-
Notifications
You must be signed in to change notification settings - Fork 0
/
phase_diagram.py
526 lines (419 loc) · 16.1 KB
/
phase_diagram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
# -*- coding: utf-8 -*-
import inspect
import operator
import sys
from collections import OrderedDict
from copy import deepcopy
from functools import wraps
from types import SimpleNamespace
import kwant
import numpy as np
import scipy.constants
import scipy.sparse
import scipy.sparse.linalg as sla
from kwant.continuum.discretizer import discretize
import pfaffian as pf
assert sys.version_info >= (3, 6), "Use Python ≥3.6"
# Parameters taken from arXiv:1204.2792
# All constant parameters, mostly fundamental constants, in a SimpleNamespace.
constants = SimpleNamespace(
m_eff=0.015 * scipy.constants.m_e, # effective mass in kg
hbar=scipy.constants.hbar,
m_e=scipy.constants.m_e,
eV=scipy.constants.eV,
e=scipy.constants.e,
c=1e18 / (scipy.constants.eV * 1e-3), # to get to meV * nm^2
mu_B=scipy.constants.physical_constants["Bohr magneton in eV/T"][0] * 1e3,
)
constants.t = (constants.hbar ** 2 / (2 * constants.m_eff)) * constants.c
def get_names(sig):
names = [
(name, value)
for name, value in sig.parameters.items()
if value.kind
in (inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY)
]
return OrderedDict(names)
def filter_kwargs(sig, names, kwargs):
names_in_kwargs = [(name, value) for name, value in kwargs.items() if name in names]
return OrderedDict(names_in_kwargs)
def skip_pars(names1, names2, num_skipped):
skipped_pars1 = list(names1.keys())[:num_skipped]
skipped_pars2 = list(names2.keys())[:num_skipped]
if skipped_pars1 == skipped_pars2:
pars1 = list(names1.values())[num_skipped:]
pars2 = list(names2.values())[num_skipped:]
else:
raise Exception("First {} arguments " "have to be the same".format(num_skipped))
return pars1, pars2
def combine(f, g, operator, num_skipped=0):
if not callable(f) or not callable(g):
raise Exception("One of the functions is not a function")
sig1 = inspect.signature(f)
sig2 = inspect.signature(g)
names1 = get_names(sig1)
names2 = get_names(sig2)
pars1, pars2 = skip_pars(names1, names2, num_skipped)
skipped_pars = list(names1.values())[:num_skipped]
pars1_names = {p.name for p in pars1}
pars2 = [p for p in pars2 if p.name not in pars1_names]
parameters = pars1 + pars2
kind = inspect.Parameter.POSITIONAL_OR_KEYWORD
parameters = [p.replace(kind=kind) for p in parameters]
parameters = skipped_pars + parameters
def wrapped(*args):
d = {p.name: arg for arg, p in zip(args, parameters)}
fval = f(*[d[name] for name in names1.keys()])
gval = g(*[d[name] for name in names2.keys()])
return operator(fval, gval)
wrapped.__signature__ = inspect.Signature(parameters=parameters)
return wrapped
def memoize(obj):
cache = obj.cache = {}
@wraps(obj)
def memoizer(*args, **kwargs):
key = str(args) + str(kwargs)
if key not in cache:
cache[key] = obj(*args, **kwargs)
return cache[key]
return memoizer
def parse_params(params):
for k, v in params.items():
if isinstance(v, str):
try:
params[k] = eval(v)
except NameError:
pass
return params
@memoize
def discretized_hamiltonian(a, which_lead=None, subst_sm=None):
ham = (
"(0.5 * hbar**2 * (k_x**2 + k_y**2 + k_z**2) / m_eff * c - mu + V) * kron(sigma_0, sigma_z) + "
"alpha * (k_y * kron(sigma_x, sigma_z) - k_x * kron(sigma_y, sigma_z)) + "
"0.5 * g * mu_B * (B_x * kron(sigma_x, sigma_0) + B_y * kron(sigma_y, sigma_0) + B_z * kron(sigma_z, sigma_0)) + "
"Delta * kron(sigma_0, sigma_x)"
)
if subst_sm is None:
subst_sm = {"Delta": 0}
if which_lead is not None:
subst_sm["V"] = f"V_{which_lead}(z, V_0, V_r, V_l, x0, sigma, r1)"
subst_sm["mu"] = f"mu_{which_lead}(x0, sigma, mu_lead, mu_wire)"
else:
subst_sm["V"] = "V(x, z, V_0, V_r, V_l, x0, sigma, r1)"
subst_sm["mu"] = "mu(x, x0, sigma, mu_lead, mu_wire)"
subst_sc = {"g": 0, "alpha": 0, "mu": "mu_sc", "V": 0}
subst_interface = {"c": "c * c_tunnel", "alpha": 0, "V": 0}
templ_sm = discretize(ham, locals=subst_sm, grid_spacing=a)
templ_sc = discretize(ham, locals=subst_sc, grid_spacing=a)
templ_interface = discretize(ham, locals=subst_interface, grid_spacing=a)
return templ_sm, templ_sc, templ_interface
def cylinder_sector(r_out, r_in=0, L=1, L0=0, coverage_angle=360, angle=0, a=10):
"""Returns the shape function and start coords for a wire with
as cylindrical cross section.
