From ebe6004e57a4e3b0f6f2aa52435bc5308c863167 Mon Sep 17 00:00:00 2001 From: utensil Date: Tue, 2 Apr 2024 10:43:27 +0800 Subject: [PATCH] lint --- galgebra/lt.py | 200 ++++++++++++++++++++++++------------------------- 1 file changed, 99 insertions(+), 101 deletions(-) diff --git a/galgebra/lt.py b/galgebra/lt.py index a20412f3..857bf9fc 100644 --- a/galgebra/lt.py +++ b/galgebra/lt.py @@ -11,7 +11,7 @@ from typing import Mapping from sympy import ( - expand, symbols, Matrix, Transpose, zeros, Symbol, Function, S, Add, Expr, simplify + expand, symbols, Matrix, Transpose, zeros, Symbol, Function, S, Add, Expr, simplify ) from sympy.printing.latex import LatexPrinter as _LatexPrinter from sympy.printing.str import StrPrinter as _StrPrinter @@ -32,39 +32,39 @@ }) -### GSG code starts ### +# ## GSG code starts ### def Symbolic_Matrix(kernel, coords=None, f=False, mode='g'): """ Returns a square real matrix the entries of which are symbolic constants or symbolic functions of the coordinates. - - `kernel` is a one-letter string. It specifies the kernel letter of + - `kernel` is a one-letter string. It specifies the kernel letter of indexed symbols or functions used to specify the matrix's entries - - `coords` is a list or tuple. Its entries are used to label the + - `coords` is a list or tuple. Its entries are used to label the components of a vector. - `f`, a boolean, specifies that matrix entries are symbolic functions - of the coordinates or are symbolic constants, according to whether + of the coordinates or are symbolic constants, according to whether `f` is True or False. - `mode` is a one-letter string. When`mode` is 'g', 's', or 'a' the matrix will be general, symmetric, or antisymmetric. """ - + def general_matrix(kernel, coords=None, f=False): - """Returns a general square matrix. The row index of each entry - appears as a superscript, while the column index appears as a + """Returns a general square matrix. The row index of each entry + appears as a superscript, while the column index appears as a subscript.""" n = len(coords) # Create matrix entries and store in appropriate locations in `G`: - G = zeros(n,n) + G = zeros(n, n) if f: # entries are symbolic functions for i in range(n): for j in range(n): entry = '{' + kernel + '__' + str(coords[i]) + '}_' + str(coords[j]) - G[i,j] = Function(entry)(*coords) + G[i, j] = Function(entry)(*coords) else: # entries are symbolic constants for i in range(n): for j in range(n): entry = '{' + kernel + '__' + str(coords[i]) + '}_' + str(coords[j]) - G[i,j] = Symbol(entry, real=True) + G[i, j] = Symbol(entry, real=True) return G def symmetric_matrix(kernel, coords=None, f=False): @@ -74,37 +74,37 @@ def symmetric_matrix(kernel, coords=None, f=False): # Create and temporarily store matrix entries in `parameters` parameters = [] if f: # entries are symbolic functions - for i in range((n*(n+1)//2), 0, -1): + for i in range((n*(n+1)//2), 0, -1): parameters.append(Function(kernel + '_' + str(i))(*coords)) else: # entries are symbolic constants for i in range((n*(n+1)//2), 0, -1): parameters.append(Symbol(kernel + '_' + str(i), real=True)) # Transfer entries to symmetric matrix `S`. - S = zeros(n,n) + S = zeros(n, n) for i in range(n): - for j in range(i,n): - S[i,j] = parameters.pop() - S[j,i] = S[i,j] + for j in range(i, n): + S[i, j] = parameters.pop() + S[j, i] = S[i, j] return S - + def antisymmetric_matrix(kernel, coords=None, f=False): - """Returns an antisymmetric matrix. Entries have a a single index, + """Returns an antisymmetric matrix. Entries have a a single index, which appears as a subscript.""" n = len(coords) # Create and temporarily store matrix entries in `parameters` parameters = [] if f: # entries are symbolic functions - for i in range((n*(n-1)//2), 0, -1): + for i in range((n*(n-1)//2), 0, -1): parameters.append(Function(kernel + '_' + str(i))(*coords)) else: # entries are symbolic constants for i in range((n*(n-1)//2), 0, -1): # each parameter is a symbol parameters.append(Symbol(kernel + '_' + str(i), real=True)) # Transfer entries to antisymmetric matrix `A`. - A = zeros(n,n) + A = zeros(n, n) for i in