diff --git a/docs/examples/tutorial_calcium_imaging.py b/docs/examples/tutorial_calcium_imaging.py index 2c9e11b9..2df962cc 100644 --- a/docs/examples/tutorial_calcium_imaging.py +++ b/docs/examples/tutorial_calcium_imaging.py @@ -95,7 +95,7 @@ # --------------------- # Here we compute the tuning curves of all the neurons -tcurves = nap.compute_1d_tuning_curves_continous(transients, angle, nb_bins = 120) +tcurves = nap.compute_1d_tuning_curves_continuous(transients, angle, nb_bins = 120) print(tcurves) @@ -123,8 +123,8 @@ # %% # Now we can compute the tuning curves for each half of the recording and plot the tuning curves for the fifth region of interest. -half1 = nap.compute_1d_tuning_curves_continous(transients, angle, nb_bins = 120, ep = halves.loc[[0]]) -half2 = nap.compute_1d_tuning_curves_continous(transients, angle, nb_bins = 120, ep = halves.loc[[1]]) +half1 = nap.compute_1d_tuning_curves_continuous(transients, angle, nb_bins = 120, ep = halves.loc[[0]]) +half2 = nap.compute_1d_tuning_curves_continuous(transients, angle, nb_bins = 120, ep = halves.loc[[1]]) plt.figure(figsize=(12, 5)) plt.subplot(1,2,1) diff --git a/docs/index.md b/docs/index.md index a6d37f6d..a07b494b 100644 --- a/docs/index.md +++ b/docs/index.md @@ -28,7 +28,8 @@ Community To ask any questions or get support for using pynapple, please consider joining our slack. Please send an email to thepynapple[at]gmail[dot]com to receive an invitation link. New release :fire: ------------------ +------------------ + Starting with 0.4, pynapple rely on the [numpy array container](https://numpy.org/doc/stable/user/basics.dispatch.html) approach instead of Pandas. Pynapple builtin functions will remain the same except for functions inherited from Pandas. Typically this line of code in `pynapple<=0.3.6` : ```python meantsd = tsdframe.mean(1)