Parameters
----------
r_out : int
Outer radius in nm.
r_in : int, optional
Inner radius in nm.
L : int, optional
Length of wire from L0 in nm, -1 if infinite in x-direction.
L0 : int, optional
Start position in x.
coverage_angle : int, optional
Coverage angle in degrees.
angle : int, optional
Angle of tilting from top in degrees.
a : int, optional
Discretization constant in nm.
Returns
-------
(shape_func, *(start_coords))
"""
coverage_angle *= np.pi / 360
angle *= np.pi / 180
r_out_sq, r_in_sq = r_out ** 2, r_in ** 2
def shape(site):
try:
x, y, z = site.pos
except AttributeError:
x, y, z = site
n = (y + 1j * z) * np.exp(1j * angle)
y, z = n.real, n.imag
rsq = y ** 2 + z ** 2
shape_yz = r_in_sq <= rsq < r_out_sq and z >= np.cos(coverage_angle) * np.sqrt(
rsq
)
return (shape_yz and L0 <= x < L) if L > 0 else shape_yz
r_mid = (r_out + r_in) / 2
start_coords = np.array([L - a, r_mid * np.sin(angle), r_mid * np.cos(angle)])
return shape, start_coords
def is_antisymmetric(H):
return np.allclose(-H, H.T)
def cell_mats(lead, params, bias=0):
h = lead.cell_hamiltonian(params=params)
h -= bias * np.identity(len(h))
t = lead.inter_cell_hopping(params=params)
return h, t
def get_h_k(lead, params):
h, t = cell_mats(lead, params)
def h_k(k):
return h + t * np.exp(1j * k) + t.T.conj() * np.exp(-1j * k)
return h_k
def make_skew_symmetric(ham):
"""
Makes a skew symmetric matrix by a matrix multiplication of a unitary
matrix U. This unitary matrix is taken from the Topology MOOC 0D, but
that is in a different basis. To get to the right basis one multiplies
by [[np.eye(2), 0], [0, sigma_y]].
Parameters:
-----------
ham : numpy.ndarray
Hamiltonian matrix gotten from sys.cell_hamiltonian()
Returns:
--------
skew_ham : numpy.ndarray
Skew symmetrized Hamiltonian
"""
W = ham.shape[0] // 4
I = np.eye(2, dtype=complex)
sigma_y = np.array([[0, 1j], [-1j, 0]], dtype=complex)
U_1 = np.bmat([[I, I], [1j * I, -1j * I]])
U_2 = np.bmat([[I, 0 * I], [0 * I, sigma_y]])
U = U_1 @ U_2
U = np.kron(np.eye(W, dtype=complex), U)
skew_ham = U @ ham @ U.H
assert is_antisymmetric(skew_ham)
return skew_ham
def calculate_pfaffian(lead, params):
"""
Calculates the Pfaffian for the infinite system by computing it at k = 0
and k = pi.
Parameters:
-----------
lead : kwant.builder.InfiniteSystem object
The finalized system.
