbNgyenp5SOUFaWlrtOjxCUa+b9D548ACDBg2Sqx2gN7NzcnLan9EWCoV49uwZjh49ivHjx6NPnz4tUpVYW1uLV69eYd68eQo/l7zgcDh49uwZzMzMwOFwpO7gLWlhzdu4uLjgyJEjUneEbwi6KGrnzp2YPXu2xE2EKYqCjY0NAgICcPz4ccybN09pH7Z0+uCAAQMQGBiIgoICXL58GQ8ePMCvv/6KoKAgdO7cucG6AvqN89mzZzh58iTs7Owwbdo02NnZSWRwNTU1oampCXNzc/To0QM8Hg+JiYk4f/48Tpw4galTp8LNzU2iEJO6unqr7iO0BBYWFgrTWOnYsSPS0tLg5eUl8WeU2mgTQlBbW4u//voLOTk5WLVqlUjQqSVITEyEra1tk+XcygQhBPfu3YOvry8KCgqQl5cntdGuq6sDg8GQ2kvX1taGqakp0tLS4OrqKtVn34bP5+Pnn39GYGCg1FWBFEVh2LBh2LBhAxITE0WpgcoMrT7o4eGBWbNmYdCgQbhx4wb+/fdfUfqgo6OjKMxRWVmJ33//HXV1dVi2bBksLS1lvkaKosBms+Hp6QkPDw+kpKTg4MGDcHJywocffii2ZF9TU7Ndx7SB15o+tHa4PFvX0fotdHGapL+h0maP0JVvdPn56tWrW9Rg06GRgIAApb/paXg8Hm7cuIFhw4aJ1dZujKqqKlG3bWmgKEouAlJCoRDHjx+HkZERhgwZItN3z2azMXv2bLl3wVYkdH62n58fXF1dsWjRImzevBm+vr44deoUVq1ahRMnTiAuLg6bN2+Gh4cHvvrqK1hZWcllfdLStU5OTggJCYGamhq+++47scVCLBar3RbX0LDZbDCZTIW8UZiZmaGgoECqzyil0RYKhXj48CF27NiBqVOnYtKkSY02eVUUdGjE3d29xc7ZHOj8XgsLC5iamr5Tzi4pZWVlUnvnNN7e3oiJiZG5rJkQglu3biE9PR0zZsyQOQRGUa+709vb2+PmzZttQoVOKBQiJSUFzs7OAP6XPtizZ0+sXr0aq1atgkAgwNKlSzFp0iQMHTpUISJddNx9ypQp8PX1xc6dO5t88DGZzHZvtBkMBrS1tRXS8EFHRwfV1dVSrVGlM9pcLhdHjx7FtWvXsG7dOnh5ebWKp5ucnAxLS8s2FRq5cOECRo4cCYqimtTWboqioiIYGxvL9J0bGBhAQ0NDprJfOlPk4sWL+OSTT5r9GkpRr7tgX758GWVlZc0aqyUoLS0Fg8Fo8IFJURQMDAyQk5ODFStWoFu3bo3+PoSQRh+afD4fYWFhSEpKEjsfBoOBoUOHwtbWFqdOnWp0HTGZzHapPfI2Ojo6CsmS0dDQAJ/Pl+o7VBqjXb9lVG1tLVatWiWz8ZDHXO7fv48+ffq0+LllJScnB7W1tXB0dATwOg7H5XKlfqUrLCyUubBDVgEpQggKCgrw22+/4dNPP4Wenp5cfncDAwMMGTIE//77r9J72wkJCXB2dm508y8uLg7V1dViG3AkJCTgr7/+avB6KYpCSkoKDhw4INGcGAwGgoODER4e3qgiHSGkVXPiWwI6H10RnjaLxWryQdsQSvFt0+ldX3/9Nbp27Yq5c+cqXLO4KbhcLpKSkuDp6dkm4tmEEFy9ehVBQUGikIKamhr09fVRXFws1Vi0py0LsgpIVVdX48cff8T06dNhY2Mjt++coigMGDAACQkJyM7OlsuYioAQgoiIiEb1RuhWcePHj28yJEIIAZvNhr+/P2pqapCcnIycnBzcunULmZmZYDAYsLOzA/D6O09KSkJ2dnaTv5WGhoZoY7Sh4wQCgdLqy8sTLS0tVFdXy31cOo9fmhBTqxttQgiSkpKwbds2TJkyBYMHD271J3daWhpMTU2VLs+3MaqrqxEdHY0ePXq8cdPb2dlJ1Q6MVtFrjvCTmZmZSEBKEuh2Yd27d5dbjnd91NXVMXHiRBw/flzuXUjkhUAgQHp6uugt6W3q6uqQn58vtvUYIQQvXrzAzp07weFw8M033+DYsWOgKApr1659o59nSkoKdu3ahaysrCbHpCgKvr6+iImJea+NNpvNVtimNoPBaDueNr1j/vPPP+Ozzz5TCtF3QggePHig9M0OaOhmw25ubm9UbdKbcdJsRspSWPM29QWkxJ2XEIL//vsPLBZL4t6V0kJ7/+Xl5UhNTVXKMElxcTHU1dUb/d6rq6vBZrPF5r8zGAx4eXlBIBDA2NgYNjY28PT0RM+ePVFTUyPyFNPT07Fr1y6sXLlSIm0aPT091NXVNegN1tXVKWWTa3kjrWGVFDprRxqHotWMNiEEDx8+xNGjR7Fq1SrY29srhZHk8/mIjY2Ft7d3a09FIgghuHHjRoPVWnZ2dkhPT5d4LKFQiNra2maV7NOpf48fP27yOEIInjx5gufPn2PevHkKbVfGZDIxadIk/PPPP0pptOPi4uDq6trk5qIs9wadCfK2uqBAIIClpSXOnj0r0fdBf7ahY2tqatrMZn1zUAbbRNMqRpsWATp37hzWrFmDDh06KM2XkpOTAx0dHZnT3lqavLw8cLlcUayyPrS2No/Hk2gsLpcrkhptDra2tiIBqYYghCAjIwPHjx/HZ599pnAtZoqi4OXlJdqrUCbDTQhBZGRkk2+ZmpqaqKurk/h3BF4X4OTm5iItLQ1ZWVkoKytDSkoKUlNToaWlhSlTpuDff//FhQsXxI5bVVUFNTW1Bh+s7VVLW5lpcaNNCMGdO3dw9epVrFq1CoaGhkpjsGnvz8/PT2nm1BT0d9m3b98G9wHU1dWhoaGB8vJyicarrq6Gurp6s2OU9QWkGppzZWUldu3ahY8++ggmJiYt8l0zmUxMmDChyfS11oDP54ttHquhoQEDAwNRR6KGEAgEKC4uFsWYGQwG5s6dCz8/P2hoaGDTpk0wNDRE586dsWjRIujr62P79u1iG4XQ+f9OTk4NrrGKioo2oTPfnmhRo03Hiy9fvowVK1ZIJALUkgiFQrx48UIhG2KKgMfjITw8HD179mxwvnS+trjNJpqKiopmxbPrn7d3794N9sDj8/nYu3cvBg8eDHd39xb9nj08PFBdXS3V5qyioePZTW16UxSFwYMH4+zZs43GPmtra7F7926cPn0aw4cPh46ODvz8/NCpUydYWVmhR48ecHJyQqdOneDn5wdzc3P4+fnBx8enydAUn8/HpUuXMHDgwAY1UMrLy1VGu4VpMaNNb5j9999/+Oqrr5TOYAOvbyBCiNTtf1qL1NRUGBkZwdDQsMG/09rakm5G0m3G5IGrqyvS0tLe2HEXCoX4559/YGJi0qARUDRMJhNjx47FmTNnlMLbJoQgPj6+yXg28D/B/IqKikbTKbW0tLBy5UosW7YMI0aMkJvS4qVLl2BjYwNbW9sGj+FwOG1Ktrg90CJGm07rO3LkCJYvX65UIREaOpPF29u71VMOJYEOjQQGBjZ5nIODA1JTUyUas7i4WG7hCi0tLZGAFPB6vo8ePUJSUhKmT5/eKmliFEXB29sbeXl5cm/WKiuRkZHo3Llzo/nZdDgpLCwMtbW12Lp1K1JSUt4x3BRFQUNDo0FVQFkghODp06e4f/8+ZsyY0eA9QWcbtZXU2PaCwq0TXTizZ88efPrpp0q16fg2YWFh7+Q6Kyt1dXVISEhAp06dmpyvmZkZioqKxKYUEUKQn58v1zZX9QWk0tLScOLECXzyySetmiKmpqaGIUOGIDQ0tNW9bYFAgMzMTHTs2FH0b7Sh5nA4ePr0Kb777jusX78eL1++xOzZs7Ft2zbs2rULERERCpk/XZ1HNylevnx5o540n88Hn89/L7JHlAmFS7NyOByRLrKypPU1RFVVFcrKymBtbd3aU5EIWhtFnJdD33AcDkds7JFuRCsPaK82NDQUpaWl2LNnDxYtWqTwxhWSzKtXr14IDQ1FVVWVXGL4slI/nk3LEMfHx+P27dvIzMyEg4MDhg8fDicnJ1HqHiEEq1atwp49exAZGYlJkyZBR0dHbt51cXEx/vrrL3C5XKxdu7ZJSYGamhqwWKxmZxupkA6FGm0+n49ff/0V/fr1U4rCmaaIj4+Hg4NDm1iAtG52nz59xH6nDAYDpqamyM/PF2u0y8rKGo2Py4KBgQHU1dXx9ddfY9iwYWJjty2FlpYWfH19ce/ePQwbNqzV5hQXFwc7Ozu8fPkSd+7cQWpqKuzt7dG/f3+4urpCQ0PjnbnR3U5CQkJw+fJlrFu3Dn379kX//v1Fv50srcoKCgpw6dIlhIaGwtvbGytXrhQr2lVaWio3nRgVkqMwo00Iwfnz56Guro6hQ4cq9Q9Lx1slMYLKAJ1vPG3aNLHHUhQlimvTsp8NIRQKUVNTI/dNJU1NTfB4PAQFBSnNd0tRFAYNGoQdO3Zg0KBBLfqgptt9paam4ujRo6isrERFRQX69euHuXPnQlNTU+z3RBfNjB49Gv369cP169exZcsWGBkZoUePHnB3d4exsXGjcsZCoRB1dXUoKCjAy5cv8ezZM9TU1CAwMBB79+7F/v37cezYMUyZMqVJw52bmwsLC4tmfycqpEMhRpsQgri4ODx69Ajr169Xem0CLpeLtLQ0zJkzp7WnIhEZGRkwMTGReAPIyckJDx48wODBgxs1CHR8Ul6FEvRGVmZmplJuPJuamsLIyAhJSUnw8PBQ6LkIIeDxeEhPT8edO3cQFxcHQ0NDlJSU4JdffhFlK8nSeMLAwAATJkzA6NGjkZaWhmfPnuHevXuoqqoCm82GlpYW2Gy2aCOxoKAAFEVBIBDA0NAQHh4emD17NqysrET36fLly/HXX3/hhx9+wJIlSxpsikEIQXp6Ouzs7JTut23vKMRo0+2QPv30U2hpaSniFHIlKysLRkZGbSJ1iS4A6t69u8SfsbKyQk5OTpPl0HV1dWCxWHJ5wBJCkJ2djWPHjmH9+vXYuXMnSktLmyVEJW9ovehLly4pJF+c3tDLyMjAvXv3EB0dDUNDQ/Tt2xfBwcGoqanBrl275JKtQ7cMc3FxgYuLi+ghweFwwOFwcOfOHeTl5WH06NH45Zdf8NFHH8HBwQEsFqvBc7PZbMyaNQuXL1/G5s2b8cUXXzQ4z8zMTHTt2rVZc1chPXI32kKhEIcOHcKgQYPaxFOY9gj9/PxaeyoSIRQK8fLlS6lacenr66O2thZ1dXWN7vRXVlZCS0tLLumO1dXV2LVrF+bOnQtzc3ORgFT//v2Vaj14enriyJEjcovl04Y6JycH9+7dw4sXL6Crqwt/f3+MGTNGJI1AURQiIyPh7OysMJEsNpsNNpsNQ0NDGBoaQkdHB05OTnB1dUVlZaXYkBCTycTw4cNhamqKLVu24NNPP30jkUAoFKK4uLjN1DS0J+Sa8kfrApeUlMi93byiEAqFiIqKUvqNUpqSkhJQFCVVEYyamhp0dXWb1NYuLy+Xi94Kn8/H77//Dn9/f1E6Ys+ePcUKSLUGampq8PX1bVZfS9pQZ2dn4+TJk1izZg32798PExMTrFy5EmvXrsWAAQNgYGAgEm6i9Ua8vb1bZM3V7/vZsWNHvHr1SqLPURQFPz8/LF68GDt37nxDuZHWQlHlaLc8cvW0ORwOjh49iuXLl7eJLAzg9Q64QCCAiYlJa09FLHRLLjc3N6k9YltbW2RkZDSa0lhYWAhTU9NmGRG6gk4oFL5RlWdnZycSkFKmm5yiKAQGBmL37t0YMmSIxKGh+hkXjx49QlhYGBgMBnr16iUKJTT1+9BhE0k2kuVBZWWlSFDM3t5epO4nyW9NS/yuXLkS33//PSoqKtC3b1+UlZVBV1dXoeqMKhpGbt84IQSnT5+Gv79/m9lRJoQgOjoaHh4ebaIKEgAiIiKkLgGnb7ykpCT06tWrwc8WFRU168FFCEFMTAzu3r2L9evXv3Ez1xeQklceuLwwNzeHmpoasrKyGlRKpKENdXFxMZ48eSLyzv38/N4oGpPkdykrKwODwWiRHHG6jR+d7mlqaiqSa5B0DVEUBQsLC6xduxY7duxARUUFTE1NYWlpqcipq2gEuRhtQghycnIQGRmJzZs3t4kwA83Tp08VJsAvb/h8PrKyst6ooJMUe3t73Lp1q8G/EUJQWFgo07j054uLi/H777/jyy+/fGdDlxaQun//vtKJcVEUhb59++LOnTuYPn36G3OjDXVpaSmePXuGBw8eoK6uDt26dcPixYthbm4OBoMh9fUkJyfD0dGxxRyF6upq0W+ira0NHo8HLpcrVaYQnamyatUq/PTTT0hOTsaHH36oVL/l+4JcVg0hBMeOHcOkSZPalLZuXV0d8vLympTFVCYKCwuhpaUlU0aOsbExysvLG+1FV1paKvNmHJfLxZ49exAcHAxra+sGb2QXF5d3BKSUATpuGxkZCR6PJzLUZWVluHXrFr7++mts27YNxcXFmDdvHrZs2YKJEyeKUuSkNVp0PLsxvRF5QwhBTU2NaM2oqalBQ0NDps7iFEVBR0cHX3zxBXg8HuLi4qTqbahCPsjF005JSUF5eTm6devWpp686enpMDMzazMPGkkU4RpDQ0MDbDYb5eXl74RBaFEiWSQ2hUIh/v77b9jb2zcaegFee3i0gJSrq6vU51Ek+vr6MDY2RnR0NDgcDu7evYuysjJ06tQJ06dPh62trUwGuiGEQiFSU1MxceJEOcxcPHR5fP01bmpqioKCApkzP9hsNiwsLMDhcLB//37MnTu3zexhtQea7WkLhUKcOHECkyZNUvoimvrQqX5t5UFDx99lzTig45I5OTnv/I2ukJNW+IfOGU9NTcWHH37Y5Ot+/TZkrS3UREMIQVVVFR49eoSMjAysXLkSiYmJmDx5MrZu3YoZM2Y0mc8sCxUVFSCEwMDAQC7jiYP2hOsbVSsrq2Z1p6+rq4NQKMRnn30GJpOJX3/9VeneoNozzTbaaWlpqKmpgaenZ5swfjRCoRAxMTHo1KlTa09FIoRCIbKzsxvVNRZHU9radXV1otxeSaH3Mf7++28sXbpUIuU+b29vxMTEKKRBqiTQoY/q6mo8ffoU33//PUJCQhAVFYW5c+fCy8sLM2bMgLOzc6Ml4M0lJSUF9vb2LRbP5nK5YDAYoo1hiqJgbW2N7OxsmR+eFRUV0NLSgoaGBmbPng0dHR388ssv4HK5SvNAbs80KzxCCMHZs2cxatSoNuVlA69juEKhUKmq9JqiqqoKhJBmZRw4Ojri3Llz7/x7TU2N1G3GampqsHv3bsyePVvi75AWkMrPz4eVlZXE52ou9RX07ty5g4yMDDg4OGDw4MFwcXERPXCuXbuGtLQ0uLi4KGweLRnPBv7329Z/SHTo0AF3796VeUw6tEJRFFgsFqZPn46jR49i7969+Pjjj6V6+KuQnmYZ7ZKSEmRnZ6NLly5tyssGIHO+c2uRnZ0NCwuLZs3X3NwchYWFEAqFbxhoaVtGCQQCHD58GL6+vlIZIIqi4Ovri6dPn8LS0lKha4YQgrq6OiQlJYkU9GxsbBAYGAg3N7d3FPQIIaIWaYqqVCSEICUlBaNGjZL72I3RUAs5AwMDlJeXy9zlPSMj441qZxaLhalTp+Lo0aP49ddfsXDhQpXhViAyWwC6o3rv3r3b3CYEIQTPnj1rMw18gddpYk5OTs2ar7a2NoRCIaqrq9/4d2kyRwghuHv3LoqLizF27Fip88X9/PwabZnVXGgFvbi4OPz2229YvXo1Ll++jO7du+Prr7/GZ599hi5dujSopEfrfysyfFNVVQUulyu3lm6SUFZW9k6lq7a2Nurq6mS6TkIIMjIy3gnT0YZbR0cHv//+u1Sd41VIh8xGm8/n4/HjxwgICGgzho+Gy+UiOztb5rzkloYQgtTUVDg4ODRrHCaTCRMTExQUFLzx7wUFBRJ1FKKV3c6ePYvFixfLVA1nZmaGuro6lJaWSv3ZxubE4/GQlJSEP//8E6tWrcLZs2fRqVMnbNq0CV9++SW6d+/eoFLd2xgYGEBTU1NhrcjS09PfUNNrCQoLC9/5bVksFhgMBurq6mQaMy8vD+bm5u/8O4vFwowZM8BisXDw4EFVOqCCkDk8kpaWBn19/Rb1GuRFTk4ODAwM2oQCIfC/VmDyqDS1t7dHdHS0qAWYrq4