range(n): - for j in range(i+1,n): - A[i,j] = parameters.pop() - A[j,i] = - A[i,j] + for j in range(i+1, n): + A[i, j] = parameters.pop() + A[j, i] = - A[i, j] return A # Check legitimacy of parameter values: @@ -118,8 +118,7 @@ def antisymmetric_matrix(kernel, coords=None, f=False): return symmetric_matrix(kernel, coords, f) if mode == 'a': return antisymmetric_matrix(kernel, coords, f) -### GSG code ends ### - +# ## GSG code ends ### def Matrix_to_dictionary(mat_rep, basis): @@ -136,14 +135,14 @@ def Matrix_to_dictionary(mat_rep, basis): } -### GSG code starts ### +# ## GSG code starts ### def Dictionary_to_Matrix(dict_rep, ga): - """Returns the matrix representation of that linear transformation on + """Returns the matrix representation of that linear transformation on geometric algebra ga which has dictionary representation dict_rep.""" # columns[j] is a list of the entries in the matrix's jth column. # columns[j][i] is the (i,j)th entry in the matrix. # Matrix[columns] instantiates the transpose of the desired matrix. - columns = [] + columns = [] for b in ga.basis: # b is a basis symbol for ga. column = ga.n * [S.Zero] # Initialize column for dict_rep value at b. dict_value = dict_rep[b] # dict_rep's value at b @@ -155,7 +154,7 @@ def Dictionary_to_Matrix(dict_rep, ga): column[row_index] = coef columns.append(column) return Transpose(Matrix(columns)).doit() -### GSG code ends ### +# ## GSG code ends ### class Lt(printer.GaPrintable): @@ -175,7 +174,7 @@ class Lt(printer.GaPrintable): vector:: self(a) = self.V.g_invol() * a * self.V.inv() - + where ``self.V.g_invol()`` is the grade involute of ``self.V``. Attributes @@ -239,7 +238,7 @@ def fct_flg(self): if self.Ga.coords is None: return False return set(self.Ga.coords) <= self.matrix().free_symbols - + def __init__(self, *args, ga, f=False, mode='g'): """ __init__(self, *args, ga, **kwargs) @@ -257,15 +256,15 @@ def __init__(self, *args, ga, f=False, mode='g'): :noindex: Construct from the operation of matrix pre-multiplication. - - ### GSG code starts ### + + # ## GSG code starts ### .. class:: Lt(lt_list: list, /, *, ga) :noindex: - - Construct from a list of lists, the j_th list of which contains + + Construct from a list of lists, the j_th list of which contains the coefficients of j_th image vector's basis expansion. - ### GSG code ends ### - + # ## GSG code ends ### + .. class:: Lt(versor: mv.Mv, /, *, ga) :noindex: @@ -294,17 +293,17 @@ def __init__(self, *args, ga, f=False, mode='g'): Only supported in the string constructor. """ - mat_rep = args[0] - self.Ga = ga - self.lt_dict = {} - self.mat = None + mat_rep = args[0] + self.Ga = ga + self.lt_dict = {} + self.mat = None self.versor = False # self.V, self.Vrev, and self.Vqform are never actually used in the current # implementation of orthogonal outermorphisms created by a versor input. - self.V = None + self.V = None self.Vrev = None self.Vqform = None - + if isinstance(mat_rep, dict): # Dictionary input for key in mat_rep: self.lt_dict[key] = mat_rep[key] @@ -323,15 +322,15 @@ def __init__(self, *args, ga, f=False, mode='g'): tmp += col * base2 self.lt_dict[base1] = tmp - ### GSG code starts ### + # ## GSG code starts ### elif isinstance(mat_rep, Matrix): # Matrix input self.lt_dict = Matrix_to_dictionary(mat_rep, self.Ga.basis) - ### GSG code ends ### + # ## GSG code ends ### - ### GSG code starts. ### + # ## GSG code starts. ### # This code segment uses versor `mat_rep` and a sandwich product only to # create a linear vector-valued function of vector. That function is then - # used to create a dictionary-based outermorphism. Evaluation of the + # used to create a dictionary-based outermorphism. Evaluation of the # outermorphism on a multivector is by dictionary lookup, not by a # sandwich product of the multivector with the versor. elif isinstance(mat_rep, mv.Mv): # Versor input @@ -341,17 +340,17 @@ def __init__(self, *args, ga, f=False, mode='g'): Vg_invol = V.g_invol() Vinv = V.inv() outermorphism = ga.lt(lambda x: Vg_invol * x * Vinv) - self.lt_dict = simplify(outermorphism.lt_dict) - ### GSG code ends ### + self.lt_dict = simplify(outermorphism.lt_dict) + # ## GSG code ends ### - ### GSG code starts ### + # ## GSG code starts ### elif isinstance(mat_rep, str): # (One-letter) string input Amat = Symbolic_Matrix(mat_rep, coords=self.Ga.coords, f=f, mode=mode) - if mode=='g': + if mode == 'g': self.