-
Notifications
You must be signed in to change notification settings - Fork 520
215 lines (176 loc) · 7.59 KB
/
fbgemm_gpu_ci_cuda.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# This workflow is used for FBGEMM_GPU-CUDA CI as well as nightly builds of
# FBGEMM_GPU-CUDA against PyTorch-CUDA Nightly.
name: FBGEMM_GPU-CUDA CI
on:
# PR Trigger (enabled for regression checks and debugging)
#
pull_request:
branches:
- main
# Push Trigger (enable to catch errors coming out of multiple merges)
#
push:
branches:
- main
# Cron Trigger (UTC)
#
# Based on the Conda page for PyTorch-nightly, the GPU nightly releases appear
# around 02:30 PST every day (roughly 2 hours after the CPU releases)
#
schedule:
- cron: '45 12 * * *'
# Manual Trigger
#
workflow_dispatch:
inputs:
publish_to_pypi:
description: Publish Artifact to PyPI
type: boolean
required: false
default: false
concurrency:
# Cancel previous runs in the PR if a new commit is pushed
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs:
# Build on CPU hosts and upload to GHA
build_artifact:
runs-on: ${{ matrix.host-machine.instance }}
container:
image: amazonlinux:2023
options: --user root
defaults:
run:
shell: bash
env:
PRELUDE: .github/scripts/setup_env.bash
BUILD_ENV: build_binary
BUILD_VARIANT: cuda
continue-on-error: true
strategy:
# Don't fast-fail all the other builds if one of the them fails
fail-fast: false
matrix:
host-machine: [
{ arch: x86, instance: "linux.24xlarge" },
]
python-version: [ "3.8", "3.9", "3.10", "3.11", "3.12" ]
cuda-version: [ "11.8.0", "12.1.1", "12.4.1" ]
compiler: [ "gcc", "clang" ]
steps:
- name: Setup Build Container
run: yum update -y; yum install -y binutils findutils git pciutils sudo tar wget which
- name: Checkout the Repository
uses: actions/checkout@v4
with:
submodules: true
- name: Display System Info
run: . $PRELUDE; print_system_info
- name: Display GPU Info
run: . $PRELUDE; print_gpu_info
- name: Setup Miniconda
run: . $PRELUDE; setup_miniconda $HOME/miniconda
- name: Create Conda Environment
run: . $PRELUDE; create_conda_environment $BUILD_ENV ${{ matrix.python-version }}
- name: Install C/C++ Compilers
run: . $PRELUDE; install_cxx_compiler $BUILD_ENV ${{ matrix.compiler }}
- name: Install Build Tools
run: . $PRELUDE; install_build_tools $BUILD_ENV
- name: Install CUDA
run: . $PRELUDE; install_cuda $BUILD_ENV ${{ matrix.cuda-version }}
# Install via PIP to avoid defaulting to the CPU variant if the GPU variant of the day is not ready
- name: Install PyTorch Nightly
run: . $PRELUDE; install_pytorch_pip $BUILD_ENV nightly cuda/${{ matrix.cuda-version }}
- name: Collect PyTorch Environment Info
if: ${{ success() || failure() }}
run: if . $PRELUDE && which conda; then collect_pytorch_env_info $BUILD_ENV; fi
- name: Install cuDNN
run: . $PRELUDE; install_cudnn $BUILD_ENV "$(pwd)/build_only/cudnn" ${{ matrix.cuda-version }}
- name: Prepare FBGEMM_GPU Build
run: . $PRELUDE; cd fbgemm_gpu; prepare_fbgemm_gpu_build $BUILD_ENV
- name: Build FBGEMM_GPU Wheel
run: . $PRELUDE; cd fbgemm_gpu; build_fbgemm_gpu_package $BUILD_ENV nightly cuda
- name: Upload Built Wheel as GHA Artifact
# Cannot upgrade to actions/upload-artifact@v4 yet because GLIBC on the instance is too old
uses: actions/upload-artifact@v3
with:
name: fbgemm_gpu_nightly_cuda_${{ matrix.host-machine.arch }}_${{ matrix.compiler }}_py${{ matrix.python-version }}_cu${{ matrix.cuda-version }}.whl
path: fbgemm_gpu/dist/*.whl
if-no-files-found: error
# Download the built artifact from GHA, test on GPU, and push to PyPI
test_and_publish_artifact:
# runs-on: linux.4xlarge.nvidia.gpu
# Use available instance types - https://github.com/pytorch/test-infra/blob/main/.github/scale-config.yml
runs-on: ${{ matrix.host-machine.instance }}
defaults:
run:
shell: bash
env:
PRELUDE: .github/scripts/setup_env.bash
BUILD_ENV: build_binary
BUILD_VARIANT: cuda
ENFORCE_CUDA_DEVICE: 1
strategy:
fail-fast: false
matrix:
host-machine: [
{ arch: x86, instance: "linux.g5.4xlarge.nvidia.gpu" },
# TODO: Enable when A100 machine queues are reasonably small enough for doing per-PR CI
# https://hud.pytorch.org/metrics
# { arch: x86, instance: "linux.gcp.a100" },
]
python-version: [ "3.8", "3.9", "3.10", "3.11", "3.12" ]
cuda-version: [ "11.8.0", "12.1.1", "12.4.1" ]
# Specify exactly ONE CUDA version for artifact publish
cuda-version-publish: [ "12.1.1" ]
compiler: [ "gcc", "clang" ]
needs: build_artifact
steps:
# Cannot upgrade to actions/checkout@v4 yet because GLIBC on the instance is too old
- name: Checkout the Repository
uses: actions/checkout@v3
with:
submodules: true
- name: Download Wheel Artifact from GHA
# Cannot upgrade to actions/download-artifact@v4 yet because GLIBC on the instance is too old
uses: actions/download-artifact@v3
with:
name: fbgemm_gpu_nightly_cuda_${{ matrix.host-machine.arch }}_${{ matrix.compiler }}_py${{ matrix.python-version }}_cu${{ matrix.cuda-version }}.whl
# Use PyTorch test infrastructure action - https://github.com/pytorch/test-infra/blob/main/.github/actions/setup-nvidia/action.yml
- name: Install NVIDIA Drivers and NVIDIA-Docker Runtime
uses: pytorch/test-infra/.github/actions/setup-nvidia@main
- name: Display System Info
run: . $PRELUDE; print_system_info; print_ec2_info
- name: Display GPU Info
run: . $PRELUDE; print_gpu_info
- name: Setup Miniconda
run: . $PRELUDE; setup_miniconda $HOME/miniconda
- name: Create Conda Environment
run: . $PRELUDE; create_conda_environment $BUILD_ENV ${{ matrix.python-version }}
- name: Install C/C++ Compilers for Updated LIBGCC
# Install clang libraries to enable building and install triton
run: . $PRELUDE; install_cxx_compiler $BUILD_ENV clang
- name: Install CUDA
run: . $PRELUDE; install_cuda $BUILD_ENV ${{ matrix.cuda-version }}
# Install via PIP to avoid defaulting to the CPU variant if the GPU variant of the day is not ready
- name: Install PyTorch Nightly
run: . $PRELUDE; install_pytorch_pip $BUILD_ENV nightly cuda/${{ matrix.cuda-version }}
- name: Collect PyTorch Environment Info
if: ${{ success() || failure() }}
run: if . $PRELUDE && which conda; then collect_pytorch_env_info $BUILD_ENV; fi
- name: Prepare FBGEMM_GPU Build
run: . $PRELUDE; cd fbgemm_gpu; prepare_fbgemm_gpu_build $BUILD_ENV
- name: Install FBGEMM_GPU Wheel
run: . $PRELUDE; install_fbgemm_gpu_wheel $BUILD_ENV *.whl
- name: Test with PyTest
timeout-minutes: 30
run: . $PRELUDE; test_all_fbgemm_gpu_modules $BUILD_ENV
- name: Push Wheel to PyPI
if: ${{ (github.event_name == 'schedule' && matrix.cuda-version == matrix.cuda-version-publish) || (github.event_name == 'workflow_dispatch' && github.event.inputs.publish_to_pypi == 'true' && matrix.cuda-version == matrix.cuda-version-publish) }}
env:
PYPI_TOKEN: ${{ secrets.PYPI_TOKEN }}
run: . $PRELUDE; publish_to_pypi $BUILD_ENV "$PYPI_TOKEN" *.whl