uYmJi4O7ujqqqKmhqajZqVDgcDvbu3YsFCxaItDSkhclkwtPTE1FRUQgMDJRpDFrvIzMzE/fu3UNUVBQMDAwQEBCAiRMnyizMTzfQffbsGaysrOTujDQn+0dWCgoK4OTk9Ma/MZlMaGpqoqqqSmpZAT6fj6qqqkZ1algsFubMmYOff/4Zx48fx5QpU9rcfpeyI5PRpjuntEUvmxa16tKlS2tPRWK4XC64XG6zNiEzMzPx22+/4c6dO0hISACXy4WZmRnS0tJAURT09PRgZ2eHQ4cOwd3dHcDr7yorK0v0gPvjjz/Qt2/fZkmZ0ql/p06dQqCYpsT1IYSIMmgePHiAiIgI6OjooE+fPhg1apQoha4565GOue/fvx+jR4+W69omhCAhIQH9+vWT25iSnLOoqAg9evR452+6urqorKxs0GNuiurqarBYrCazhdTU1LBw4UL8+OOPOHfuHMaMGdNm9o7aAjIZbYFAgLi4OIwbN67NGW0AiIqKwvz589vM3CsrK6GhodGsvQNNTU2cP38ekZGRAF57W4sXL8aOHTtQV1eH2tpa+Pj4vNNkduPGjSgoKMDo0aPB5XIxfPjwZn9vdnZ2KCwsFCsgRRvqvLw8PHz4EM+ePYO6ujp69eqFlStXiporyPN3NDc3B4fDQWVlpVxUD2lqampQVVXV4lKm5eXl7+SE0yqRJSUlUo9XXFwMAwMDsUaYzWZj6dKl2L59O3R0dKTWy1HRODIZ7by8PGhqasp1UbcUVVVVqKqqgpmZWWtPRWLomHNzMDY2xqpVqzBjxgyR7sTAgQPx119/ITMzE2w2G4sXL37DgyopKcGtW7eQmpqKO3fuYN++fc29FACvb+iOHTsiISEBvr6+b/yNNtRFRUV49OgRnjx58o6CnrwNdX1YLBYcHByQmJgoV4317OxsmJqatuimvUAgQE1NTYMPRgMDA5SVlUk9Zk5OjkRCURRFQUtLC1988QU2b94MfX39NrXxr8zIZLRfvnwp0kpua6SmpsLOzq5NSUrm5+c3+yFDURRGjRqFQYMGITQ0FIaGhnB1dYWHhwcyMzPh5+f3Rh9HQgjCw8ORmZkJ4HXq2KJFi6CtrY2RI0c2OwxBp9fRnU9o0amwsDA8evQIfD4f3bt3xyeffAIzMzOFGuq359atWzc8e/ZMbtWyhBC8fPkSXl5ecpih5NDFLg2FMgwNDd/ZkBYHnTkiTXMTXV1dfPnll9i6dSv09fXh4uLSJu2GMiF1oKk1CgTkBZ3qp2xKc01BCBE1UG3unDU1NbF69Wro6enB0tISRkZG6NmzJ1gsFhYvXvyOOl9oaKgodcvc3BwbN27EgAEDmjUHGldXV7x69Qp5eXm4evUqNm7ciB07dqCqqgoLFy7Eli1bMG7cOFFuekv+Xi4uLkhNTZVr6l9sbCw8PDxa9DrojeWGHBTa05Y29TI7O1uqwiiKomBqaopPP/0UP//8M/Lz81VVk81EaqPN5/NRUFDQohVt8kIoFCIxMRFubm6tPRWpaK7WNQDRjeLr64tJkybBwsIC5eXlcHFxgYeHB/r16wc+ny8q9a6oqMDNmzfBZDIxdOhQXL58udEmr9LMgVbQe/LkCaKjo7Fu3ToUFRVhzpw52LJli0gpUF4CTbKgp6cHNpuNoqIiuYzH5XJRXFzc4jrzxcXFjWZ3aWtrv5OvLw5CCEpKSqReixRFwd7eHjNnzsT3338vk8Kgiv8hdYygrKwM6urqUosLKQOlpaUiXeC2hKw9DAkhIg3uFy9eID4+XtSujKIo7NmzB9XV1fDy8sLOnTsBvH6ddXBwEBnX7777DvPmzYOOjk6TRpR+KLx9DP3vlZWViIyMxN27d1FSUoJOnTph5syZ4PF4mDJlilK9+VAUBTc3N8TFxYlCM80hPz8fBgYGLa4m2VRYTVNTEzU1NVKNR2cxydIAm6IodOnSBYWFhdizZw++/PJLVdWkjEhttHNycuTyqt4axMfHw8XFpU2lHzUkrSnJZ0pLS3H9+nWEhYVBT08PXbt2RXBwMDp06AB1dXXw+XxoampCKBSKDCuXy0VJSQmSkpJw5coV+Pv7Q11dHSUlJU162EKhEGFhYaioqBD1BiWEgMPhIDo6Gnfv3kVBQQHc3NwwadIk2NvbQ01NDaWlpdi2bRsEAoFS7TFQFAUfHx9cv35dqrTExoiLi2vxtztCiCiU0dDvJovRpoWiZP2tKIrCoEGDkJ2djWPHjmHGjBlt6l5UFqT69umKuLbSNKA+dH52W8stFwqF4PP5Eqno0Qp2Z8+exdOnT9GvXz+sXr36jaayNLSXU7/wgcViQUtLC1ZWVujXrx9qa2sRHh6OX3/9Faamppg6deob1XW0J3/s2DGsWLEC3bp1Q48ePUR6H9nZ2XB2dsaoUaPg6Oj4jnIeLSCVl5fXaO/K1sLe3h7Z2dng8/nNyvigNyGHDRvW4usuJyen0QwYNTU1qUvN8/Pzm91HlMFgYOrUqfjuu+9w+/Zt9O/fv03dj8qA1I/MrKysJsXulRU+ny9Sd2tLCAQCCAQCsa+ShBAkJSVh37596NGjB7Zs2dKgxoYk0AZeS0sLffr0Qc+ePfHkyRNs3boV48aNEz34ysvLsWXLFuzZswe1tbW4ffs2li1bhi5dumDQoEEiBb3G5kAXsyiqArE5aGtri94ympO5w+fzkZubCxsbGznOTjx0Nk5j8Wcmkyl6y5L0e8/Kymq0M5E0sNlsLFmyBBs3boSNjU2zNXXeN6R+N2lqISgzhYWF0NTUVKpu4JIgFArFprvRzQh++eUXLF68GJMmTYKWlpZcbgSKoqCmpgZ/f39s2LAB9+/fx/Hjx5GYmIipU6fihx9+QG1tLYDXZe5dunTBkiVL4O3t/Y6SXkNjK1JAqjlQ1OtmyImJic0ap7S0FOrq6jLFgZsDl8sFj8drdL3Tb1hCoVCi8ei37KaaH0sKRVHQ19fHxx9/jJ9//lmkOKhCMqQy2nScsiW6SMsT+hW1pVOu5AGfz2+ycwqdgvnvv/9izZo1cHBwUMg10hu4y5cvR0JCAsaMGYOXL1/CysoK1tbWsLKygqWlJZ4+fSpVqpy8BaTkBUVR8PLyEum0yEpSUhIcHR1bfN3RVbSNxZ/rh7gkJS8vT24ZMBRFwdHREaNGjcIvv/yiEpeSAqnCIwKBQOL4qrLx4sULuetJtAR8Pr/J9LeysjIcOHAAK1asgLGxscTXx+fzERYWBiMjI4k3yejuNl988QUqKysxduxYeHh4iFL5CCEiBTlJkYeAlKJwcHDAyZMn39EflxS6RVxr1AUUFhaKqkcbgt4sltTT5vP5qKyslGvmFUVR6NevH+Lj43Hu3DmMHz9eqX5/ZUUqT1soFEIoFCrVTr8kcLlc5OXlydyqqzVpKuZICMGpU6cwdOhQqTN6KIpCVlYWDh06JNV8aHGppUuX4vLlyzAwMECHDh1gZmYGc3NzmJiYSGW0aQGpR48eSTWPlkBPTw9CoRBVVVUyfV4oFCItLa1V9lFozeumjLY0VFVVgcViyT1tkclkYtasWXjy5Ani4uJUYRIJkMpoCwSCFq9Okwe5ubkwNDRsk7nlTS3i6upqxMTEoF+/fk3+JpWVlYiLi0N6ejquXbuG5ORkMBgMUcYGnVb48OFDXL16FRkZGU2ely6W0NHRQWpqquwX9//Y2dmhqKgIHA6n2WPJEyaTCQsLC5mb4FZVVUEoFLa4Rg8tuyvPLC9xnntz0NTUxOLFi7F//35UVlaqDLcY2r3RpmO+3t7erT0VmWjqu05LS4ONjY3Yh1FtbS02bdqEkydPwtjYGCEhIXj16pXo74QQfP/990hMTIS+vj5+/PFHselgFEWhR48eiIiIaPZNVl9AStmgi2xkgf59WkNPOjc3VyJhJ0mR1yZkQ1AUBTs7OwwaNAh//PGHxCGb9xWpwyNtMRk+KiqqxcXn5QWDwXijAKY+eXl5EskJmJiYwNLSEj179kSXLl3g6OiIhw8fiv5eVVWFW7duYeTIkejevTtWrFghNgRGUa+7esujy0t9ASll8rLoDJKGOtiLg45ne3l5tfi64/F4qKqqajL+3FgFa2PHvnr1Ch07dlTYtdCFN/QbnzKtA2Wj7VlgKamtrUVpaalcvY6WhMViNbqzTgiR6iFKezA8Hu+NvG8GgyE6Dy1QJYm3Q29myQNaQIrL5cplPHlBN0OWRTwqKSkJrq6uCphV05SXl0NdXb3JhAFJUknrQ+doKxIWi4X58+fj33//RXFxsULP1ZZp90Y7KysLpqambVbngMViQSAQNGgczczMkJOTI9E4QqEQN2/exIULF1BQUAB/f38kJiYiNzcXXC4XwcHBOHr0KM6cOYN79+6JvZlp495cnW8abW1tmJqaIj09XS7jyQstLS0wmUypRY7opgetUdMgidQE/VCW5KHP5XJRVVUlk/6NtBgbG2PChAn4448/FNZgua3Tro02IUQUGmmrMJlMMBiMBr1tOzs7pKenS+SdMplM9OvXDw4ODtixYwfMzc3h5+eHTz/9FCwWCzNnzsT48ePh6emJBQsWSHQzh4WFwcfHR26vzD179sSjR4+U6tWYwWDItBmZm5sLY2PjFm16ALxe88nJyWKrDAUCgcSedllZGbS0tFok1ZeiKPj7+wOAKkzSCO3aaANATExMq8QV5QWTyQSLxWqwczatyCfO0GVmZiI/Px8xMTFwdnaGkZGRKD+6S5cu0NPTA5PJRMeOHeHm5tZk6TnwPzGiwsJCuLi4yOU6KYqCt7c3YmJilM7DcnFxQVJSklQGpDX0s2lSUlLg6OjY5DFcLvcdLZjGyMzMbFFtGAaDgdmzZ+Pff/9FeXl5i523rdCujXZNTQ3Ky8ulbl6qTFAUBXV19Qa1jymKQnBwMM6cOdNkDNDS0hK//vor5syZIxfPj8fjYf/+/QgODparJ2loaAh1dXXk5+fLbczmQlEUOnbsKFVqIyFEZLRbGoFAgMLCQrFrvqamRqKca0IIEhMTW7TjDN04YdiwYTh69Kgqm+Qt2rXRbuvxbBpDQ8NGy7xNTU0RHByMnTt3oqKiokFvkMViQVtbWy56JDweDwcPHoSdnZ3cK/1oAamnT58q1WsxvRkp6Zx4PF6rNQqpqqoCg8EQq3XC4XAk1kORxHOXNxRFYcCAAcjOzkZiYqJSrYfWpt0a7frx7LYaGqExNTVttJ8fnS7Xp08frFmzBnl5eQpZ4LTuzE8//QQ+n49p06bJPf2T7s+obAJSOjo64PF4ImEscZSUlEBTU7NVirmysrJgbm4u9rcpKysTSfY2BY/HQ1lZmdw2nKVBTU0Ns2bNwuHDh6WWkW3PtFujDfwvnt2WoSgKNjY2yMzMbNCQCQQCvHz5Eg8ePICuri6++eYbXLt2TdTUVR4IhUK8fPkS69evR0JCAkpKSpCVlaWQ11Zzc3OlE5BisVgwMDCQOA0tKSmpVeRGCSFISEiAq6ur2HMXFxfD2NhY7JhFRUUimdqWhs6Tt7Kywt27d5XqQd6atC0RESmoqalBRUVFs7uYKwNWVlZvFMPQ4kyJiYn4559/wGAwMGPGDDg5OaG8vBzHjx/H9evXMWLECHTr1k2msAghBDweDwkJCTh79iwEAgE+/vhj2NjYIDo6Gr/99hvMzMwwefJkmJuby81A1ReQ6t+/v1zGbC70gzMjI0OsLjZdVNOjR49WecNLSEjA5MmTxR5XWFgokVBYaz2AaCiKwuTJk7F582b07NmzzUkrK4J2a7QzMzPRoUOHNh/PBl5XNJaUlIgKItLS0vD333+jtrYWwcHBcHd3F8kLGBoaYtGiRcjJyUFoaCj+++8/2NnZwc/PD87OztDX14eamlqDNyGfz0dVVRXS09MRFhaGxMREmJiYYOzYsW+cw8fHB15eXnj06BG+/fZbeHp6Yvz48TA0NGz2zU0LSJ06dUqpVP/o9MrevXuLzX9OT0/HBx980IKzew2Px0NxcbHYTUhCCPLy8tCvXz+xx0VHR8Pf379VfwdjY2P4+/vj/Pnz+OCDD5RmTbQW7dJo04utU6dO7eIH1tbWBiEE8fHxuHTpEkpKSjBp0iR06tSpQdlWiqJgZWWF+fPno6amBomJiQgPD8elS5dQU1MjamxAG1kul4uysjIUFxejQ4cOsLS0RFxcHCZMmICgoCDRmPXHV1NTQ9++fdG9e3fcuHEDGzduRO/evTFixIhmdWwHXhvIwsJCcDgcpfGsbGxs8PTpU7HH0YJHenp6LTCrN5E0lk4IQUVFhViZVYFAgPT0dEybNk2Os5QeiqIwfPhwrF27FkOGDGm0w/z7Qrs02sDrPNmZM2e29jSaDSEEhYWFSE9Px48//oi5c+fC19e3ycYINHTLMB8fH3Tu3BmEEHC5XNy6dQsJCQkYNWoUCCFgs9moqqrC4cOHsXnzZjCZTOTl5WH79u3o1q1bozc3RVHQ0NDA8OHDERAQgIsXL2LdunUYNGgQBgwYIDbfuzHqC0h17dpVKR68JiYmKC4uFtueKyMjA1ZWVq0iEpWYmAhnZ2ex3xfdVV3cA7G0tBQsFqtVHkBvo6WlhYEDB+Ls2bOYNWuWUqyJ1qJdbkTW1tairKysTedn08Z637592LFjBzw9PTFs2DD06NGj0fBGU1AUBQaDIWqk6+fnB0dHRzg5OcHW1hYuLi4QCASorKwERVEwNzfHiBEj8Oeff4otdqEoCrq6uggODsa6deuQm5uLNWvW4N69e+DxeFJvINUXkFIWtLW1wefzm8wgIYQgJiYGnp6erbIJKenbZUVFBTQ1NcXm2MfGxkq0qdkS0CmA0dHR770uSbs02jk5OTA2Nm6T8WxCCEpKSnDw4EF88803cHJywpYtWzBlypRm9yukycjIeEdmk8lkws3NDbGxsSJvsn///qirq5O4nJiiKBgZGWHOnDlYvnw5Xrx4gXXr1iEiIkLqdlLKJiBFd6qvqKho8rjExMRWEYmiY+kdO3YUe2xeXp7YDXpCCMLDw1ul605jaGhoYODAgQgNDX2vM0nandGm+0G2tVQ/Qogo82PTpk3o0KEDNm/ejKCgIGhoaMDCwgKFhYXN7qXH4/FQUVHxTroXrY/9+PFj0b/VV10rKiqS+EahPfUlS5Zg4cKFuHr1KjZv3oz4+PhGZWbfRhkFpExMTFBUVNTo3+vq6lBeXg5TU9MWnNVrSktLwWAwxIYyJG3Qy+VykZWV1SpddxqDbk/24sWL97q8vd0ZbaBt6Y0QQlBVVYXTp09j/fr10NDQwObNmzF8+PA3UvW0tLTAZrNRVlbWrPOVl5dDQ0OjwbxbBwcHZGdnv6FzYmxsjEmTJmH//v1Sa4IwGAzY2dlhxYoVmDx5Mo4dO4bvvvtObGcc4PUNqkwCUvTmblPCUfn5+TAwMGiVnGa6gbAkBU+pqalitbEzMjJgamoKLS0teU6z2WhpacHf3x/Xr19XinXRGrQ7o83lclFUVKT0+tmEEFRXVyM0NBRr164Fl8vFpk2bMG7cOOjo6DSYEWJvb/9GxxlZyM7OblS2U1NTEx06dHjDu6VT8NTV1XHr1i2Z4tMMBgNubm4ICQnBgAEDsGfPHuzZswf5+flNjqdsAlKWlpZNGm26sKWlIYTg+fPn6NKli0SSunl5eU3eH4QQPH78GD169JD3VJsNRVEICgrCw4cPGxRRex9od0Y7Ly8PBgYGcm9AKi/ofozXr1/HmjVrUFRUhJCQEHzwwQfQ09NrshGrt7c3oqKimuVhNCXbSVEUunfvjrCwsDfOwWQyMWfOHISGhspcJk9RFFgsFrp164YtW7bAy8sL27Ztw8GDB1FaWtrgmIaGhmCz2UojIGVhYdHo9bfmJqRAIMCrV6/g5OQk9ti6ujpwuVzo6uo2OV5UVJRcZXfliYGBARwdHZVO7qClaFdGm1ZXc3d3V7rFRqfb3b17F2vWrEFqaipWr16NmTNnwsjISKL5Ojk5ITU1VeaFSghBampqk+I/tHf7dom6vr4+pk6din379jUrrk5RFNhsNgIDA7F161YYGxtj48aNOH36NDgczhvXRmuRPHv2TCluTgMDg0ZFuQQCAXJycsRWTCqCoqIisNlsiVLziouLoaen12TmSFZWFrS1tcXmcbcWdN72lStX3ksFwHZltAHg5cuX6NSpU2tPQwRdDv7kyROsXbsWUVFRWL58ORYsWABTU1OpHi6Ghoai/n+yIBQKUVhY2GTmAF1w8/aGG63A16FDB1y6dKnZRpSiKGhqamLUqFHYtGkT6urqsHbtWly9ehW1tbWiDBY/Pz+lMdpaWlrg8XgNPrTKy8vBZDJbvBiI3niXVLub7vXY1Hh3795Fnz59lM7xqY+trS0EAgFyc3NbeyotTrsy2nw+H3l5eS0q2N4YhBDw+Xw8f/4cISEhePDgAZYuXYolS5bIrNXBZDJhZWWFjIwMmebE4XBAUVSTkpwMBgPe3t6IjIxs8G/Tp0/H7du3kZ6eLhdDSlEU9PT08OGHH2Lt2rVIT0/H2rVr8fDhQ/B4PJiZmYny7lsbFosFNTW1BrXNX716BTs7u1ZpfP3s2TN069ZNonh2QkJCk9rYPB4PkZGREo3XmjAYDAQGBuLGjRtK8UBvSdqV0S4uLoampmar7ngTQiAQCBATE4ONGzfiypUrmD9/PpYtWwZra+tm3widOnWSOa6dn58PExOTJg0L7d02pmmto6ODuXPnYt++fXLdCKIoCsbGxpg/fz4+//xzhIWFYf369Xj58iXc3d2bHcuXBwwGAzo6Ou/0i6yfZtrShq62thYFBQViU/iA1/PMyMiAvb19o8ckJCTAzMwM+vr6cpyl/KH3XyIjI5Uml7+laFdl7ImJia2qSCYUCpGUlIR//vkHADB9+nQ4OTnJzfuiKAru7u64ffu22HLqhkhNTZUo79bGxgbFxcUNan9QFAUPDw94eHjg1KlTmDJlitwbIVhYWODTTz9FWloajh8/jqSkJCQnJyMgIKDVvT9jY2MUFxe/EbsmhCAlJQVDhgxp8fmkpqbC0tJSojTDuro6cDicRrU7CCG4cuUKBg8eLO9pKgQ9PT2Ym5sjOTkZnp6erT2dFqPdeNp0GW9LNz0ghEAoFCI1NRXbt2/HkSNHMH78eKxZswbOzs5yf102NTVFTU0NOByO1POUpOEr8Fr7w87ODsnJyQ16txRFYdKkSYiOjkZ8fLzcPWA6TdDBwQErV64Ued7ffPNNo7riLUVDBTa1tbWorq6WSJ9anhBC8OjRI/Ts2VOiNV9QUAADA4NGNyFLSkqQm5urlBv5DUFRFAICAt47re02b7RpbWlpynjlee6srCzs3LkTv//+O4YMGYL169fD09OzQfU9ecBisWBtbS11vjYhBDk5ORK1wGqoOvJt1NXV8dFHH2H//v0NxnjlBZPJRKdOnTBy5EgYGhrip59+wi+//CJV+y95QVEUOnTogIKCgjfOnZOTAxMTkxbvvM7n85GQkCBx9S8tKNUQhBDcunUL/v7+bUr+wdPTE8nJye9VZ5s2b7QLCgrw33//ISIiAgKBALq6ugq/mQkhyM3NxZ49e7B79274+/tj06ZN6NKli0Tqe82Boih06dIFz58/l+o66+rqUFtbK3Gs0t3dHcnJyY2m99HFPn379sWRI0cUmnpFURT69OkDoVCILVu2wMXFBVu2bMGRI0dQXl7eIsZbKBSCw+GAxWIhNTUV8fHxuH79OiIjI/H06dNWKarJzc2FlpaWRKl+hBDExcU1mmVCa8wok4a5JOjo6MDQ0BCZmZmtPZUWo83HtMvLyzF79mwIBAJRS6hZs2ahX79+cl98hBAUFRXh9OnTSExMxOjRo/HRRx/JpLrXHNzd3XHlyhWp4tqS5OfWR1dXF9ra2sjNzYWtrW2Dx9D5slu2bEFERIRCxYXc3Nxw7NgxAEBQUBB69+6Nq1evYv369QgMDMTgwYOhqampsPNnZWVh2rRpePXqFUpLS/Htt9+CzWajtrYW6urq8PX1RVJSEubOnQsTExOFzKE+0oZGBAIBMjMzG9ywJIQgLCwMTk5OMDQ0VMR0FYqvry/Cw8Ph4ODQph44stLmPW19fX1oa2ujqqoKWVlZOHfunNyrIQkhKC0txaFDh7B161Y4ODhgy5YtCAgIAJvNbvGFYmRkBD6fL5VoTnp6eqPGtyHovGxxVWdqampYuHAhjhw5otC0PG1tbZiYmCA9PV2kEz5mzBhs3LgRlZWVWLNmDW7evIm6ujqFeN4WFhYwNTVFVlYWOBwOqqur0b9/f1RXV6OkpATXrl1DaGhoi4VIhEIhnj9/LnFqXlN55Hw+HxcvXsTo0aPbnNGjK4Vfvnz53sS127zRpl+PgNc/4OLFi+Hn5yeXxUcr7/3999/YuHEjTExMsGXLFgwcOBAaGhqttsCZTCacnZ0RFxcn0fGEECQlJUkkkE9DURS6du0qNgxDK/qNHDlSIu3t5tCzZ088fvxYNB+KoqCvr49p06Zh9erVSExMxLp16/DkyRPw+Xy53sQsFgsLFiwQZWkYGxtj2LBhoo1mXV1dbNy4scUaBuTm5oLFYkm8+ZmamtpgHjkhBJGRkTA2NlZ6vZ7G6NChg+hB+j7Q5o02m81Ghw4dAAA+Pj745JNPpOoaQm9kvv1vVVVVOHPmDNavXw82m43NmzdjxIgRMjXJlTeyVAo2pKEtDnNzc1GDZHHzCQwMBJ/Px7179xTi8VAUhc6dO+Ply5fvPBgoioKpqSkWLlyITz75BPfv38eGDRtEx8qrCKhv374iESV3d3d07txZZMRnz56Nvn37tsjaIITgwYMH6NWrl0TZSYQQREVFwdvb+52/CQQCnD59GhMnTmyVwiB5wGKxYG5ujqysrNaeSovQNn+lerBYLFhYWEBLSwubNm2SSsuYbjhApwwRQlBTU4OLFy9i7dq1qK2txcaNGzF+/PgGlfdaE0dHR6Snp0u0a06HUqRNSWMymXBxcUFsbKzYY1ksFubNm4czZ84oTOBJnIAURVGwtrbG559/jpkzZ+LMmTP45ptvkJqaKtooJYSgsrJSpoIMTU1NLFiwAEwmE3369IG5uTl0dHTg4uKC5cuXg8VqmS0igUCA8PBwiVX46HTPtyshaXVAAwMDqR/oyoa7uzvi4uLeixBJmzDadEofrbtRUlKC/Px8ZGdnIz8/H4aGhhg7diz69+/foOfc2JgVFRVYsmQJFi1ahMzMTJHyXkFBAUJCQvDhhx9CX19fqYw1jY6ODvT09CTSXigvL4e6urrUsX469e/JkycSfadGRkaYMmUK9u3bp5AULDrOLu4Ng8FgwMnJCWvWrMHIkSPx+++/Y+fOncjOzoZAIMCGDRvw3XffSTRHej0JBAJUV1ejZ8+ecHR0hKurK2pra2FkZIQVK1bA0tKyxQxGRkYGtLS0JG5wW1FRAT6f/84mI4/Hw7///ovJkycr5RqXFIqi4OLiguTk5NaeSouglNkj9E1SXFyM+Ph4xMXFIScnBxwOBwwGQ6QBwWQyIRQKUVlZCR0dHYSEhEBDQwNmZmZwc3ODh4cHzMzM3knDI4SAw+Hgiy++wIkTJ0AIwYwZM/DBBx9g1apVMDExaROL2MfHBxEREbC1tW1yvjk5OY1qaIvD0dERBw8eRF1dnVijT4dtIiIiEBoaijFjxsi9WtLPzw/79u3DqFGjmhyboigwmUx07twZnp6eePLkCb7//nvo6OjgwIEDqKmpgb6+PhYtWvROOI1ef9nZ2Xjx4gViY2NRUlIC4PUbRY8ePfDy5UvEx8fD0dFR1FbN2toaPj4+8PDwEMW2FZHBdPPmTfTv31/isel4dv3rJITg4cOHsLa2Frt+2gJmZmYoLCyEUChslabKLYlSGW1CCAoKCnD37l08e/YMDAYD7u7u6NatG6ytraGvry8y1vURCASgKAo8Hg+VlZXIzc1FXFwc9u/fj6qqKnh6eqJ///6wsbEBk8lEbW0t1qxZg4MHD4pem9PT0zFy5MhWaRUlC7TX+dtvv4k1jpJWQjaElpYWTE1NkZGRARcXF7HH06JS69evR6dOneSehmVubi4SkJLE06QoCmpqavD394ePjw/GjRuH0tJSAMCqVatgYGCAKVOmgMFgiEInt27dwv3796GlpYWuXbsiODgYHTp0gKamJphMJvh8vqh4qq6uDhRFoaKiAmlpaXj+/DlOnToFU1NTDB8+HO7u7nINm9TW1iI2NlZi75gQgoiIiHcaJFRXV+Ps2bNYtWpVmzfYwOvsIqFQiNra2iYF0doDSmG0aSGbkydPIj8/HwEBAfjyyy9hZGQEBoMhdlHRNwWTyYSGhgZMTU3RqVMn0U0YERGB/fv3Q01NDWPGjME///yDn3/+GQKBAAwGAxoaGqirq8ONGzcwY8aMNrOIzczMUFNTg/Ly8kbza2ldjDFjxsh8Hj8/P4SFhUmcfaKtrY358+dj37592LhxIzQ1NWU+99swmUx4enoiKipKqlx8iqIQFRWFsLAw0b9VVVXh008/hZ6eHgYPHowrV67g1q1b6NmzJ7766isYGxuDoqh3zlE/rY9++zA1NYWpqSm6desGHo+HxMREnD17FidPnhRp0DR3XdHCVPb29hJLwNJ6OOPGjXtjnPPnz6NHjx5txkkRB5PJhJ6eHkpLS1VGW5HQLbf++ecfxMfHY8KECejatatcqgrpm01fXx+BgYEICAhAYmIiduzYgUuXLiE4OBh+fn5wcHCAra0tOnTo0OYKC1gsFlxdXREbGwt/f/8Gj5FEQ7sp6KyN69evS/zqSVEUXF1d0bVrV/z999+YOXOmXEWzevXqhdOnT6Nfv35SfdbS0hJ79uxBfHw8EhMTkZaWhpycHCxZsgRBQUHo06cPNm3aBF1dXZnXH93kwdPTEx4eHoiLi8Pvv/8OX19fjB8/vll53IQQXL16FRMmTJB4fnTuPN3QgBCC/Px8PHnyBJs3b24zDook0LowyiDNrEhazWjTuh27du1Cz5498fXXXyusUIWOb7q5uWHv3r14/Pgxzpw5g6CgoDbTALghKOp189srV66gd+/eDV5HdXU1CCHN8j7ozjrFxcWi9EpJ5jZu3Dh8/fXXiIyMlGvrKnt7exQWFjaoQijuc3SWBCEEdXV1ePLkCfbu3YupU6eif//+couH0k6Dh4cHNm7ciMOHD2PXrl34+OOPZS7+KiwsREVFhURtxWji4uLg4uIiemgKhUIcOnQIwcHBSte0tzlQFAUzMzOlaU2nSFole4QQgvT0dHz33XeYOXMmxo8fD3V1dYUbT4qioKGhgX79+mH58uU4cOBAm+8zR3dQr62tbfDv+fn5MDY2bpYxYjAY8PLyQmRkpFTflbq6OhYuXIhDhw5JVb0pDjabDXt7eyQmJkr9WdqYUhSFgoICnDlzBt9//z2CgoIUsoFFUa879MybNw+WlpYyt2sjhODGjRsICAiQeJ6EkDcaJNApfjweT24FaMoELZvb3mlxo01XGf7000/4+OOPpWqESneDaUyciA63pKenIy8vr9HjKIqClZUVVq5cib/++gsZGRlt1nBramrCwsICKSkpDf791atXEmloNwUtOP/06VOpP2tlZYWRI0di//79cquWpCgKvXv3xsOHD2X+3erq6rB3714sXLgQNjY2zTJgdO/NmzdvIicnp8FjmEwmJk2aBKFQKFO3ldraWjx9+lSqNmA8Hg+ZmZminqAcDgdHjx7FnDlz2mWGhYGBgVJ0OFI0reJpHz16FEOHDm2y7VFj/Pnnn0hNTW3wbxwOBytWrMCjR4/w22+/4Y8//mjScJuammLevHn4448/FFp+rWj8/f0bNGDSaGiLw9bWFkVFRVKXClMUJcqfv3Xrltwejm5ubkhNTZWpSIaei6urK9zc3Jr93RQXF2PLli0AgPDw8EaPY7FYmDVrFi5duiRVn0/aY3ZxcZGqTD4nJ0ekzUMIwd9//42AgACZ0z+VHW1t7XeaQ7dHWtxoFxUVIS0trck8UzreHR8fj6ioKFy6dAklJSWoqamBj48PjI2NkZ6ejsTERLx48QKXL19GeXk51NTUMHv2bEyePBkzZ87Ef//912RLLIqi4OnpCQ0NDSQkJCjqkhUKRVHw8vJCQkLCO8UihBBkZ2fLZWOGzWbDxsZGpgIGBoOBefPm4cKFC8jJyZHLTVVfQEpaBAIBbt26JTbXm16HCQkJiIiIwIULF1BcXIy7d+/i4sWLyMnJgVAoRGRkJCoqKmBlZYXhw4c3eW4DAwP4+PggLCxM4u9BIBDg0qVLGDFihFRvpXSqHwDExsYiNTUVw4cPb5cGG3i9Rt8HXe0WN9ovXrxA165dxe6i5+XlYd68eSgqKgKfz8fq1avB4XBw+PBhPHnyBNnZ2ZgzZw4qKytRVVWFkJAQMJlMdO3aFcDrvOv62hCNQTcIffToUZt9Quvq6jaoKczlclFTUyPKHGgO9KanpNWRb3/WwMAAM2fOxC+//CK3nn5vC0hJSmlpKVgslkQSqvn5+ZgzZw6ePXuGx48f4/Lly8jLy4OJiQk2bNgADoeDiooK1NbWivK/m4LOfomIiJBornQzXm1tbakevnT8umvXrqiursaff/6J+fPnt6kGB9LCYrHa9BuzpLS40c7IyBBbcEFRFJydndGhQwf06NEDQUFBSE1NRV1dHWxsbCAUCuHi4gIzMzP4+flh8ODBiImJQWlpqci7vHHjBj777DOJvApbW1uJysGVmZ49e77z4CkpKYGurq7c5ELd3d2RmJgo00YanTro6OiI06dPN/sB2ZSAlDiKi4slqnqtvw4/+OADrF+/Hn5+fsjKykJYWBgSEhJQVVUFDw8PWFlZoXv37hLFik1MTERrVRyEEJw9e1bq6lL6QWJqaopjx46hd+/esLe3b7deNvD691JkMw5loVU2IiVdOAKBAEKhUFTx+HZlGa3gxufzwWAwwGQykZubiz/++APz589HWVmZxF5dW/Wygf91s4mMjHzDgKWnp7/RgLa56OnpQUtLC3l5eTJ9nsFg4IMPPkBkZCRiYmKa/Z2LE5CSF2w2GywWCywWC7/++iscHR0xd+7cFtEbSU9PB4fDkTr2HhMTAxcXF0RHRyMjI0NsKEhF26HFjbatrS1evXol0WKvqKjAhQsXcPDgQfTt2xdsNhuZmZlITEwEl8tFaWkpLly4gAMHDmDw4MFgs9n48ssvkZeXhyNHjuCbb76RaOMsKysL5ubm8ri8VsPQ0BDa2toieUpZNLTFQWtsR0REyGysNDQ0sGjRIvzxxx+orKxsltGTVEDqbYyMjFBcXCz2M3Q1aWlpKV6+fAngdU/CR48e4erVq8jIyBBp4xQUFEjc5Li4uBgGBgZifxehUIhTp05h7NixUssNP378GK6urjh8+DAWLVrU4v0rVSiOFi+u6dy5M77//nuJqsNMTEzg7++Puro62NnZgc/nY+HChWCxWGAwGDA3N0fPnj3RpUsX2NnZgaIorFu3TrQZMWbMGOjq6jZ5DqFQiDt37rT5DRo6De7BgweiApL09HQEBgbK9Ry+vr7Yv3+/zJ4bRVGwtbXFkCFDsH//fnz66acyp59JIyBVHyMjI3C5XJSUlIiNa5uZmeH7778XraOZM2ciPT0dTCYThw4dAovFAp/Pl7gBAm1Q6Q3CpsjKykJRUZHUhUm1tbVIT09HRUUFxo4d226zRd5XWtzT7tChA6ysrJpse08IEXUfycjIgJOTE9hsNrS0tODl5QVXV1c8ffoUPB4Pubm5cHR0hJqaGlgsFtzd3eHt7Q1vb2+xYj30Jk9FRQXc3NwUdcktAm1QX7x4AYFAILOGtjjMzc3B4XBQWVkp8xgURWHgwIHg8/m4c+dOs7zt+gJSksJkMhEQEIDQ0FCxXXksLS3RqVMnUTyYxWLB0dER9vb2cHJyEv1/p06dYG1tLdY4VlRUICIiAj169GjyWKFQiBMnTmDcuHFSC06lpqYiOjoaxsbGCAgIUBnsdkar5GlPnz4d58+fR2pqaqM3TWBgII4dO9ao0PuQIUNw9OhRiTyWhqAbIOzbtw9z585tMQF7RVI/RFJRUQE1NTW5ijUBr3fonZ2dJWqM0BRMJhPz58/HuXPnmpUGWF9ASlLoh0Z0dDSSk5NbbD9DIBDg8OHDGDRoUJNvgIQQpKWloaSkBF27dpXK6NLSrcbGxu22iOZ9p8WNNkVRMDQ0xJIlS/DTTz8hMTHxnZuGFt3R1NRssNO5uL+LgxbN+eabbzB58mR07NixXXgj9UMkOTk5MDc3l/t1NSf17+1xDAwMMGvWLPz8889N5tOLG6dXr15Sp/7RsfU9e/bILXe8KQQCgahuYPDgwWK97OPHj2PSpElSORN0tfHDhw+xbdu2dq92977SKp42RVFwdHTEsmXLsG/fPoSGhoLL5Sr8xqHF7R89eoRvvvkGU6ZMQc+ePduFwQZef6/dunXDixcvEBcXJ5dKyIZwcnJCRkZGs/Ot6bQ9d3d3/PPPPzKna9nb26OgoECqak2KouDg4IC5c+fi22+/VVirKlqY6vDhw0hKSsLixYub3Muh5VeFQiG8vb2l+v34fD62b98Oc3NzueuYq1AeWq3dGEVRsLe3x8aNG5GZmYn169cjKipK7l20gf+1K0tNTcW2bdtw584drF69+h1h+PaAoaEh9PX1cfPmTZHmhLzR0tKCiYkJMjIymj0WRVGYNGkSkpKSxHZ+bwxZBaQoikKnTp3w+eef48CBAzh27Jhcy6CFQiGSk5OxadMmMJlMLFu2TKyyHo/Hw/HjxzF16lSp5GzpfO4HDx680SVeRfujVQO5FEVBV1cXH330EVJTU3Hy5En8/fff6N+/P/z8/ET9GWUxrPSNx+FwEBUVhatXr4LP52PChAnw9vZu17G+gIAArFixQqFpjH5+fnj69KlcvHk2m42PP/4Y27Ztg729vUgKVlLqC0hJm2lBZ7Ns2rQJ58+fx9q1a9GvXz8EBASI9NWljSkLBAKkpKTg3LlzKC0txbRp0+Dm5ibWkBJCcOfOHdjY2EgVsiOEIDw8HGFhYejcuTN8fX0lnq+KtodS7L7RjVhXrFiB3Nxc3Lp1C1u2bIGmpia8vLzg7u4OKysr6OjoNBrDpotsqqurkZeXh/j4eMTExKCkpATOzs6YOnUqHBwc2rWxBiDScDYzM1NYyTId1ti5cycmT57c7O+UoiiYm5tj4sSJ+PXXX/HVV19JnVfs5uaGY8eOgcfjSX3dtHzqpEmTMGjQIFy7dg1btmyBoaEh/Pz84O7uDhMTE6irqzdoePl8PqqqqpCZmYnnz58jJiYGenp6GDZsGLy9vSW+lvLycoSGhiIkJEQqg52Tk4O//voLU6dORWhoaJtr5qFCOpTCaNMwGAxYWVlh6tSpmDx5MvLz8xEbG4tbt24hPz8fdXV1opZidJWaQCAAl8tFbW0tBAIBmEwmTE1N4erqig8//BBWVlYKa66grJSXlyMtLQ0pKSno1KmTQs5hbGwsysCRR8sqiqLg7++PqKgoXLhwAWPHjpXqN9PW1hYJiTk7O8s8B0NDQ0yaNAljx45FRkYGIiIi8OOPPyI9PR0ODg7Q0NCAhoYGGAwGeDweampqwOPxwGQyYWlpic6dO2PUqFGi4hlJr4HefBwyZIhURpfD4eCnn37CnDlzEBsbi169er1Xa/19RKmMNg1FvW7Gam1tDWtrawwaNAiEEPB4PNTV1aGmpgZcLlfU45HOJFFXVxcZ6Pd54b569QqDBw/GjRs3FNaZh26MEBUVhQEDBsjlHAwGA7NmzcKGDRvg5uYmVek2ndXy+PHjZods6OwkJycnODo6gsPhYPDgwfD390d1dTXq6uogFApFKZW0IW9OKC82NhbZ2dmYO3euxGNwuVzs2bMHgYGB8PDwwNGjR/HVV1+912v/faBN7FZQFAUGgwF1dXXo6enBzMwMNjY2sLe3h62tLczNzaGvry/ygN7nRUtraI8ZMwbp6elS6TZLA90YoX6jXHmgpaWFxYsX47fffkNFRYVUm4KdO3dGdHS0XJXeamtrERUVBX9/f+jq6sLMzAy2trawt7eHlZUVjIyMoKWl1ax1x+Fw8Oeff2LevHkSh3bonO8OHTpgyJAhyMnJgaampkQd6lW0bdqE0VYhObQGtJOTEzw8PPD8+XOFncvW1haFhYWoqamR25h0VtGwYcPw22+/SWWAjYyMwGazUVBQIJe50JrUzs7OUvWilAaBQIBDhw4hMDBQJD8gDqFQiJMnT6KiogLTp08Hg8HA/fv3G+0TqqJ9oTLa7Yz6GtoDBgzA7du3FSZXqa6uDmtr60ZbnckKRVEICgqCmpoarly5IrG3TQtaPXv2TC7zIITg2rVrGDJkiEKMISEEd+/eRXl5OYYNGybROYRCIc6ePYuUlBRRzjefz8eLFy/aZd9HFe+iMtrtjJKSEujo6IDNZsPOzg5VVVUKa3Yqr+rIhmAymZg7dy5u3rwpcak5LSD17NkzuTyocnJywOVyYW9v3+yx3obuK3n27FksWrRIospH2mDHxMRg2bJloq7uGRkZ0NXVlUuzCxXKj8potzMyMjJEGtpMJhM9e/bEvXv3FFZt6uHhgYSEBIV0DNHR0cHixYvx888/o6KiQqLPWFhYoKamptkNXgkhuH79OgYMGKCQQpXS0lLs2bMHH3/8sUQyrQKBACdPnkRsbCw+//xzkaYMIQS3b99Gv379VAU17wmqX7kd8baGNkVR6Nu3Lx49eiRTtxlJ0NPTg4aGhkIaEdCl5kOHDsVvv/0m0TUwmUx4eHggOjq6WQ+qmpoaREZGilXjkxZCCKqrq/Hjjz9i3LhxYjNd6KypgwcPIisrC1988QW0tLREn+FyuYiJiZFZOE1F20NltNsZ6enpb7zOGxsbw8DAoNEO9s2F7prTnMYI4sYfOHAg2Gw2Ll68KPYctIDUo0ePZD4n3V9RERuQPB4PP//8Mzp37ow+ffqINdg1NTX46aefIBAIsHTpUlFIhCYpKQnm5uZideNVtB9URrsdwefzUVZW9oawP230rl27pjCj6uvri/DwcIWFYOj49t27dyXqDiOLgFR96m9AyhM+n48///wTRkZGGDt2bJPhDEIIioqKsGXLFjg5OWHu3LnvpAMSQnDjxg255cmraBuojHY7orKyEiwW6w0NbYqi4O3tjZSUFHA4HIWc19LSElVVVc1qjCAObW1tLFmyBPv27UNZWVmThltdXR12dnZSC0jR1N+AlJcx5PP5OHLkCPh8PqZPn95k6T8hBPHx8diyZQtGjRqFMWPGNHg8h8NBWloaPD095TJHFW0DldFuR+Tk5DTYWkpDQwOenp5S91KUFLqbi6Q9EmWBoijY2dlhzJgx+Pnnn5uMb9cXkJJ2PorYgKQNdllZGRYsWNCkFolAIMClS5ewf/9+fPbZZ43G1AkhiIyMhJub2zshExXtG5XRbkckJyfD0dGxwaYRgwYNwo0bNxSSs10/9U+RUBSFfv36wcTEBKdPn27SILu5uSElJUVqzW95b0DyeDwcOnQI5eXlWLx4caMVj4QQVFRUYNeuXYiLi8OGDRtEfU8bO/7mzZuq0Mh7iMpotxPozuGNaWhbW1uDEILs7GyFnN/Z2RlpaWnNbowgDgaDgRkzZuDFixdN6m/r6OjA2NhYas1veW1A0s0P9u3bBy6Xi0WLFjVpsBMSErBhwwa4uLjg008/ha6ubpPGuLi4GJWVlejYsWOz5qmi7aEy2u0EoVCIgoICWFhYNPh3BoOBoKAgXL16VSEhDG1tbRgZGSErK0vuY7+NhoYGPvnkExw8eBAFBQWNXg8tIEUIEf2vIei/CYVCuVRA1k/r09PTw/z58xs02LRh//vvv/Hnn39iyZIlGD58uNhCG0II7t+/jx49erR7qWEV76Iy2u2E6upqCIXCRj1EulowJiZGrloh9aEbIyi6bRytvz19+nTs2rWrwf6StOZ3VFQUcnJycOvWrUavOyEhAVFRUUhPT292BSQtV7t161a4ublh6tSpDRphQghevXqFDRs2gMvlYuPGjRI3PuDz+Xj06BH69u2rCo28h6iMdjuhsLAQRkZGTXpe2tracHV1VUh6HkVR8PHxQVRUlMK0Tt4+n6+vL7y8vHD48GEIhUKUlpYiKysLhBBkZmYiNDQUly5dQo8ePTBr1qxGs2euXbuGgIAAURpeaWmpTN8P3UV98+bNGD58OEaPHv3O70HnXv/999/4+eefMX36dMyYMQOampoSG+DU1FTo6em9kdqp4v1BZbTbCa9evRLrIVIUhSFDhuDq1asKMawmJiYQCAQoLS2V+9gNwWAwMGHCBBQWFuKvv/7C5MmTsX37dhBCcPnyZSxYsAAxMTHIzs4Gg8FoNOxQVVWFiooKREVFYdu2bRg7dqzUSoFCoRCPHj3Cjz/+iIULFzaouCcUChEdHY1169ZBKBTi66+/hru7u9TtzK5evYpBgwapvOz3FKVsgqBCOmgNbV9fX7E3sq2tLQAgMzNT7kJIDAYDnp6eiI6ORv/+/eU6dmMwmUy4uLhg7ty5qKysxKtXr1BaWoqpU6fi+vXrOHHiBIDXuduNvYXU98A1NTWxePFiqbrx8Hg8/Pvvv4iLi8O6detgbGz8xu9AF8rQaX9LlixpMjOkKSorK5Gamop58+apjPZ7isrTbidkZWWJhKKagsFgYNCgQVJJnkpK/cYIio5rA6+N4ZUrV7Bo0SJRYU96ejqePHkCTU1NbN++He7u7gDQaH9HQojIaLPZbKxfvx7BwcGN5mgTQvDy5UuUl5eDEILS0lJ89913qKio+L/2zjssiqv9+9/ZpffeQao0BYEoVkTAgrEnxpoYSzQmGk2eGH0MdlOexJgYTaJGo4mxJFYUC4qKUVTQiAhSlV6WJh22n/cP39mfDdyFWdjF+VxXrnjp7tkzZ2a+c8997oKVK1c+Jdj0huSxY8fw5ZdfIjAwEFFRUe0WbEIIbt26BT8/PzY2+xWGFe1ugEAgQHNzs1ylOSmKwmuvvYbMzEyldLVxdnZGeXm50jY7n2Xw4MH4/PPPZVEzIpEIJ06cACEEPXr0wPfffw8jI6OXWtpcLheLFy/G4sWLW3Wj0L7y6dOnY/PmzUhLS8O6deswYMAAzJs3T9ZyjC7ylJCQgKioKLS0tGD9+vUICQlptTG1PEilUly+fBkRERGslf0Kw7pHugE1NTXQ19eXu1WVrq4u/P39cePGDcZ9o9ra2rCzs0Nubi569erF2LgvgqIoGBkZYcmSJYiIiMDq1atx+vRpXLx4EdXV1bCwsEB4eDiWLl2KCxcuoKamBjU1NRCLxeByudDS0oKWlhYaGxsxefJkrFmzBtra2q3+Hp/Px8qVK5Gamorc3Fzk5ORgxYoVcHZ2BpfLlYUN3r9/H3/99RcsLCywbNky2NjYMLLGJSUloCgKdnZ2HR6LRX1hRbsbQNfQVqQJ7ogRI7BlyxaEhYXJVYBfEYKDg5GYmAhfX99OsQjpJsMHDhzAgQMHsHbtWuzZswdGRkYoKSlBdXU1TExMsG3bNmhra0NDQwMSiQRCoRBCoRCVlZXw8PDA3r174ePjA19fX1hYWIDL5crmL5VK8dtvv8l85E1NTUhLS8OKFStkD4YHDx7gr7/+AkVRmD17NlxdXRlLhac3IMPDw9nY7FccVrTVHHoT0sPDQ6Hv2djYwMjICNnZ2fDx8WFsPhRFwdfXFydPnoREImH8gfAiCCFoaGhAQkICHj58iMjISIjFYgQGBmLixIkwMjICgBf6gaVSKfh8Ppqbm1FSUoL79+/j0qVLEIvF6Nu3L0JDQ2Fubo7bt29j3bp1EIlEsuNMTU1FamoqcnJyUFdXBwB466234O3tzXiD6ebmZty/fx/Tpk1jbEwW9YQV7W5Afn4+Bg0apNB3KIrC66+/jpiYGIXDzl6GiYkJtLW1UVFRodRXeUII6urqcPLkSSQnJ+O1117DBx98AFtbW5mF+7Lj4nK50NfXh76+PiwtLeHv7w9CCKqrq5GQkICvv/4a1tbWOHbsmKx3pa+vL44ePSorCfDw4UNwuVx8/vnnT1nnTB5nUlISfH19oaenx+jYLOoHuxGp5ojFYtTU1CgUogb8n0VcWVmJyspKRudEJ9ooqzEC8Lga3j///IM1a9bAxMQEGzduxPTp0+Hg4CATzvaIJ0VR4HA4sLS0xPjx4/HFF1/A2dkZVlZWiIqKwo4dO5CTk4PS0lLZdwghOHXqFJqampTiDpJKpYiLi8OIESPYDUgW1tJWd15UQ1teNDQ0EBoaigsXLmD69OmMCQIdofL7779j9OjRjAuNQCDAb7/9htraWqxevRpmZmZKETOKoqClpYU333wTkZGR2L17N6ZMmQKBQIDIyEjY2trCzs4OdnZ2soeFMigoKICGhgYcHByUMj6LesGKtppTVlbW7ugEuofkmjVrMHHiREZfve3t7VFfX4/GxkaZT5kJBAIBfvzxR9jZ2WHevHlt1qZmAnpdDQwMsHDhQri7u+Py5ctYtWqV7LiUaf3Sseislc1Cw7pH1JzWamjLi6GhIXx9fWXV8JiCboyQlZXF2JiEEFko3dSpUxkT7PT0dMTGxso2GVtDS0sLo0ePRlhYGHbu3AmJRKJ0IW1oaEB2djYCAwNZ0WYBwIq2WvOyGtryQFEUIiMjERsbC4lEwtjcKIpCcHAwow+D3NxcpKenY/r06Yy6IgwNDfHzzz/LlRBE12+RSqVK6wREQwjB1atX8dprr7EZkCwyWNFWY6RSKcrLy1utoS0vtra2MDY2RmZmJkMze0zPnj2Rn5//UgtWHgghiI6OxuTJk9tMIqqqqsLdu3eRnp6O6OhoFBYW4urVq4iLi4NQKJSlnp89exaxsbGoq6uDhYUFtLW1IZVKkZ6ejpSUFPD5/FZ/g8vlYtq0aTh16pRSKxqKxWLEx8ezxaFYnoIVbTWmpaUFEokEhoaGHRqHw+Fg3LhxjIuQgYEBTExMGGmMIBAIUFxcDB8fnzYFTCQSYfXq1bh79y4oisKHH34IIyMjnD59Gjdv3oRAIMDnn38OLS0tiEQibNiwQdZvsqWlBX/88QcKCwtfakHb29tDIpGgtra2w8fWGunp6bC0tFQ4Moile8OKthojTw1tefHy8kJdXd1ToWwdhY4iYaIxQnNzM3R0dNpMMwcAa2trWFtbIzAwEAEBATKfvaenJ0pKSlBWVoakpCQUFRWhvLwc6enpaGhoQEtLC7788kv069cPY8aMeWk0DofDgYWFBaqrqzt0XK0hlUpx+vRpvP7660oZn0V9YUVbjZGnhra8cLlcREZG4vTp04z6aQMCAnDv3j1GxpR3DIqiZLHa9AONLuSkpaUFc3NzhIeHY9y4cfjoo4+gr68PqVSKsLAwHDlyBI8ePeqUKoVtwePxUFdXB09PT9Y1ogJ09fXwJKxoqylPpq8zcVPTZVUzMzMZfeW3sLCASCTqcGMEfX19CASCF7YWexIej4eKigpkZmYiMzMT1dXVyM3NRW5uLh48eAATExOMGjUK0dHRiI2NRVFREQoLCyEUCuHg4ABHR0esW7cO5eXlbf6OVCpFZWWlUrrH0GF+ERERbJ0RBZBKpYzVenkWQojSxlYUNk5bjSkqKsK4ceMYG09HRweDBw/GxYsX8cYbbzDyMOByufDx8UFqaipCQ0PbPY6WlhYcHR1x//79Nps9GBgY4Ouvv4aenh44HA42b94MMzMzzJ07V5Yss3jxYpkbyM7ODjU1Nfjxxx9hYmKChQsXgs/nvzRmvbi4GJqamjA2Nm73MbVGY2Mj7t27h8mTJ7NWtgJIJBKlPeREIpHScwLkhRVtNUUoFKK5uRmmpqaMjUnX1li3bh1ef/31dmVZvmjM4OBgnDp1CkOHDm23CFEUhfHjx2PHjh3o1atXqyFwRkZGL0zmedYipjv4AFB4s08ikeDgwYMYO3Ys49YX3Wk9MDAQ+vr6jI7d3REKhXKXJ1aUlpYWRu4HJlANe59FYega2kw//Y2NjeHt7Y3r168z5sdzdnYGj8drM4xOHlxcXNCrVy/s37+f0ZhyRSCE4OzZs9DU1MRrr73GuCUsEolw8eJFjBw5krWyFaSxsREGBgZKWbeGhoYOR2kxBSvaakphYSEcHBwYv0ApisLYsWPlyhCUFx0dHdja2iIvL6/Dc5syZQpqa2uxf/9+xuYnLxKJBOfOncPNmzexYMECpfg4U1NTYWtry4b5tYPa2lqluKvolnSq8ubDirYawvQm5LPY2NjA2toaKSkpjFnbdGOEjo6npaWFRYsWoaWlBd9++y0qKyuVvrNP1+vevn07UlJSsHz5cujr6zO+9lKpFDExMRg7dixrZbeDyspKpTzsWNFmYQQmw/2ehaIoTJgwASdPnmQk2YaiKPTq1QsZGRmMuDW0tbUxb948DBkyBF988QWio6PR1NTEuHgTQiAQCGQFopycnPCf//xHaa/gBQUFEIlEHSpL8KpCCEF5eTmsrKwYH1sikUAgEKiMaLMbkWqIRCJpVw1tRXB2doampiZycnIYiRU2MTGBlpYWKisrO5x2DzyOShk8eDD8/Pxw6tQpREVFITAwEKGhobC1tW13MwK6z2NVVRUSEhKQkJAANzc3rFy5EpaWlkqzgOk0/TFjxqhMaJm6UVlZqRTRbmlpAZfLZaNHWNpPQ0MDuFyuUnezuVwuJkyYgOPHj2P58uUdFiuKouDv74/k5GTGGt1SFAVjY2PMmDED48ePx40bN7Bz507U1dXBx8cHffr0QY8ePWBsbAxtbe0XNkaQSqUQCoVoaGhAUVER7t+/j6ysLEilUvTr1w8rV65UWr3uJ6msrERxcTECAgJY10g7EIvFaGpqUopPm+4xqioPU1a01RC6hrayLyIfHx8cOnQIhYWFHXbF0Cnt+/btQ2RkJDMTfGJsQ0NDDB8+HAMHDsTKlSthbm6OtLQ0nDlzBs3NzQAgWy8jIyNIJBKIRCIIBAJIpVI8ePAAffr0wbBhwzBq1CiYm5sz3uexNeiIlPDwcKWFrHV36urqoK2t/dIyB+2hqKgIjo6OjI/bXljRVkM6WkNbXrhcLsaNG4fjx49j6dKlHf49e3t71NXVobGxUSnhUxKJBL/99huGDRuGCRMmyP5eLBZDKBQiISEBaWlpeOutt8DhcKClpQUdHR1oaWnh7t27uHLlCkJCQjrdompoaEBycjI2btzIWtntRFnRVIQQZGdnw9fXV2XOjWrY+yxyw0QNbXmhKAqBgYEoLS0Fj8fr8HiamppwcXFBdnY2A7N7GtpaFYvFsugL+j9NTU3o6+ujsbER3t7ecHBwgJ2dHSwsLGBgYAAtLS0EBgaipqYGeXl5nVpnghCC+Ph49OvXT2U2utQNQgjS0tKUIqyEEOTn58PV1ZXRcTsCK9pqBl1DW5ldzp9EU1MTkZGRiI6O7rCYURSF/v37M94lh75pr169ivnz57eaylxWVtbqJiiXy8XkyZPx999/d6po8/l8xMfHs8k0HYAQgqysLHh6ejI+dktLC1paWmBmZsb42O2FFW01g8/nQywWw8DAoFN+j6IoDBw4ENnZ2aiqqurweJ6ensjNzWUsMYYQgsrKSuzatUtWse9F4kd/rrXoAoqi0Lt3b7S0tCAnJ6dThJsQgps3b8LT01OlREHdqK+vh1AoVErxrry8PNjb20NDQ3U8yaxoqxmVlZUwNTXt1ItIW1sbw4cPR0xMTIfFzMDAAMbGxozV7ebz+diyZQtmzJgBe3v7Vq1ViUSCpqamNpsMa2hoyKxtZXakoRGJRDh79iybTNMBCCHIyMiAh4cH48WiCCH4999/Va4/JyvaakZ+fr7Skmpag6IoDB06FPfu3WOkbGtQUBAj/RUlEgn27NkDf39/9O3bt80bSyAQgBDy0l6LPj4+kEqlyMzMVHr/x7t378LGxoaRuPVXmYSEBAwYMIBxYZVIJEhPT0evXr0YHbejsKKtRhBCkJOTo7T09bbQ1dVFaGgozpw50yExoygKAQEBuHv3bofGIYTgwoULaGxsxMSJE1+6Hg0NDdDT03upNcbhcDBlyhSlW9sSiQQnT57EhAkTVMqKUzeamppQWloKDw8Pxsfm8XjQ0tJSOdcVK9pqRlfFjNJlW2/duoX6+voOjWVlZQWhUNhuq51+JY6Li8P7778vV6ZaVVWVXD5PiqLQs2dPaGlpIS0tTWnWdkZGBnR1dTv9rak7Qb+t9OzZk/H4bEIIrl+/juDgYJV7qLKirUYIhUI0NTUxWkNbEfT19TFkyBCcO3euQ2LG5XLh5eWFtLS0dn2/uroaO3bswOLFi+WO9+bxeLCxsZHrs3Q1wcOHDyulBKxEIsGxY8cwadIklRMEdYIQgri4OKV0qxeLxUhKSlKK26WjsKKtRtTW1kJPT6/LsuYoisLw4cNx48YNNDQ0dGic4OBgJCUlKSz+fD4fP/74I6ZMmQInJye5bihCCIqLi9vcqHx2fq6urjA0NOywG+dFc3nw4AGkUil69uypcoKgTpSUlEAgEKBHjx6Mjku7Ic3MzFTONQKwoq1WFBUVyS08ysLQ0BADBw5EbGxsh8TM1dUVpaWlCjVGkEql2LdvHzw9PdG/f3+F1qGiogLW1tZyf572bR89ehRisVju770MQgiOHj2KSZMmqUwtC3WEEIIzZ85g5MiRSmkxdubMGcbLLTAFe9WoCcquoS0vFEVh1KhRSEhIQGNjY7vH0dHRgY2NDfLz8+X6PCEEly9fRmVlJSZPnqyQ4BFCUFNTo7DV5OTkBAsLC0YiXWjy8/PR1NSkUmnR6khNTQ0yMzOV4nOurKxEeXm5yp4jVrTViLy8PLi4uHT1NGBoaIj+/fvj/Pnz7RYzuvu7PC4S+nX19OnT+PDDDxV2D4lEIgiFwpc2630WDoeDt956C8ePH2ckGUgqleLIkSOYOHEi22W9AxBCcPr0aQwbNuylIZztGfvUqVOIiIhQmVKsz8KKtpogkUhQXV2tlHrBikJRFCIjI3H16tUOWdu9e/dGenp6m5t9hBDU1tbil19+waJFi9pMjmmNlpYWaGpqtmsvwMHBAQ4ODox03SkqKkJNTQ38/f1V0oJTF2pqavDvv/8iLCyM8XWsqalBWloahgwZorLniBVtNaGxsVHpNbQVwcjICAMGDOhQJImpqSm4XG6b6fEikQhbt27FhAkT4OLi0q4bqaamBsbGxu2+Cd98801ER0dDKBSCz+crFPJIW/m0lT1hwgSVSolWNwghOH78OEaMGMF4gS26EUVERITK3GcvghVtNaGsrAxWVlYqs3lFW9sd8W3TjRFai9CQSqU4ePAgnJycOmT5lJeXw9raul3fpygKtra2cHZ2xrZt2/Dmm2/i999/l/tBlZCQgBkzZuDYsWMoLy9XuZRodYKOAsrIyGDcyiaEgMfjIS0tTSkWPJOohgKwvJTc3NxOqaGtCIaGhhg0aBDOnj3bLmuboij07dsXt2/ffu7fCCG4du0a8vPzMW3atA49rEpLS9tdFVEikeD69es4e/Ysli9fjtOnTyM9PV3u7+fk5ODIkSOYNm0abt++jaSkJEajUV4lpFIp/vjjD0ydOlUpyTQHDhzAxIkTGfeTMw0r2moAHTni7u7e1VN5CjqS5Pr16+3OknRwcEBNTQ2amppkf0cIQV5eHo4dO4bFixd3KC6dEIKSkpJ2i7ZYLMa+fftw7tw5me89Ly9PrqQb+jjocS5fvoxly5bh0aNH7ZrLqwxdEVFDQ4Pxlmx0ad/6+nqFQ0m7Ala01QD61a2zamgrgoGBAYYOHdruCoCamppwdnaWNUYghKC+vh7btm3DBx98AFNT0w7fRNXV1e0u26mlpYVvvvkG8+bNk0V8FBcXQyAQvPS7T4o2AAQGBmLXrl1KbcjcXamrq8Phw4cxe/ZsxiNv+Hw+9u3bh9mzZ6vFfgMr2mpAS0sLRCKRUlp0dRQ6S/LWrVvtqiVCZ0fSjRFEIhF++uknjB49mpGYdIlEgsbGxnY3fKX7T27evBmLFi2ChoYGqqqqUFdX99LvisViFBYWAgD69++PQ4cOwdvbW+UtOVVDIpFg7969iIyMZPyBRyc7BQQEMJ5ZqSxY0VYDqqqqYGxsrLJWgL6+PsLDw3Hy5Ml2WdteXl54+PAhhEIhDh8+DEtLS8Y2gwQCASiK6pAPlKIo6Onp4auvvsKyZcvA5/PB4/EgEAhQU1OD0tJS5OfnIz8/HyUlJXj06BH4fD4aGxtRUVGBkJAQHDhwAO7u7qxgKwghBAkJCWhpaUF4eDjjbpGsrCzcu3dPrkqRqoJqqgDLU3RFDW1FoCsAfv755xg9erTC1pCBgQEMDQ1x/PhxZGVlYeXKlYxFychbklUepFIpxo0bh4SEBHz33XewsbGBlpbWU13A6bBAoVAo6/S+ZMkSpXRV6e4QQlBaWoqjR49i9erVjLtFGhsbsXPnTnz44Ycqv/n4JKxoqzh0NmCvXr1U2hLQ1dXF6NGjcezYMcyfP1+huVIUBW9vb+zbtw979+5lNDKgsrIS5ubm7fouIUQWZnbmzBlkZWXB2dkZX375JZycnGBlZQVNTc3njpUQArFYjPLyckyZMgVpaWlYs2YNHB0dMWbMGFkUkCqfT1WgpaUFW7duxezZs2FmZsboekkkEuzevRthYWFwdXVVq3PBirYaUFRUhNGjR3f1NNqEoiiEhIQgNjYWZWVlCm2aNjQ0ID4+Hm5ubozfnIrOhYYQgurqauzfvx9lZWUYM2YMZs2aBR0dnZfOj6IoaGlpwdHREY6Ojhg8eDCEQiFSU1Pxxx9/QF9fH++88w5sbW3VSiw6E7FYjF27dqFfv36MZ5ASQnD27FlIJBKMGjVK7c4B69NWcYRCIRobG1WyROSzaGlpYfz48Th8+LDcvm2RSITt27fj9ddfh5aWllwbfIpAx2grcmNKpVIkJiZiw4YN8Pf3x4YNGzBo0CDo6uq2O0FHW1sbQUFBWLNmDYYNG4ZvvvkGFy9e7JRelOoGIQQnT56ERCLBuHHjGBfs1NRUXLlyBQsWLFDZfaK2YEVbxamrq4Ourm6X1dBWBDoSpKysDAUFBXIVgjp+/DgMDAwQGRkJLy8v3L9/n7GKenSopLzND4DHgh0TE4OYmBhERUVh6NChL3SBtAeKoqChoYF+/fph3bp1SExMxIEDB5TSaEFdoTce79y5w7io0jH7u3btwtKlSxlPg+8sWNFWcVShhrYiaGpqYvLkyTh06FCb4ksIwa1bt5CSkiKLvQ0ODkZiYiJjcyGEoK6uDiYmJnJ//tKlS0hOTsZ///tfWFhYKGXdKYqCkZERPv30U5SXl+P48eNKbSKsLtBW8LFjx/DJJ58wXv+jpqYG33//Pd577z2F375UCVa0VZgnMyHV5QKj64m0tLQgKyvrhWJEWzz79+/HkiVLZDv3rq6usm4kTEAXa5LHoqI3HE+fPo2lS5dCT09PrjUXi8W4ePEikpKSFJob7TL54IMPcPv27VbX6lWB3nDfvXs3/vOf/zCSVPXk2A0NDdi0aRMmTJig8pv6L4MVbRUnLy8Prq6uXT0NheByuZg6dSoOHTr0wlf/pqYm/Pjjj5g7dy4sLS1lN5Curi6srKxQUFDAyDyampqgpaUlV11kQggOHjyI6dOnw8jISO6bmsPhQCwW48CBA+2ao46ODubMmYP9+/e/sv5tQgjy8/Oxbds2LFmyhFErmBCC5uZmfPfddxgyZAgGDx6s1oINsKKt0qhSDW1FoCgKnp6e0NHRQUpKylMWpFgsxs6dOzFkyBD07t37qRuIbozARO1q4HFPTXlLsj569AhVVVXo06dPq5+vq6tDUlISMjMzceLECdy5cwcAZA+exsZGJCUlISMjA0KhEFevXsXRo0dx69atVv3WFEXB3d0dHA4HRUVF7T9YNYVO9f/hhx+wePHidpffbY2WlhZs3rwZAQEBGDlypNoLNsCKtkrT1NQky8ZTNyiKwvTp0/H333/Lur7QUQEaGhoYPXr0C28gPz8/3L9/nxGrk8fjyd0XMisrC15eXm1ufBFCsHPnTpw4cQK+vr744YcfcP/+fdm/5+fn48iRIxAKhdi3bx8SExMREBCAv//+GzU1Na2OS1EUAgMDkZqaKv/BdQNo998PP/yARYsWMeoGJISgsbERmzZtQq9evTB27FiVKWvcUbrHUXRTVK2GtiJQFAUnJyc4OjoiISEBhBDcvXsXSUlJTxVfehZ5GiPIS2lpqdybuDwe76WfNTY2hq2tLfr27Qt3d3f06tULCQkJAB67sb788kssWrQIvXr1wtmzZzF8+HC4uLhg1apVMDU1bXVciqJgb2+PsrIyxQ9STaE3Hbdt24aPP/6YccGur6/H//73PwQFBWH8+PFqeQ+1Rvc5km4IXUNbXaEoCm+99RZOnjyJvLw87N27F0uWLGkzKoDD4aB37964e/duh36bEIKysjLY2trKPVd5XTL0RmlTUxMMDAwAPPbHDxkyBL/99hskEgkMDAzQ3NwMAMjOzpb9ua35dodXd3kghOD69evYu3cvli9fDmdnZ0YFu6KiAhs3bsSwYcMQGRnZrQQbUFC0FbmwWToG/eqoao0PFMXS0hL+/v746KOPMGvWLNjY2LR5PLRfm4kO6FVVVXLX/LCzs0NRUZFcseX//PMP/v77b/B4PISHh8tiy0NDQ3H9+nVZmc/o6GgcPnwYly5danMzlBAiC+3s7kgkEpw6dQpnzpxBVFQUo1mhhBDk5ubiq6++wpQpUzBs2DCVF2xCCCQSiUJ1VRSKXOdyuZBKpaxwdwK0pajuN7JUKpX5c+W1qBwcHPDo0aOnLFlFkUgkaG5ulrsRcM+ePXHkyBGIRKI2E5k4HA4iIiLg4eGB0aNHQ19fH6GhoRgwYADMzc3xyy+/gMPhwNHREX5+fqivr8f48ePbHFMqlcqSSborhBAIhULs3bsX9fX1WLlypdxhlfKOn5iYiIMHD2Lx4sVqY+xIpVKIxWKFkucUegxpaGhAIpGwot0J8Pl8iESidnUfVxXoGg9SqRTz58/HsWPH5Lp2tLS04OTkhJycnHb/tkAgACFE7uJTpqamsLe3x61bt1qdY0lJCcrLy3Hv3j3Y2NjA0NBQJtDu7u4wNTWFm5sbXFxcoKGhAVNTU/To0QPa2tqtCgghBBkZGdDU1FTJJhdMQAhBTU0NvvrqK+jr68uyEZkSVZFIhCNHjuDUqVOIiopSG8EGHl+nHA5HocxPhUSbw+HI4lJZlIuq19B+GXQLp3/++QcLFizAiBEjkJmZidLSUrmEu3///h0K/aurq4OBgYFCr53Tpk3D33//jUePHr3wd+3s7LB169YOt0CjIYSgqakJe/fuxcyZM1X+Vb49EEKQmZmJ9evXIzw8HNOnT5crbl7esevr67F582ZUVlYiKipKaVmsyqK6uhpGRkYKXacKXSVcLheamprg8/kKT45FMfLz89Wmk8azEEJQWVmJXbt24aOPPoK+vj60tbUxefJkHDhw4KVCTFEUvLy88ODBg3YbCFVVVQqVZKUoCtbW1njrrbfw3Xffob6+/rl5cjgcWbIOE8LQ0tKCLVu2qGV5UHkQi8WIiYnB7t27sXTpUgwePJixBxOdQblmzRr06dMHCxYsaHdBr66CPgZFe78qvBGpr6+PhoYGhX6ERTHoTUgm2m11BXw+H1u2bMGMGTNkYXQURSEoKAgNDQ1ypWwbGhrCwMCg3WFw7anuR1EUBg4ciLCwMHzxxRcoKSlRiiuQfqh99dVX8Pb2VsvyoG1Bu0M2bdqE3NxcrF27Fj169GDUHRIdHY2dO3di0aJFGDFiBOMNEjqL5ORkhUvPKvzYs7S0RGVlpaJfY1GQwsJCODk5dfU0FIbu5+fn54e+ffs+dTFyuVzMmDED+/fvf2llOw6Hg8DAwHZHkdCirSh0F56ZM2di06ZNOH36NPh8PiPiTffAvHz5MjZu3IjIyEhMmDChW7lFpFIp7t69i7Vr16Jfv35YtGgRDAwMGBFsOpzv66+/RmlpKdauXavWbygtLS0oKyuDi4uLQt9T2NJ2cHCQKzSKpf2IRCI0NDSoRQ3tJyGE4MKFC2hoaMCkSZOeu5koioKHhwdMTU3l8lcHBgYiOTlZ4WuNEILy8nKFSrI+O8/evXtj/fr1KC8vx+eff47Y2NgXukzknU9jYyOuXLmCqKgo3L9/H6tXr8aAAQO6jWDT/vndu3fj2LFj+OyzzzBs2DDGLGCxWIzLly/jiy++wPDhw/H+++8z9jDoCgghSElJgbu7u8KtzhTe5erRowcuXryo6NdYFKC2tha6urqMtt1SNvSGU1xcHFavXt3qZhOd3v7tt98iICCgzRR9Gxsb8Pl81NfXy11elZ6LIiVZW5unkZER5syZg4qKCsTGxuLdd99FQEAA+vXrBy8vL5ibm0NHRwccDkcmHnSLMj6fj5qaGmRnZ+POnTsoLS2Ft7c3Fi9erFalduVBKpUiPT0de/