"""
h_k = get_h_k(lead, params)
skew_h0 = make_skew_symmetric(h_k(0))
skew_h_pi = make_skew_symmetric(h_k(np.pi))
pf_0 = np.sign(pf.pfaffian(1j * skew_h0, sign_only=True).real)
pf_pi = np.sign(pf.pfaffian(1j * skew_h_pi, sign_only=True).real)
pfaf = pf_0 * pf_pi
return pfaf
def at_interface(site1, site2, shape1, shape2):
return (shape1[0](site1) and shape2[0](site2)) or (
shape2[0](site1) and shape1[0](site2)
)
def change_hopping_at_interface(syst, template, shape1, shape2):
for (site1, site2), hop in syst.hopping_value_pairs():
if at_interface(site1, site2, shape1, shape2):
syst[site1, site2] = template[site1, site2]
return syst
@memoize
def make_lead(a, r1, r2, coverage_angle, angle, with_shell, which_lead, sc_inside_wire=False, wraparound=False):
"""Create an infinite cylindrical 3D wire partially covered with a
superconducting (SC) shell.
Parameters
----------
a : int
Discretization constant in nm.
r1 : int
Radius of normal part of wire in nm.
r2 : int
Radius of superconductor in nm.
coverage_angle : int
Coverage angle of superconductor in degrees.
angle : int
Angle of tilting of superconductor from top in degrees.
with_shell : bool
Adds shell to the scattering area. If False no SC shell is added and
only a cylindrical wire will be created.
which_lead : str
Name of the potential function of the lead, e.g. `which_lead = 'left'` will
require a function `V_left(z, V_0)` and
`mu_left(mu_func(x, x0, sigma, mu_lead, mu_wire)`.
sc_inside_wire : bool
Put superconductivity inside the wire.
wraparound : bool
Apply wraparound to the lead.
Returns
-------
syst : kwant.builder.InfiniteSystem
The finilized kwant system.
Examples
--------
This doesn't use default parameters because the variables need to be saved,
to a file. So I create a dictionary that is passed to the function.
>>> syst_params = dict(a=10, angle=0, coverage_angle=185, r1=50,
... r2=70, with_shell=True)
>>> syst, hopping = make_lead(**syst_params)
"""
shape_normal_lead = cylinder_sector(r_out=r1, angle=angle, L=-1, a=a)
shape_sc_lead = cylinder_sector(
r_out=r2, r_in=r1, coverage_angle=coverage_angle, angle=angle, L=-1, a=a
)
sz = np.array([[1, 0], [0, -1]])
cons_law = np.kron(np.eye(2), -sz)
symmetry = kwant.TranslationalSymmetry((a, 0, 0))
lead = kwant.Builder(
symmetry, conservation_law=cons_law if not with_shell else None
)
templ_sm, templ_sc, templ_interface = discretized_hamiltonian(
a, which_lead=which_lead, subst_sm={} if sc_inside_wire else None
)
templ_sm = apply_peierls_to_template(templ_sm)
lead.fill(templ_sm, *shape_normal_lead)
if with_shell:
lat = templ_sc.lattice
shape_sc = cylinder_sector(
r_out=r2, r_in=r1, coverage_angle=coverage_angle, angle=angle, L=a, a=a
)
xyz_offset = get_offset(*shape_sc, lat)
templ_interface = apply_peierls_to_template(templ_interface)
lead.fill(templ_sc, *shape_sc_lead)
# Adding a tunnel barrier between SM and SC
lead = change_hopping_at_interface(
lead, templ_interface, shape_normal_lead, shape_sc_lead
)
if wraparound:
lead = kwant.wraparound.wraparound(lead)
return lead
def apply_peierls_to_template(template, xyz_offset=(0, 0, 0)):
"""Adds p.orbital argument to the hopping functions."""
template = deepcopy(template) # Needed because kwant.Builder is mutable
x0, y0, z0 = xyz_offset
lat = template.lattice
a = np.max(lat.prim_vecs) # lattice contant
def phase(site1, site2, B_x, B_y, B_z, orbital, e, hbar):
if orbital:
x, y, z = site1.tag
direction = site1.tag - site2.tag
A = [B_y * (z - z0) - B_z * (y - y0), 0, B_x * (y - y0)]
A = np.dot(A, direction) * a ** 2 * 1e-18 * e / hbar
phase = np.exp(-1j * A)
if lat.norbs == 2: # No PH degrees of freedom
return phase
elif lat.norbs == 4:
return np.array(
[phase, phase.conj(), phase, phase.conj()], dtype="complex128"
)
else: # No orbital phase
return 1
for (site1, site2), hop in template.hopping_value_pairs():
template[site1, site2] = combine(hop, phase, operator.mul, 2)
return template
def get_offset(shape, start, lat):
coords = [site.pos for site in lat.shape(shape, start)()]
xyz_offset = np.mean(coords, axis=0)
return xyz_offset
def translation_ev(h, t, tol=1e6):
"""Compute the eigenvalues of the translation operator of a lead.
