diff --git a/images/efficientnet1.png b/images/efficientnet1.png new file mode 100644 index 00000000..58e23016 Binary files /dev/null and b/images/efficientnet1.png differ diff --git a/pytorch_vision_efficientnet.md b/pytorch_vision_efficientnet.md new file mode 100644 index 00000000..6f03c279 --- /dev/null +++ b/pytorch_vision_efficientnet.md @@ -0,0 +1,110 @@ +--- +layout: hub_detail +background-class: hub-background +body-class: hub +title: EfficientNet +summary: Memory and Performance Efficient Networks with 8 configurations. +category: researchers +image: efficientnet1.png +author: Pytorch Team +tags: [vision, scriptable] +github-link: https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py +github-id: pytorch/vision +featured_image_1: efficientnet1.png +featured_image_2: no-image +accelerator: cuda-optional +order: 10 +--- + +```python +import torch +model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b0', pretrained=True) +# or any of these variants +# model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b1', pretrained=True) +# model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b2', pretrained=True) +# model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b3', pretrained=True) +# model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b4', pretrained=True) +# model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b5', pretrained=True) +# model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b6', pretrained=True) +# model = torch.hub.load('pytorch/vision:v0.11.0', 'efficientnet_b7', pretrained=True) +model.eval() +``` + +All pre-trained models expect input images normalized in the same way, +i.e. mini-batches of 3-channel RGB images of shape `(3 x H x W)`, where `H` and `W` are expected to be at least `224`. +The images have to be loaded in to a range of `[0, 1]` and then normalized using `mean = [0.485, 0.456, 0.406]` +and `std = [0.229, 0.224, 0.225]`. + +Here's a sample execution. + +```python +# Download an example image from the pytorch website +import urllib +url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +try: urllib.URLopener().retrieve(url, filename) +except: urllib.request.urlretrieve(url, filename) +``` + +```python +# sample execution (requires torchvision) +from PIL import Image +from torchvision import transforms +input_image = Image.open(filename) +preprocess = transforms.Compose([ + transforms.Resize(256), + transforms.CenterCrop(224), + transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), +]) +input_tensor = preprocess(input_image) +input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model + +# move the input and model to GPU for speed if available +if torch.cuda.is_available(): + input_batch = input_batch.to('cuda') + model.to('cuda') + +with torch.no_grad(): + output = model(input_batch) +# Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes +print(output[0]) +# The output has unnormalized scores. To get probabilities, you can run a softmax on it. +probabilities = torch.nn.functional.softmax(output[0], dim=0) +print(probabilities) +``` + +``` +# Download ImageNet labels +!wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt +``` + +``` +# Read the categories +with open("imagenet_classes.txt", "r") as f: + categories = [s.strip() for s in f.readlines()] +# Show top categories per image +top5_prob, top5_catid = torch.topk(probabilities, 5) +for i in range(top5_prob.size(0)): + print(categories[top5_catid[i]], top5_prob[i].item()) +``` + +### Model Description + +The EfficientNet architecture description. + +| Model structure | Top-1 error | Top-5 error | +| ------------------ | ----------- | ----------- | +| efficientnet_b0 | 22.30 | 6.46 | +| efficientnet_b1 | 21.35 | 5.82 | +| efficientnet_b2 | 19.39 | 4.69 | +| efficientnet_b3 | 17.99 | 3.94 | +| efficientnet_b4 | 16.61 | 3.40 | +| efficientnet_b5 | 16.55 | 3.37 | +| efficientnet_b6 | 15.99 | 3.08 | +| efficientnet_b7 | 15.87 | 3.09 | + + +### References + + - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) + - [EfficientNet Blog by Google Research](https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html)