__init__(Amat, ga=self.Ga) - elif mode in ['s','a']: + elif mode in ['s', 'a']: self.__init__(self.Ga.g_inv * Amat, ga=self.Ga) - ### GSG code ends ### + # ## GSG code ends ### elif callable(mat_rep): # Linear multivector function input # Function is tested for linearity before use. @@ -387,8 +386,8 @@ def mv_dict(self) -> Mapping[Expr, Expr]: def __call__(self, M, obj=False): r""" Returns the image of multivector :math:`M` under the linear transformation - :math:`L`. :math:`{{L}\lp{M}\rp}` is defined by - the linearity of :math:`L`, + :math:`L`. :math:`{{L}\lp{M}\rp}` is defined by + the linearity of :math:`L`, the vector values :math:`{{L}\lp{{{\eb}}_{j}}\rp }`, and the definition :math:`{{L}\lp{{{\eb}}_{j_{1}}{\wedge}\dots{\wedge}{{\eb}}_{j_{r}}}\rp}={{L}\lp{{{\eb}}_{j_{1}}}\rp}{\wedge}\dots{\wedge}{{L}\lp{{{\eb}}_{j_{r}}}\rp}`. """ @@ -396,7 +395,7 @@ def __call__(self, M, obj=False): if isinstance(M, mv.Mv) and self.Ga != M.Ga: raise ValueError('In Lt call Lt and argument refer to different vector spaces') - ### GSG code starts ### + # ## GSG code starts ### # Given the current way an outermorphism is created from a versor input, # self.versor will always be false; hence the following code fragment will # never execute. @@ -410,14 +409,14 @@ def __call__(self, M, obj=False): else: raise ValueError('self.V is not a versor in __call__') # Divide by normalization factor self.Vqform to convert sandwiching - # between self.V and its reverse to sandwiching between self.V and - # its inverse. + # between self.V and its reverse to sandwiching between self.V and + # its inverse. V_M_Vinv = 1/(self.Vqform) * V_M_Vrev if obj: return V_M_Vinv.obj else: return V_M_Vinv - ### GSG code ends ### + # ## GSG code ends ### if isinstance(M, mv.Mv): if M.is_vector(): @@ -491,18 +490,16 @@ def __rmul__(self, LT): else: raise TypeError('Cannot have LT as left argument in Lt __rmul__\n') - - ### GSG code starts ### + # ## GSG code starts ### def det(self) -> Expr: # det(L) defined by L(E) = det(L)E r""" - Returns the determinant of the linear transformation :math:`L`, - defined by :math:`\det(L) = L(E) E^{-1}`, where :math:`E` is the + defined by :math:`\det(L) = L(E) E^{-1}`, where :math:`E` is the basis blade for the pseudoscalar grade space. - Expression returned is a real SymPy scalar, not a GAlgebra 0-vector. """ return (self(self.Ga.e) * self.Ga.e.inv()).scalar() - ### GSG code ends ### - + # ## GSG code ends ### def tr(self) -> Expr: # tr(L) defined by tr(L) = grad|L(x) r""" @@ -517,11 +514,11 @@ def tr(self) -> Expr: # tr(L) defined by tr(L) = grad|L(x) self.Ga.connect_flg = connect_flg return tr_F - ''' + r''' def adj(self) -> 'Lt': r""" - Returns the adjoint :math:`{\bar{L}}`(a linear transformation) of linear - transformation :math:`L`, defined by + Returns the adjoint :math:`{\bar{L}}`(a linear transformation) of linear + transformation :math:`L`, defined by :math:`a\cdot{{L}\lp {b} \rp } = b\cdot{{\bar{L}}\lp {a} \rp }` where :math:`a` and :math:`b` are any two vectors in the tangent space. """ @@ -536,42 +533,42 @@ def adj(self) -> 'Lt': self_adj.append(expand(s) / self.Ga.e_sq) return Lt(self_adj, ga=self.Ga) ''' - - ### GSG code starts ### + + # ## GSG code starts ### def adj(self) -> 'Lt': r""" - Returns the adjoint transformation :math:`{\bar{L}}` of linear - transformation :math:`L`, defined by + Returns the adjoint transformation :math:`{\bar{L}}` of linear + transformation :math:`L`, defined by :math:`a\cdot{{L}\lp {b} \rp } = b\cdot{{\bar{L}}\lp {a} \rp }`, where :math:`a` and :math:`b` are any two vectors in the tangent space. """ - matrix_of_adjoint = self.Ga.g_inv * self.matrix().T * self.Ga.g + matrix_of_adjoint = self.Ga.g_inv * self.matrix().T * self.Ga.g return self.Ga.lt(matrix_of_adjoint) - ### GSG code ends ### + # ## GSG code ends ### - ### GSG code starts ### + # ## GSG code starts ### def