generated from pythonhealthdatascience/stars_reproduction_template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCITATION.cff
40 lines (39 loc) · 1.7 KB
/
CITATION.cff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# This CITATION.cff file was generated with cffinit.
# Visit https://bit.ly/cffinit to generate yours today!
cff-version: 1.2.0
title: 'Anagnostou et al. 2022 computational reproducibility assessment'
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Amy
family-names: Heather
email: a.heather2@exeter.ac.uk
affiliation: University of Exeter Medical School, Exeter, UK
orcid: 'https://orcid.org/0000-0002-6596-3479'
- given-names: Thomas
family-names: Monks
email: t.m.w.monks@exeter.ac.uk
affiliation: University of Exeter Medical School, Exeter, UK
orcid: 'https://orcid.org/0000-0003-2631-4481'
- given-names: Alison
family-names: Harper
email: a.l.harper@exeter.ac.uk
affiliation: University of Exeter Business School, Exeter, UK
orcid: 'https://orcid.org/0000-0001-5274-5037'
repository-code: >-
https://github.com/pythonhealthdatascience/stars-reproduce-anagnostou-2022
abstract: >-
This repository forms part of work package 1 on the project STARS: Sharing
Tools and Artefacts for Reproducible Simulations. It assesses the
computational reproducibility of: Anagnostou, A. Groen, D. Taylor, S.
Suleimenova, D. Abubakar, N. Saha, A. Mintram, K. Ghorbani, M. Daroge, H.
Islam, T. Xue, Y. Okine, E. Anokye, N. FACS-CHARM: A Hybrid Agent-Based and
Discrete-Event Simulation Approach for Covid-19 Management at Regional Level.
2022 Winter Simulation Conference (WSC), Singapore, pp. 1223-1234. (2022).
https://doi.org/10.1109/WSC57314.2022.10015462.
license: BSD-3-Clause
# TODO: Manually update with each GitHub release (start with 0.1.0)
version: '1.0.0'
date-released: '2025-01-09'