Adapted from kwant.physics.leads.modes.
Parameters
----------
h : numpy array, real or complex, shape (N, N) The unit cell
Hamiltonian of the lead unit cell.
t : numpy array, real or complex, shape (N, M)
The hopping matrix from a lead cell to the one on which self-energy
has to be calculated (and any other hopping in the same direction).
tol : float
Numbers and differences are considered zero when they are smaller
than `tol` times the machine precision.
Returns
-------
ev : numpy array
Eigenvalues of the translation operator in the form lambda=r*exp(i*k),
for |r|=1 they are propagating modes.
"""
a, b = kwant.physics.leads.setup_linsys(h, t, tol, None).eigenproblem
ev = kwant.physics.leads.unified_eigenproblem(a, b, tol=tol)[0]
return ev
def gap_minimizer(lead, params, energy):
"""Function that minimizes a function to find the band gap.
This objective function checks if there are progagating modes at a
certain energy. Returns zero if there is a propagating mode.
Parameters
----------
lead : kwant.builder.InfiniteSystem object
The finalized infinite system.
params : dict
A dict that is used to store Hamiltonian parameters.
energy : float
Energy at which this function checks for propagating modes.
Returns
-------
minimized_scalar : float
Value that is zero when there is a propagating mode.
"""
h, t = cell_mats(lead, params, bias=energy)
ev = translation_ev(h, t)
norm = (ev * ev.conj()).real
return np.min(np.abs(norm - 1))
def gap_from_modes(lead, params, tol=1e-6):
"""Finds the gapsize by peforming a binary search of the modes with a
tolarance of tol.
Parameters
----------
lead : kwant.builder.InfiniteSystem object
The finalized infinite system.
params : dict
A dict that is used to store Hamiltonian parameters.
tol : float
The precision of the binary search.
Returns
-------
gap : float
Size of the gap.
Notes
-----
For use with `lead = funcs.make_lead()`.
"""
Es = kwant.physics.Bands(lead, params=params)(k=0)
lim = [0, np.abs(Es).min()]
if gap_minimizer(lead, params, energy=0) < 1e-15:
# No band gap
gap = 0
else:
while lim[1] - lim[0] > tol:
energy = sum(lim) / 2
par = gap_minimizer(lead, params, energy)
if par < 1e-10:
lim[1] = energy
else:
lim[0] = energy
gap = sum(lim) / 2
return gap
def phase_bounds_operator(lead, params, k_x=0, mu_param='mu'):
params = dict(params, k_x=k_x)
params[mu_param] = 0
h_k = lead.hamiltonian_submatrix(params=params, sparse=True)
sigma_z = scipy.sparse.csc_matrix(np.array([[1, 0], [0, -1]]))
_operator = scipy.sparse.kron(scipy.sparse.eye(h_k.shape[0] // 2), sigma_z) @ h_k
return _operator
def find_phase_bounds(lead, params, k_x=0, num_bands=20, sigma=0, mu_param='mu'):
"""Find the phase boundaries.
Solve an eigenproblem that finds values of chemical potential at which the
gap closes at momentum k=0. We are looking for all real solutions of the
form H*psi=0 so we solve sigma_0 * tau_z H * psi = mu * psi.
Parameters
-----------
lead : kwant.builder.InfiniteSystem object
The finalized infinite system.
params : dict
A dictionary that is used to store Hamiltonian parameters.
k_x : float
Momentum value, by default set to 0.
Returns
--------
chemical_potential : numpy array
Twenty values of chemical potential at which a bandgap closes at k=0.
"""
chemical_potentials = phase_bounds_operator(lead, params, k_x, mu_param)
if num_bands is None:
mus = np.linalg.eigvals(chemical_potentials.todense())
else:
mus = sla.eigs(chemical_potentials, k=num_bands, sigma=sigma, which="LM")[0]
real_solutions = abs(np.angle(mus)) < 1e-10
mus[~real_solutions] = np.nan # To ensure it returns the same shape vector
return np.sort(mus.real)