is_singular(self): """Returns `True` if and only if linear transformation `self` is singular.""" E = self.Ga.E() return simplify((self(E) < E.inv()).scalar()) == S.Zero - ### GSG code ends - - ### GSG code starts ### + # ## GSG code ends + + # ## GSG code starts ### def inv(self): - """Returns compositional inverse of linear transformation`self`. + """Returns compositional inverse of linear transformation`self`. Assumes transformation is nonsingular. If `self` is a versor based transformation, its inverse will also be versor based.""" if self.versor: return self.Ga.lt(self.V.rev()) if not self.is_singular(): - return self.Ga.lt(Matrix( self.matrix().inv() )) + return self.Ga.lt(Matrix(self.matrix().inv())) else: - raise ValueError('transformation in inv() is non-invertible') - ### GSG code ends ### + raise ValueError('transformation in inv() is non-invertible') + # ## GSG code ends ### def _sympystr(self, print_obj): - if self.versor: ### GSG: changed `self.spinor` to `self.versor` ### + if self.versor: # ## GSG: changed `self.spinor` to `self.versor` ### return 'R = ' + print_obj._print(self.V) else: pre = 'Lt(' @@ -583,8 +580,8 @@ def _sympystr(self, print_obj): s += pre + print_obj._print(base) + ') = 0\n' return s[:-1] - ### GSG code starts ### - def _latex(self, print_obj): + # ## GSG code starts ### + def _latex(self, print_obj): parts = [] for base in self.Ga.basis: # base is a basis symbol if self.versor: @@ -600,12 +597,12 @@ def _latex(self, print_obj): image = mv.Mv(self.lt_dict.get(base, S.Zero), ga=self.Ga) parts.append(print_obj._print(base) + ' &\\mapsto ' + print_obj._print(image)) return '\\left\\{ \\begin{aligned} ' + ' \\\\ '.join(parts) + ' \\end{aligned} \\right\\}' - ### GSG code ends ### + # ## GSG code ends ### def Fmt(self, fmt=1, title=None) -> printer.GaPrintable: return printer._FmtResult(self, title) - ### GSG code starts ### + # ## GSG code starts ### def matrix(self) -> Matrix: r""" Returns the matrix :math:`[{L__i}_j]` defined for linear transformation @@ -624,9 +621,7 @@ def matrix(self) -> Matrix: else: self.mat = Dictionary_to_Matrix(self.lt_dict, self.Ga) return self.mat.doit() - ### GSG code ends ### - - + # ## GSG code ends ### class Mlt(printer.GaPrintable): @@ -842,16 +837,17 @@ def __init__(self, f, Ga, nargs=None, fct=False): else: if isinstance(f, types.FunctionType): # Tensor defined by general multi-linear function - args, _varargs, _kwargs, _defaults = inspect.getargspec(f) + args = inspect.getfullargspec(f)[0] self.nargs = len(args) self.f = f Mlt.increment_slots(self.nargs, Ga) self.fvalue = f(*tuple(Ga._mlt_a[0:self.nargs])) else: # Tensor defined by component expression - self.f = None - self.nargs = len(args) - Mlt.increment_slots(self.nargs, Ga) - self.fvalue = f + raise NotImplementedError + # self.f = None + # self.nargs = len(args) # args isn't defined, which is why we raise NotImplementedError + # Mlt.increment_slots(self.nargs, Ga) + # self.fvalue = f def __call__(self, *args): """ @@ -1001,18 +997,20 @@ def comps(self): output += str(i)+':'+str(i_index)+':'+str(self(*e)) + '\n' return output -### GSG code starts ### -def det(L:Lt) -> Expr: # det(L) defined by L(E) = det(L)E + +# ## GSG code starts ### +def det(L: Lt) -> Expr: # det(L) defined by L(E) = det(L)E r""" - Returns the determinant of the linear transformation :math:`L`, - defined by :math:`\det(L) = L(E) E^{-1}`, where :math:`E` is the + defined by :math:`\det(L) = L(E) E^{-1}`, where :math:`E` is the basis blade for the pseudoscalar grade space. - Expression returned is a real SymPy scalar, not a GAlgebra 0-vector. """ return L.det() -### GSG code ends ### +# ## GSG code ends ### + -### GSG code starts ### +# ## GSG code starts ### def sym(v): """ Returns that linear combination of basis vector symbols which corresponds @@ -1020,6 +1018,6 @@ def sym(v): """ # Obtain the coefficients in basis vector expansion of `v`. # Then construct and return corresponding basis vector symbol expansion. - coefs = v.blade_coefs(v.Ga.mv()) + coefs = v.blade_coefs(v.Ga.mv()) return sum(coefs[j]*v.Ga.basis[j] for j in range(v.Ga.n)) -### GSG code ends ### +# ## GSG code ends ###