bswcCBAzFr1izG6r/TD+Ddu3dDV1cXa9asYbQCYFchlUpx7tw5vP322wofi8KibWdnh7Kyslcqg6uzKS4uVqt6v3Rrru3bt+OTTz6BoaFhq5+lKAo2NjYICAjA2bNnX2iR03C5XPTs2RPp6ekYOHCg3PMRiUQQiUSM1GyhKApWVlbo2bMnvL29MWnSJKSlpWHfvn2oq6sDIeSpzUmRSCTLmDQ0NIS7uzsiIyPh5ubWZuifOkKXPD1w4ACKioqwePFixnzXdFx3bGwsLl++jClTpqBv375q67t+locPHwKAwq4RoB2ibWRkBLFYjObm5nYnPrC0jbrV0BYIBNi6dSumTJkCJycnuXooTpgwAatWrcLQoUNbzVqkKAr9+/dHXFwcBgwYIPd6KFKS9WXQdbYPHjwoCynz8fEB8Nh//2T3deBxEwgdHR1oaWnJwjXV5Twqglgsxs2bN3HkyBGEh4djzpw5jEXVSKVSZGRkYN++fXBzc8P69evV2hXyLBKJBIcOHcKbb77ZLveYwqLN5XJhY2OD4uJieHl5KfyDLG1Dl6p84403unoqciGVSrFv3z707NkT/fv3l/vGMjAwwJgxY/DXX39h4cKFrV68bm5u2LNnDwQCgdy+v0ePHjH2Ck3X/p43b95zMcAaGhrQ0NBQyyqM7YVOuf/999+hra2N//73v7CysmLMuq6srMSBAwdQVVWFefPmqVWijDwQQnDnzh1oaGjAx8enXcemsGhTFAU/Pz+kpKTA09OzWy2oKiCRSFBVVSV3SdGuhBCCy5cvo7KyEp9++qlCVgPdvT0uLk7W6OFF15Kuri4sLS1RWFiInj17yjV2RUUFIzXIxWIxfv31VwwZMkTtu510FNoVcuzYMaSlpWHatGno06fPU/78jozd1NSEmJgYJCYmYsKECRg4cCA0NDS63Zo3NTXhwIEDCt8vT9Kub/Xq1QtpaWlsBIkSUJca2nRiwOnTp/Hhhx+2yxWhqamJGTNmYN++fW2GAPbt2xdJSUlyXW+0O6Ojm32EEJw+fRoURbVa+/tVgBACgUCA8+fPY/Xq1TAxMcHGjRsRGBgILpfb4TXm8/k4f/48Vq1aBYqisGHDBoSEhDDmalElpFIp/vzzTwwdOrRDe1btypG2srJCS0uLwrv6LC+Hx+PB0tJSpUPBCCGora3FL7/8gkWLFinUnutJKIqCr68vzp49i9u3byM4OPiFYYL+/v6Ii4uDVCqVayOKx+PJ/M7tga71nJCQgDVr1qhtKYGOQFef+/fff3HkyBG4u7tj9erVjLid6Hj1xMREnDhxAp6enoiKioKZmVm3E2oauhxtRUUF5s6d26HjbNfVyOVy4enpibS0NAwePLjdP87yPOpQQ1skEmHbtm2YMGFCh5MbOByOLJHFz8/vhW8YdLy6vK3XFCnJ+iyEEFRVVWH37t349NNPVf6Nh2kIIbKNwEOHDsHQ0BAfffQRHBwcGBFrsViMW7du4cSJE7C3t8d//vMfRsuzqiKEEBQWFuLw4cNYtWpVh42Adn2boigMHjwY0dHRGDRoULde8M6ETl8PCQlR2TWVSqU4cOAAHB0dMWTIEEbmaWtri6CgIMTExGDy5MnPjUk3RkhJSUFERESbv0mXZG0r7LAtBAIBtmzZgunTpzMiVOoCLdbZ2dn4+++/QVEU3nnnHVkUU0fdIEKhEDdv3sTp06dhZ2eHjz76qNvFq78IOqX/hx9+wMKFC2Fubt7hY2635Lu6uqKyshL19fUwNjbu0CRYHqPqNbQJIbh27RoKCgqwYsUKxlw4FEVh/PjxshDAZ6MR6MYIhw8fRkRERJtj8fl8UBTVrsQkqVSKP/74Az4+Ps+l4HdXaLHOysrC0aNHIRaLMXnyZHh7e3c4JpruhH716lVcuHABrq6ujHdbV3XoPpVvvPEGY4Eb7RZtLS0t+Pn5ISkp6aXWD4t88Pl8CAQClXwI0qGIx44dw+rVqxnLeKPR19fHpEmT8Oeff+Ljjz9+7npycnJCVVUVmpuboa+v3+o49fX10NfXV1hwnoyEmT17tkrvKTAB7bNOS0vD8ePHweVy8cYbb8DLy6vDESF0stX58+eRlJSEPn36YMWKFWpXNrUj0A+sTZs2ISQkhFGPRLtFm6IohIWFYfv27QgLC+s2mUpdSXV1tcrW0K6vr8e2bdvwwQcfKCWNmKIoDBgwAHFxcUhPT4evr+9Tv6GlpQVHR0c8ePAA/v7+rY5TUVEBS0tLheZHCMHDhw8RExPT7Tce6WiQW7du4cyZMzA2Nsb06dPh7u7eIbGmLfa8vDzExMSgqKgIoaGhWL9+PQwNDV8ZsQae7gTft29fjBgxgtHj79DVaWdnBw0NDRQUFMDV1ZWpOb2yqGoNbaFQiJ9++gmjR49WarlYDQ0NvPPOO/j111+xfv36p6x5OjsyMTERfn5+rc6Bx+PJ3cyXpq6uDj/99BM+/PBDGBsbd0uBoRsGXL58Gf/88w/c3d2xcOFCODg4dOitgrYob926hQsXLkBTUxOjR4+Gv78/tLS0uuVatgXtw/72228RGhqK4cOHM/7W1iHR5nA4GDVqFGJiYrB48eJX7gQxCb0JqWoJS1KpFIcPH4alpSXCwsKUPjdXV1c4Ozvj4sWLz9WZ9vb2lvldXxQXTghBSUkJevXqJffviUQi/PzzzxgzZky3zL6j1+Ts2bPIyMhA//79ERUV1aG3JdqqLi4uxoULF5CWlgZfX18sWLBAtnnbndZRXugcge+//x6TJk1SWpBGh0SboigEBgbiyJEjqK6ubneYFctjCgsLMXz48K6ehgy6WWpWVhZWrlzZKX5eiqIwdepUrFmzBsHBwU+VpzUyMoKenh54PB4cHR1f+H1FsiHpB5KFhQWGDRvWbYSGdoHcu3cPZ8+ehUAgwIgRIzBz5swOdXehrfXExERcuXIFHA4H4eHhmDp1KqM9H9URQgju3r2LPXv2YP78+c+595ikw847LS0thIWF4cyZM+0qM8jyGJFIhPr6eoVaZCkTOrb00KFDWLVqlcI1fzuCsbExxowZgwMHDuCDDz6QPSxoI+HOnTsvDMejk35MTU1f+huEENy6dQvp6emIiopS+41H2qquqKjApUuXcPv2bTg7O2P69OlwdXVtt7+azlrMyMjAxYsXwePx4O/vj4ULF8LW1vaV38uiN3RjYmJw48YNrFixQulx5x0WbYqiEBoaiqioKIwdO1auG4bleerq6qCjo6MyNbQbGxuxdetWLFiwoNMfJPQ1FR8fj6ysLHh5eUEqlcpalu3YsQPe3t548OABIiIiIBaLcerUKRgaGqKiogINDQ3Q1taGjo7OUzcPXU6Ydhns378fUVFRKrPm7YEW1ZSUFFy4cAGNjY0ICQnB6tWrZVFIigoInbH48OFDxMfHIycnB46Ojhg5ciQ8PT1fSV/1i6DfPHbu3AltbW2sXr0aenp6Sl8bijBQQIQQgpMnT6K+vh4zZ85kT2g7SE5OxvXr1/HBBx90+fqJRCJ8//336N27d5f1L6Rrm/z222+YOXMmduzYgfDwcKSkpGD37t1obGyEk5MTEhISZMle9+7dA4fDgaWlJSZNmoTvv/9eFglCdwrp2bMnCCFYt24dZs6cid69e3f5eisKnVlYUFCAS5cuITMzE66urhg5ciRcXFzaVROEFuq8vDxcvXoVGRkZsLCwwNChQ+Hn5/fKuz+ehRCC+/fvY/fu3YiMjER4eHinvXUwEttEURQiIiIQFRWFyMhI1retIPQmpCrU0CaE4Pjx4zAwMGA8VElRrK2tkZ+fj2HDhqGmpgb37t1DQkKCrLiUh4cHNDU1oaGhAV9fXyQnJ0MikaC6uvq5Zq+NjY1477334O3tDQ8PDwwaNEitBJve/KuoqEBCQgKSkpJgYGCAsLAwTJ8+vV2iSlvpDx8+REJCArKzs2Fubo7Bgwdj8uTJ7a4p052h1+zIkSO4f/8+li5dKlcNeSZhLCBVT08Pr7/+Ov766y+VsBbVjdzcXEyaNKlL50AIwe3bt5GSkoKoqKgu9VdWVFRg1qxZiIuLk4l03759oaOjg/PnzwN4XJOb9tUGBQXhzz//BACEhIQ8lfBFbxKlpaXh9u3bcHJywuHDh7vmwBSA9lM/evQIiYmJuH79OqRSKfr3749ly5bJUqLlvdfo8erq6pCRkYHExEQUFhbC3t4egwYNwrRp02Tp/+z9+zx0S709e/bA398fa9eu7ZJuRIyJ9pP1kdWh6JEqIZVKu7yGNiEEpaWl+PPPP7Fy5cpO3Xh8EWZmZpg6dSru3LmDyspKAEB2dja++eYbZGRkoKioSGZdUhSFPn36QFNTE1wuFx9//PFz84+OjgafzwfwOEpn1qxZOHnyJDw8PDr92NqCFtaqqircvn0bN2/ehEAgQFBQED744APY2NgotKlIuz14PB7+/fdfJCcno7m5GZ6enoiIiICbm1uHIkpeBehkmb/++gsPHz7E/PnzuzQ8lNHUL7o+8h9//MFINatXBbqGdlvp2Z0xhy1btmDu3LmMdSLpCJqamnjnnXfg6uqK999/HxkZGUhPT4ejoyM2btyI+fPnP9WCyt3dHaampggMDERoaOhT86+vr8e5c+cAPM4teO2117Bx48Z29edTBnQEQkVFBW7fvo2kpCSIRCIEBARg7ty5sLe3l9tPTbtRamtrkZGRgTt37qCwsBAGBgYIDAzE/PnzYW1t3S0bDDANfV5u3LiBo0ePIjQ0FG+//XaXb1wzqqp0feSLFy/i6tWrz908LC+mvLwcFhYWXRZ2JhaLsXPnTgwZMkSl/LwcDgdDhgzByZMn8eGHH+L69esoLCzE5MmTcenSJUgkEpSUlEAoFKK5uRl2dnaYMWMGRCKRrBUYAPz777/IycmBubk5Fi9ejEWLFnV57Wa68l1hYSESExNx7949aGpqIigoCAsXLpTboqYt84aGBuTl5SE5ORnZ2dkghMDDwwMhISFwc3OT9XNVlXOr6hBCkJ+fj99//x2GhoaMtlXrKIxEjzxLVVUVNmzYgDVr1jyVHMHyYmJjY9HQ0IA33nij0y8KQgiio6NRUFCADz/8UOXejmhRysnJwbx58+Di4gI7Ozs8evQIDQ0N8PHxgba2NjgcDvLy8mBqagqRSASxWAxjY2N4eHjg3LlzKCoqwtdff42goKAu8dXTx1FfX4+MjAzcvHkTRUVFMDc3R3BwMPr06SN7kLR1DdCWNC3SKSkpyMnJgUAggJOTE/r06QNvb2+YmZkx0grsVYMudvXXX3+hsLAQ06dPR+/evVUqjl8pd6i5uTnGjRuHvXv3YsmSJa98AH5b0JEjXVGXnN6gu3nzpsq5s54sbHThwgXw+XzMmzcPPXv2hJeXFwwMDEAIkbWlosWMw+FAKpVCIBCgqqoK6enpsLCwgJ6eHlJTU2Fvb98ppUFpW0ggEKC4uBh37txBamoq+Hw+3N3dMWzYMLi7u7cZ9UGPIRKJ8OjRIzx48AD37t1DQUEBpFIpnJyc4O/vj9GjR8PMzKzD7b9eZWi/9ZkzZ3Dz5k28/vrreO+991Sy7ZlSLG3g8Sv3t99+iyFDhrCNEtpAKpVi1apV+Pjjjzs1VJIQAh6Ph6+//horVqyAjY2NypwjkUiEhIQEnDx5Eu7u7oiMjISTk9NTmZHyQl/ejY2NSEpKQmxsLOzt7TFt2jSFqwHK81tisRiVlZW4f/8+7ty5I3N9BQQEwN/fH1ZWVq2KK/3gaWxsRHFxMTIyMpCdnY2qqiro6enB3d0dvXv3hrOzM4yNjVmRZgBCCFpaWhAXF4dLly5h4MCBGD16tErHpStNtOkd8I0bN2LVqlWMdGzojrS0tCAqKgpfffUV4zWq26K5uRkbNmzA5MmTERAQoBLnhhCCyspKbN++HYaGhpgxYwajwkpHUty4cQPHjx/H2LFjERoa+sI3QVqAhUJhqxvE9GeqqqqQmZmJu3fvoqSkBHp6evDx8UGfPn3g5OQEXV1dAE8/bJ4UaB6Ph+zsbDx48ABlZWWgKAo2NjaymHIbGxtZhIcqnKfuAF2dMD4+HnFxcQgMDMTYsWPVosqj0kQbeLwwCQkJiI+Px/Lly9vVsbu7U1xcjN27d2P16tWddrFIJBL8/PPPsLe3x8SJE1XiIqXdRNu2bcPUqVMRHBysND8iHav8yy+/wNraGm+//fZT1yY9l6+//hp+fn746KOPZP8mEAhQXl6OzMxMpKWlobS0FLq6uvDy8oK/vz+cnZ2fCkWkby+hUIi6ujoUFxfj4cOHyMvLQ1VVFQghsLa2hoeHBzw8PGBnZwdDQ0PWH60kCCFoamrCpUuXcOnSJfTp0wdjx47t8o1pRVCqaAOPX/937NgBa2trlREIVYLORHv33Xc7ZW0IITh9+jSysrKwZMkSlfBj08WpvvvuOyxduhQuLi6d4nMWiUTYvXs3tLS08O6774LD4aCurg579uzB5s2bUVxcjIiICGzcuBH5+fnIzs5GTU0NTExM4OXlhd69e8PR0VFWb4K2vBsaGsDj8VBQUIC8vDzweDw0NzdDV1cXNjY28PDwgKurK6ytraGvr98utw+LYtB1rmNjY5GYmIi+ffti9OjRMDExUbt1V7poA49jgNeuXYt3330XPj4+ardIyoIQgt9//x3u7u6d0tWeEIK0tDTs27cPq1evloWBdTXNzc1Ys2YN5syZAy8vL4USR2pqalBWVgYDAwM4ODiAy+VCLBajqKgILS0tcHJyatM/KRQK8e2332LAgAEQiURYv349EhMTZVmYXC4XS5YswahRo+Dp6QlLS0toaGiAz+ejtrYWPB4PhYWFKCoqQlVVFVpaWqCjowMLCws4OTnB1dUVdnZ2MDY2lhVaYq//zkMqlaKsrAwxMTHIzMzE0KFDERYWptbddDrFzNLT08PixYvx3Xffsf7tZygsLER4eLjSf4f2F+/atQvLli3r0kSeJyGEIDY2Fv7+/goJNgBUVlZi3bp1GDt2LOLj49GnTx9MmTIFe/bsQXl5OTw9PfHDDz9g8+bNrT6gNDU1MXv2bEyfPh0PHz5ESUkJnrRjCCEwNzdHfX09oqOjUVlZiebmZnA4HBgaGsLGxgYODg6IiIiAlZUVjI2Nn4o4YK/zzodOisnIyEBMTAxqa2sxatQovPPOO89VflRHOkW0KYqCo6MjpkyZgh9//FEl0qRVAZFIhLq6uk4pfcrn87FlyxbMmDED9vb2KnPhikQiXLt2DVFRUa3OSSQS4e7du9DR0UFRUREAICwsDAYGBvjkk0/g6uoKoVCIW7dugRCCpKQkzJ07F/7+/jhw4ABqampaFW1604+um1NWViazsoHHltr9+/dlmZbm5uYwNjaGjo4O69ZQMWh/9c2bNxEXFyery053lu8u56nTHJp0j7+8vDzs3bsX77333isfv11fXy+r+6xMJBIJ9u7dCz8/P/Tt21elLt7y8nIYGRnBxMSkzc+lpKTg3Llz+Pbbb3Ho0CGUlJRg3rx56NGjBw4cOIDz58/js88+A0VRmDFjBnbt2gUbGxsEBATAxsamzbEp6nGT6rS0NLz11ltITEyUbTI2NTXBxsYGI0eOVKl1Y3kMHYVTUlKC2NhYpKenyzaP6azS7kan7kJxOBy89dZb2LJlC06fPo2xY8e+0jdCSUmJ0rtcEEIQFxeH+vp6zJs3T+XWu7Ky8qWFsjQ1NeHs7AwfHx84OzsjPDwcmzdvxty5c8HlcvHGG2/A3Nwc27dvxzfffIN9+/Zh7ty56NmzJz7++GPk5OTAx8en1fHpN0EnJyd8+umnskSLwsJCpKamdmooJot80CF7t2/fxsWLFyGRSDBixAjMmDGj2xfA6vTQAQ0NDSxcuBAbN26ElZUVgoODu/UCt4Wya2jTpSTPnz+PNWvWqGTIJZ3BKA8tLS0AHifKGBkZ4cGDB6ipqUG/fv3g6emJLVu2oKWlBcXFxXB2doaZmRl0dHTA4/HaFG3g/7raAI83H42NjdG7d2+FmgSzKBfaV11QUIC4uDhkZmbC29sbc+bMgaOj4ysTJtnpok1RFPT09PDJJ5/giy++gLGxscIbUN0BQghyc3Mxfvx4pY1fXV2NHTt2YOnSpbI6yaqGtbU1ysrKnhLN1sjJycGRI0dw9epVzJkzBxKJBLt27UJ+fj7u3buHadOmwcTEBJMmTcKuXbvg6OgIbW1tBAQEvHQeZWVlL0zkedWuS1XjyZri169fx7Vr16Cnp4eIiAjMnDmzU9p7qRpdEqRLURQsLCzwySefYNOmTVi2bNkLG7V2Z6RSqVyugfYiFAqxdetWTJ48GT169FDZtbWwsJDVCWmtizodzREQEICQkBCEh4fLepF+9913qKurQ0REBExNTcHhcPDee++hqqoKQqEQ06ZNe2kpTUII/vnnH/Tv319l1+lV4snSAykpKbh8+TLq6+sRHByM//znP7KH66t6rross4L2I77//vvYvHkzli9fDmtr61fmRDQ1NYEQopTQO6lUin379sHDwwMDBgxQ6TXV0NBAREQEjh49igULFrxw44jP58uaIUgkkqcedEZGRjAyMnrq8xwOp9UHwIsoLi5GYWEhFixY0P4DYekwdCuvzMxMxMfHo6ioCJ6enpg6dSqcnZ3ZGuD/ny5Nh6MoCt7e3nj77bfx7bffYuXKlWqVTtoRKioqYGFhwXgEDSEE8fHxKC8vx7Jly1R+95yiKISGhuLq1au4desW+vXr99z519HRwSeffAIAjK4XXSzol19+wcyZM9kNxy6AruaYk5ODK1euIDc3F46OjggNDYW3t3eXtPNSdbo8h5miKAQEBIDP5+N///sf/vvf/6plaqmi5ObmMt45ha6ZERMTg9WrV6vkxuOL0NTUxEcffYQvvvgCWlpa6NOnz1Pnn6IoxtPtacH+4Ycf0LdvX/j7+3f7a05VeFKor127hpycHNjZ2SEkJASzZ8+Gnp4eAHY/oTU6JY1dHgghuHbtGmJiYrBixYpuLdyEEPzyyy8YMGCAXJtk8lJTU4N169Zh8eLFcHV1Vav1o2t7L1++HIsWLUJkZKTSHjp0P8xt27ahf//+GDNmzCufM6Bs6BC97OxsXLt2DXl5ebC1tUVISAh8fX1lbkJ1uma7CpURbeDxib169SpOnz7drYWbrqG9dOlSWFpaMjKmUCjE//73P4SEhCAkJEQt1o2ODCgoKMCJEydQWlqK8PBw5OTkoLKyEm+//basgSoTx0NnzJ09exbXr1/HrFmzWAtbSTzZqSctLQ3Xr18Hj8dDjx49MGjQIHh7e7+SkR9M0OXukSehKApDhgwBh8PBl19+ic8++wwWFhbd7sQKBALw+XwYGxszMp5UKsXBgwfh4OCAIUOGqPx60fG2mZmZOH78OPh8PsaOHYvAwEBoampixIgRSE9Px++//w4dHR2MGjUKvr6+ssxRRZsgSKVSVFRU4PLly0hKSkJwcDA2bNig0oXu1ZEnGxQnJyfj1q1baGxshJeXF15//XW4ubnJInnYdW8/KmVp09D1I/766y989tln3S6qpKSkBL/++ivWrFnT4eOi307omuVd3Sm6LehyqMnJyTh58iR0dXUxceJEeHp6PlcbghaAnJwcxMbGoqCgAA4ODvDz84OHhwfMzc1l9T+e/Z5IJEJ9fT1KSkqQlpaGjIwMAMCgQYMwePBgGBkZdavrqSuhIz7y8/ORmJiI9PR0aGlpwd/fH3379oW9vT0b9cEwKinawP/5OPfu3YuPP/5YpWONFeX69evIzMzE7NmzO3RMhBDk5eXhxx9/xOrVq1W2iTK96ZeQkCBr9zVhwgT06NFDrugW+vt5eXlITU3Fw4cPUVtbC6lUCk1NTZkoSCQSCIVCEEKgo6MDOzs7+Pr6wtvbW9btvrtcQ10F/eZSU1OD1NRU3Lp1C2VlZbC1tUW/fv3Qu3dvmJqavtJx1MpGZUUbeHyBZGdn46effsL7778Pb29vtb8QCCHYt28fXFxcMGTIkA6NU19fj3Xr1uH999+Hh4eHyq0NIQQNDQ2Ii4vD1atX4evri7Fjx8piqNszX/pylUqlEIlEEAgEEIlEIISAy+VCW1sbmpqaT21iqtq6qBP0etMPzVu3biEjIwMURcHHxwf9+vVDjx492uW6YmkfKi3awOOLpqioCN9//z3eeusttc9aI4Rg48aNmDVrFpycnNo9jkgkwqZNm9C3b1+Eh4er1JrQ/UHPnDmD5ORk9O/fHyNHjuy2G8vdDdrFVF5ejpSUFNy9exc1NTWws7NDUFAQfH19YWZmxr65dBEqtRH5IujMyaioKGzatAnV1dWIjIxU2xAtsViMurq6DnVel0ql+Pvvv2FhYYFhw4apxI1DRwuUlJQgOjoaeXl5iIiIwBdffMFGCag49P5BdXU1MjIykJycjJKSEhgaGqJ3796YPn067O3tZZ13WLoWlRdt4LFwm5mZ4fPPP8e2bdtQXl6Ot99+Wy0z2Orr66GpqdnuGtqEECQmJiIrKwsrV65UiYeXRCLBgwcPcPz4cdTW1uL111/He++9x97kKgrtl66trUV2djaSk5ORl5cHTU1NeHp6IiIiAi4uLmzstIqi8u6RJ6Ff2/bv34+ysjIsWrRI7Xq93bt3D/Hx8Vi8eLHC86ZdRarQto1uYpuamoro6GhwOByMHz8evr6+bLSAikFb0nV1dTKRzs/PB0VRcHd3R2BgINzc3GRRNey5U23USrRppFIpzp8/j4sXL2LJkiUq1T7rZRw7dgw6OjoYPXq0Qt+jC/OvW7cOc+bM6bJNWToFOTExEWfOnIG5uTkmTpwIV1dXlbD6X3Xo21ksFuPRo0fIzMxEamoqioqKwOFw4Orqij59+sDNzQ3GxsasX1oNUQv3yLNwOByMHDkSDg4O+OabbzBr1iwEBgaq/MVH19AeO3aswt8Vi8XYvn07wsPDu0Sw6WzC+Ph4XLp0Ce7u7li8eDHs7OxY66yLoR+k5eXlyMzMlLVK09HRQc+ePTFw4EC4urqylnQ3QS1FG3jsZ/P19cXKlSvx448/Ii8vD+PHj1fpV3M6M+9lPQufhRCCEydOQE9PDyNGjOjU4yOEoKamBrGxsUhMTERQUBBWrlzZpa6ZVxnaH93Y2Iji4mKkpaUhKysLtbW1MDExgZeXFyIjI+Ho6CjL+GTPU/dCLd0jT0JnZO3Zswf19fVYuHChyma8NTQ0YP369fjqq6/krlpHCMHt27dx/PhxrFq1Crq6ukqe5f+9YvN4PJw8eRJZWVkICQlBWFiY2u0hqDP0eRCJRKiurkZOTg7S09ORn58PsVgsSx7y8vKCtbU1myL+iqD2ok0jkUhw8eJFnDt3DgsWLEDPnj1V7uJ9+PAhDh8+jOXLl8s1N7oa3TfffIOVK1fCyspK6ccklUqRl5eHEydOoLy8HKNGjcKAAQOgo6OjcuvZ3aCt6IaGBhQWFiIjIwPZ2dmora2Fvr4+3Nzc4OvrCxcXFxgbGz+X+s/yaqC27pFn4XK5GD58ONzc3PDzzz9j2LBhGDVqFON1mDuCojW0m5ub8eOPP2Lu3LlKFWw6uiA9PR0nTpyAUCjEuHHj0KdPH2hqarLCoATouPbm5maUlZUhJycHGRkZKC8vB0VRsLOzkzUIoa1o1tXBAnQjS5uGjrL47bffwOfzMX/+fJXIxCOEYPv27ejXrx+CgoJe+nmxWIytW7fCzc0NY8eOVcr8CSEQCoW4c+cOTp06BQMDA0ycOBE9e/ZkowoYhBbolpYWVFRUIDs7G1lZWSgpKYFYLIalpSU8PDzg5eUFBwcHGBgYsOvP0iqqY4YyBEVRMDQ0xKJFi3DlyhWsXbsWs2fPhp+fX5e23qKzBR0dHeX6bExMDDgcDkaPHs34zUsLyNWrV3H+/Hk4Ojpi/vz5cHJyYq25DvKsQD98+BDZ2dkoLi6GUCiEubk5XF1dERISAkdHRxgZGcneBtl1Z5GHbifaNFwuF8OGDYOHhwe2b9+Ou3fvYsqUKV3mmxUKhWhpaXlpDW26uuHNmzexatUqRt07dJGpCxcuICEhAb1798by5ctl3a1Z5Id+QZVIJGhqagKPx5MJNI/Hg0gkgpmZGVxdXTFgwAA4OTnJBJpda5aO0O3cI89CuwCOHj2KlJQUzJ8/v1NbcRUXFyM+Ph5mZma4fPkyNmzY0OouPyEE5eXl+PLLL7FixQrY2toyUm8beNxIOCYmBqmpqRg0aBCGDx8OY2NjVkDk4Mkojrq6OpSWliInJwe5ubmorKwEAFhZWcHNzQ3u7u6wt7dnLWgWpdHtRZuGEIKsrCz8+uuvGDBgAMaOHdspDQMyMzMRHBwMPp8PfX19eHl54ZNPPsEbb7wBiqJkNSBMTU3R0tKCDRs2YPLkyQgICOjwzS6VSlFUVITo6GgUFhZixIgRGDx4MHR1dVkhaQU6gqOlpQWVlZUoKCjAgwcPUFRUhMbGRmhpacHOzg4eHh5wd3eHtbU19PT0WB80S6fxyog28H/NRQ8ePIjc3Fy89957cHZ2VurNVl1djaCgIBQUFAAAbG1tcenSJXh6eoKiKPB4PEybNg0ff/wx8vLy4ODggEmTJrV7TrToZGdn4/jx42hoaMDYsWMRFBTEFnB6Atr3LBQKUVdXh5KSEjx8+BD5+fmoqqoCIQQmJiZwcnKCu7s7HB0dYWZmxkZxsHQ53dan/SIoioK+vj7mzJmD9PR0bN26Ff3798e4ceNkNyPTGBgYwN7eHgUFBaAoCh988IEshpzuQH/16lUkJSUhPDwc+/fvb9fv0AWcUlJSEB0dDU1NTUyYMAE+Pj6vdDzvs64NHo+H/Px85ObmgsfjQSAQQF9fH3Z2dnB1dcW4ceNgY2MDfX19WS2VV3XtWFSTV8rSfhLa6j5y5Aju37+PuXPnKiUhRyqVYtasWfjzzz/Ru3dvxMXFyTb+JBIJZs6ciUOHDgEANDQ08O677+KHH36QlcWU5zj4fD5u3LiBc+fOwcrKChMnToSLi8srZRHSljPdH7K8vByFhYXIy8tDWVkZWlpaoKOjAxsbG/To0QMuLi6wtbWFoaGhrMTvq7JWLOrNK2VpPwltdb/zzjvIycnBnj174OLigilTpsDIyAjA4wxGBweHdte+pn/Hw8MDmpqaWLFixVORGqWlpbhy5Yrss05OThg4cOBTrbKA/7MWn21g29jYiEuXLuHKlSvw9PTE0qVLGdm8VFXodaALJD1pORcWFqK8vFwmztbW1nBycsKgQYNga2sLY2NjmXuou64Py6vBK2tpPwltocXGxiIuLg5vvvkmPD09MW7cOEyYMAGffvrpS0PvaEuPz+ejsbERTU1NEAgEkEqlOHfuHI4dO4ajR4/C3Nxc9tq9b98+zJ49Gzo6Opg+fTpWrlz5nI9dIpEgLi4O/fr1g6mpKQghqK6uxrlz53D79m3069cPo0aNkjVTVXeevBzFYjGam5vx6NEjlJSUID8/H6WlpaiuroZIJIKhoSGsrKzg7OyMHj16wNraGkZGRk9lcXaHNWFheRJWtJ+AEILKykrs2bMH8fHxOH/+PHR1dbFjxw5MmzbtueQc2tpNT0/Hv//+i8LCQohEIujp6UFPT08WE15ZWYmGhgbo6OiAEAJLS0v06tUL27ZtQ1lZGTZs2ICRI0c+F8MrFouxd+9eLFu2DN999x1GjhyJ6OhoPHjwAGFhYRg6dCgMDAzUVpjoTVM+ny9zaRQXF6OoqAg8Hg9NTU3gcDgwNTWFg4OD7D8LCwvo6+vL3kjU9fhZWNoDK9rPQAhBZmYmQkNDUVFRAeBxDO5ff/2FoUOHysL0CgoKcOrUKeTn58PDwwN9+/aFq6srDA0NZRt/tJhIpVLZ2M3NzSgtLcW1a9dw6tQpODo6YsaMGQgKCnpKtMViMX799Vd89tlnaGxshJOTEyZNmoQJEyYgODhYaRunTPJk53ShUIj6+npUVVWhuLgYxcXF4PF4qKurg0Qigb6+PqytreHg4AAnJyfY2NjAyMgIOjo6bDgdC8sTsKL9DFKpFKtWrcL3338PPp8vEx4PDw+cOHECFhYW+PPPP1FVVYXx48fD39+/XQIqlUohkUhQWFiIkydPory8HDNnzoSPjw8kEgl+/vlnrFy5Es3NzQAeb1IePHhQFt+tCjx56UgkEpkwV1ZWoqSkBMXFxaioqEBtbS0kEgl0dXVhbm4OBwcHODo6ws7ODqamptDR0XnK/aQqx8fCooqwov0MdNH//Px83L9/H8nJyUhNTcWDBw9gYWGBoKAgTJ8+HQMHDmQslI4Qgry8PPz2229wc3NDeXk51q9fDz6fDw6HAy0tLejq6mL8+PHYuXNnp1cupP31EokEzc3NqKmpQUVFBUpKSlBWVoaKigo0NTWBEAIDAwOYm5vD3t4eDg4OsLKygqmpKXR1dWVvEqwos7C0H1a0X8KTzYTv3LmDJUuWwM3NTSlFnIRCIXbu3Indu3dj6tSpcHZ2hpWVFczMzGBiYgJjY2PGKxY+ay3T/uXq6mqUlZWBx+OBx+OhtrYWfD4fmpqaMDAwgK2tLezt7WFrawtLS0sYGRlBV1eXjW1mYVEyrGi/BEIILl26hGvXrmHZsmVKTQGnN+aOHTuGoqIifPTRR09Z1XQCTXp6uixDT54x6f9LJBIIBAI0NDSgqqoKFRUVKCsrQ3l5OR49egShUAhCCPT09GBpaQlbW1tYW1vD1tYWpqamss0/ekOWFWYWls6HFe2XUFJSgk2bNmHt2rVytzETCoU4c+YMbG1tERwcrPBvSiQSbN26FT4+Phg+fDiAxxl9t27dwk8//YQLFy7g2LFjGDJkyFObfSKRCM3Nzairq8OjR49QXl6O8vJyVFVVySxlDocDfX19mJqawtbWVmYpm5mZwcDAANra2qwos7CoMK9sco08EEJw8OBBTJ06VaG+k7TvNiYmpl2izeVyMWvWLKxbtw5BQUFITk6WiXVTUxMoisL58+dRVFSEyspK1NbWoqmpCVKpFBoaGjA0NIS5uTlsbGzg7e0NS0tLGBsbyyzlVzmtnYVF3WFFuw1qa2vB4/EQGBjYqshVVVUhLS0NJiYmyMjIgJubG1577TWZ7/nRo0dISUmBpaUlTExMcOPGDUilUoSEhMDGxqbVcU1MTODo6IgxY8bg3r17sigS4PHDpKioCGFhYfD394eJiQmMjIygra39VNggK8wsLN2Prmvlogbk5ubC3d29zWgNDQ0N/Prrr7hx4wYGDhyI77//Hjk5ObJ/z87OxtWrV6Gjo4PExES4ubnBwcEBX331lSx+uzVCQ0MxYMAA/Prrr/jwww/Rr18/WUallZUVQkND4evrC3t7e1kNDTqmmRVsFpbuCWtpt0FZWRns7e3bFEBjY2NYWlritddeg5OTE1xdXXHnzh3Y2dkhNTUVmZmZ2Lp1K6ysrJCXl4dz585BS0sLWVlZEIlEsmiLZ6EoSlYzY9q0aZg2bRr4fD54PB7S09O7tHUaCwtL18GKdhtwuVwIBIKXfo7OdKTT2umWYlZWVvD398evv/6KTz/9FNu2bcM333wDCwsL3Lhx46XjSqXSp1wdurq6cHFxgbOzc4eOi4WFRX1hRbsNHBwccOnSJRBC2rS2CSGIj49Hbm4uKIpCcHAwDh48CIFAgCFDhmDp0qWws7NDv3798Pfff8Pa2hrV1dXIysqCn59fq2OXlpbC2tr6ub9nXR8sLK8urGi3gYuLC/Lz88Hn86Grq9vq5zgcDkaNGoUePXpg2rRp0NLSwptvvomJEyfCyMgIf/zxBzgcDszNzVFTUwNtbW2MGzcOenp6rY5JCEFCQoKs3gkLCwsLwIp2m+jr68PHxwfx8fEYNWrUC8UzNzcXLS0tSE5ORmBgoKzynI2NjewzhoaGsj+/yHJ+FkIISkpKUFJSAl9fXwaOhIWFpbvAJte8hJqaGqxduxafffYZ7OzsXthBnY4CYaoanUAgwBdffIFx48YhKCiItbRZWFhksCEIL8HExARz5szB5s2bZQ1fn4SiKHC5XEYSVuiOLDt27ICnp2eb8eEsLCyvJqxovwSKouDn54epU6di48aNyMrKek64mYAQgtraWmzatAkmJiaYMmUKG9bHwsLyHKx7RE7o8qm//PIL/Pz8MGHCBEa6xtBFoG7evImjR49i3LhxGDp0aKvx2ywsLK82rGgrAN0D8vTp07h27Rr69++PsLAwWFhYKJSFSC95U1MT/v33X5w9exbW1taYMWPGU41/WVhYWJ6FFe12QAhBfX09rly5gmvXrkFbWxt+fn7w9fWFjY0NDAwMnvJxP9kLsbq6GtnZ2bh79y7Ky8vh5eWFUaNGyTIvWcFmYWFpC1a0OwBdo5rH4yEtLQ3p6emoqKiQpafTxZskEons74yNjeHu7g5/f384OzurRa9HFhYW1YEVbYZ4stmASCSCUCiESCQC8Dgdnq7Ax3Z2YWFh6QisaLOwsLCoEWxMGQsLC4sawYo2CwsLixrBijYLCwuLGsGKNgsLC4sawYo2CwsLixrBijYLCwuLGsGKNgsLC4sawYo2CwsLixrBijYLCwuLGsGKNgsLC4sa8f8AEA+Q7lS6ISAAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
- "## Graph Refutation\n",
+ "from causallearn.search.ScoreBased.GES import ges\n",
+ "\n",
+ "# default parameters\n",
+ "Record = ges(data)\n",
"\n",
- "Here, we use the same SHD and SID metric to find out how different the discovered graph are from each other."
+ "# Visualization using pydot\n",
+ "from causallearn.utils.GraphUtils import GraphUtils\n",
+ "import matplotlib.image as mpimg\n",
+ "import matplotlib.pyplot as plt\n",
+ "import io\n",
+ "\n",
+ "pyd = GraphUtils.to_pydot(Record['G'], labels=labels)\n",
+ "tmp_png = pyd.create_png(f=\"png\")\n",
+ "fp = io.BytesIO(tmp_png)\n",
+ "img = mpimg.imread(fp, format='png')\n",
+ "plt.axis('off')\n",
+ "plt.imshow(img)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "And also LiNGAM."
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 25,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "image/svg+xml": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "%3 \n",
+ " \n",
+ "\n",
+ "\n",
+ "raf \n",
+ "\n",
+ "raf \n",
+ " \n",
+ "\n",
+ "\n",
+ "mek \n",
+ "\n",
+ "mek \n",
+ " \n",
+ "\n",
+ "\n",
+ "raf->mek \n",
+ " \n",
+ " \n",
+ "1.48 \n",
+ " \n",
+ "\n",
+ "\n",
+ "pka \n",
+ "\n",
+ "pka \n",
+ " \n",
+ "\n",
+ "\n",
+ "raf->pka \n",
+ " \n",
+ " \n",
+ "0.55 \n",
+ " \n",
+ "\n",
+ "\n",
+ "pkc \n",
+ "\n",
+ "pkc \n",
+ " \n",
+ "\n",
+ "\n",
+ "raf->pkc \n",
+ " \n",
+ " \n",
+ "-0.13 \n",
+ " \n",
+ "\n",
+ "\n",
+ "jnk \n",
+ "\n",
+ "jnk \n",
+ " \n",
+ "\n",
+ "\n",
+ "raf->jnk \n",
+ " \n",
+ " \n",
+ "-0.02 \n",
+ " \n",
+ "\n",
+ "\n",
+ "mek->pka \n",
+ " \n",
+ " \n",
+ "-0.50 \n",
+ " \n",
+ "\n",
+ "\n",
+ "mek->pkc \n",
+ " \n",
+ " \n",
+ "0.10 \n",
+ " \n",
+ "\n",
+ "\n",
+ "p38 \n",
+ "\n",
+ "p38 \n",
+ " \n",
+ "\n",
+ "\n",
+ "mek->p38 \n",
+ " \n",
+ " \n",
+ "0.03 \n",
+ " \n",
+ "\n",
+ "\n",
+ "plc \n",
+ "\n",
+ "plc \n",
+ " \n",
+ "\n",
+ "\n",
+ "plc->raf \n",
+ " \n",
+ " \n",
+ "0.14 \n",
+ " \n",
+ "\n",
+ "\n",
+ "plc->mek \n",
+ " \n",
+ " \n",
+ "0.04 \n",
+ " \n",
+ "\n",
+ "\n",
+ "pip2 \n",
+ "\n",
+ "pip2 \n",
+ " \n",
+ "\n",
+ "\n",
+ "plc->pip2 \n",
+ " \n",
+ " \n",
+ "1.58 \n",
+ " \n",
+ "\n",
+ "\n",
+ "akt \n",
+ "\n",
+ "akt \n",
+ " \n",
+ "\n",
+ "\n",
+ "plc->akt \n",
+ " \n",
+ " \n",
+ "0.28 \n",
+ " \n",
+ "\n",
+ "\n",
+ "plc->pka \n",
+ " \n",
+ " \n",
+ "-0.49 \n",
+ " \n",
+ "\n",
+ "\n",
+ "plc->pkc \n",
+ " \n",
+ " \n",
+ "0.05 \n",
+ " \n",
+ "\n",
+ "\n",
+ "plc->p38 \n",
+ " \n",
+ " \n",
+ "0.06 \n",
+ " \n",
+ "\n",
+ "\n",
+ "plc->jnk \n",
+ " \n",
+ " \n",
+ "0.10 \n",
+ " \n",
+ "\n",
+ "\n",
+ "pip2->pkc \n",
+ " \n",
+ " \n",
+ "0.03 \n",
+ " \n",
+ "\n",
+ "\n",
+ "pip3 \n",
+ "\n",
+ "pip3 \n",
+ " \n",
+ "\n",
+ "\n",
+ "pip3->mek \n",
+ " \n",
+ " \n",
+ "-0.06 \n",
+ " \n",
+ "\n",
+ "\n",
+ "pip3->plc \n",
+ " \n",
+ " \n",
+ "0.37 \n",
+ " \n",
+ "\n",
+ "\n",
+ "pip3->pip2 \n",
+ " \n",
+ " \n",
+ "0.80 \n",
+ " \n",
+ "\n",
+ "\n",
+ "pip3->akt \n",
+ " \n",
+ " \n",
+ "-0.17 \n",
+ " \n",
+ "\n",
+ "\n",
+ "pip3->pkc \n",
+ " \n",
+ " \n",
+ "-0.10 \n",
+ " \n",
+ "\n",
+ "\n",
+ "pip3->jnk \n",
+ " \n",
+ " \n",
+ "-0.05 \n",
+ " \n",
+ "\n",
+ "\n",
+ "erk \n",
+ "\n",
+ "erk \n",
+ " \n",
+ "\n",
+ "\n",
+ "erk->raf \n",
+ " \n",
+ " \n",
+ "-1.47 \n",
+ " \n",
+ "\n",
+ "\n",
+ "erk->mek \n",
+ " \n",
+ " \n",
+ "-0.24 \n",
+ " \n",
+ "\n",
+ "\n",
+ "erk->plc \n",
+ " \n",
+ " \n",
+ "0.59 \n",
+ " \n",
+ "\n",
+ "\n",
+ "erk->akt \n",
+ " \n",
+ " \n",
+ "1.90 \n",
+ " \n",
+ "\n",
+ "\n",
+ "erk->pka \n",
+ " \n",
+ " \n",
+ "4.81 \n",
+ " \n",
+ "\n",
+ "\n",
+ "erk->pkc \n",
+ " \n",
+ " \n",
+ "-0.33 \n",
+ " \n",
+ "\n",
+ "\n",
+ "erk->p38 \n",
+ " \n",
+ " \n",
+ "-0.16 \n",
+ " \n",
+ "\n",
+ "\n",
+ "erk->jnk \n",
+ " \n",
+ " \n",
+ "-0.29 \n",
+ " \n",
+ "\n",
+ "\n",
+ "akt->raf \n",
+ " \n",
+ " \n",
+ "0.75 \n",
+ " \n",
+ "\n",
+ "\n",
+ "akt->mek \n",
+ " \n",
+ " \n",
+ "0.15 \n",
+ " \n",
+ "\n",
+ "\n",
+ "akt->pka \n",
+ " \n",
+ " \n",
+ "-0.58 \n",
+ " \n",
+ "\n",
+ "\n",
+ "akt->pkc \n",
+ " \n",
+ " \n",
+ "0.25 \n",
+ " \n",
+ "\n",
+ "\n",
+ "akt->p38 \n",
+ " \n",
+ " \n",
+ "0.15 \n",
+ " \n",
+ "\n",
+ "\n",
+ "akt->jnk \n",
+ " \n",
+ " \n",
+ "0.27 \n",
+ " \n",
+ "\n",
+ "\n",
+ "pka->p38 \n",
+ " \n",
+ " \n",
+ "-0.02 \n",
+ " \n",
+ "\n",
+ "\n",
+ "pkc->pka \n",
+ " \n",
+ " \n",
+ "-0.59 \n",
+ " \n",
+ "\n",
+ "\n",
+ "pkc->p38 \n",
+ " \n",
+ " \n",
+ "4.95 \n",
+ " \n",
+ "\n",
+ "\n",
+ "pkc->jnk \n",
+ " \n",
+ " \n",
+ "1.47 \n",
+ " \n",
+ "\n",
+ "\n",
+ "p38->jnk \n",
+ " \n",
+ " \n",
+ "0.04 \n",
+ " \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "import itertools\n",
- "from numpy.random import randint\n",
- "from cdt.metrics import SHD, SHD_CPDAG, SID, SID_CPDAG\n",
- "\n",
- "# Find combinations of pair of methods to compare\n",
- "combinations = list(itertools.combinations(graphs_nx, 2))\n",
- "\n",
- "for pair in combinations:\n",
- " print(\"***********************************************************\")\n",
- " graph1 = graphs_nx[pair[0]]\n",
- " graph2 = graphs_nx[pair[1]]\n",
- " print(\"Methods: %s and %s\"%(pair[0], pair[1]))\n",
- " print(\"SHD_CPDAG = %f\"%(SHD_CPDAG(graph1, graph2)))\n",
- " print(\"SHD = %f\"%(SHD(graph1, graph2, double_for_anticausal=False)))\n",
- " print(\"SID_CPDAG = [%f, %f]\"%(SID_CPDAG(graph1, graph2)))\n",
- " print(\"SID = %f\"%(SID(graph1, graph2)))"
+ "from causallearn.search.FCMBased import lingam\n",
+ "model = lingam.ICALiNGAM()\n",
+ "model.fit(data)\n",
+ "\n",
+ "from causallearn.search.FCMBased.lingam.utils import make_dot\n",
+ "make_dot(model.adjacency_matrix_, labels=labels)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "The values for the metrics show how different the graphs are from each other. A higher distance value implies that the difference between the graphs is more."
+ "## Estimate effects using Linear Regression\n",
+ "\n",
+ "Similarly, let us use the DAG returned by LiNGAM to estimate the causal effect of *PIP2* on *PKC*."
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 29,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Estimand type: EstimandType.NONPARAMETRIC_ATE\n",
+ "\n",
+ "### Estimand : 1\n",
+ "Estimand name: backdoor\n",
+ "Estimand expression:\n",
+ " d \n",
+ "───────(E[pkc|plc,pip3])\n",
+ "d[pip₂] \n",
+ "Estimand assumption 1, Unconfoundedness: If U→{pip2} and U→pkc then P(pkc|pip2,plc,pip3,U) = P(pkc|pip2,plc,pip3)\n",
+ "\n",
+ "### Estimand : 2\n",
+ "Estimand name: iv\n",
+ "No such variable(s) found!\n",
+ "\n",
+ "### Estimand : 3\n",
+ "Estimand name: frontdoor\n",
+ "No such variable(s) found!\n",
+ "\n",
+ "Causal Estimate is 0.03397189228452291\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Obtain valid dot format\n",
+ "graph_dot = make_graph(model.adjacency_matrix_, labels=labels)\n",
+ "\n",
+ "data_df = pd.DataFrame(data=data, columns=labels)\n",
+ "\n",
+ "# Define Causal Model\n",
+ "model_est=CausalModel(\n",
+ " data = data_df,\n",
+ " treatment='pip2',\n",
+ " outcome='pkc',\n",
+ " graph=str_to_dot(graph_dot.source))\n",
+ "\n",
+ "# Identification\n",
+ "identified_estimand = model_est.identify_effect(proceed_when_unidentifiable=False)\n",
+ "print(identified_estimand)\n",
+ "\n",
+ "# Estimation\n",
+ "estimate = model_est.estimate_effect(identified_estimand,\n",
+ " method_name=\"backdoor.linear_regression\",\n",
+ " control_value=0,\n",
+ " treatment_value=1,\n",
+ " confidence_intervals=True,\n",
+ " test_significance=True)\n",
+ "print(\"Causal Estimate is \" + str(estimate.value))"
+ ]
}
],
"metadata": {
@@ -464,7 +1202,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.12"
+ "version": "3.8.17"
},
"metadata": {
"interpreter": {