-
Notifications
You must be signed in to change notification settings - Fork 19
/
correct_label.py
332 lines (298 loc) · 14.3 KB
/
correct_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
import cv2
import json
import parse
import argparse
import numpy as np
import pandas as pd
from PIL import Image
import plotly.express as px
import plotly.graph_objects as go
import dash
from dash import dcc, html
from dash.exceptions import PreventUpdate
from dash.dependencies import Input, Output
from dataset import data_dir
from utils.general import *
parser = argparse.ArgumentParser()
parser.add_argument('--split', type=str, default='test')
parser.add_argument('--host', type=str, default='127.0.0.1')
parser.add_argument('--debug', action='store_true', default=False)
args = parser.parse_args()
split = args.split
host = args.host
debug = args.debug
# Evaluation result file list
if split == 'train':
eval_file_list = [
# {'label': label_name, 'value': json_path},
]
elif split == 'val':
eval_file_list = [
# {'label': label_name, 'value': json_path},
]
elif split == 'test':
eval_file_list = [
{'label': 'tracknet', 'value': 'test/tracknet_eval/test_eval_analysis_weight.json'},
{'label': 'tracknetv3', 'value': 'test/tracknetv3_eval/test_eval_analysis_weight.json'}
]
else:
raise ValueError(f'Invalid split: {split}')
# Init global variables
pred_types = ['TP', 'TN', 'FP1', 'FP2', 'FN']
pred_types_map = {pred_type: i for i, pred_type in enumerate(pred_types)}
prev_click = 0
match_id, rally_id, frame_id = None, None, None
x_gt, y_gt, vis_gt = None, None, None
x_pred, y_pred, vis_pred = None, None, None
x_correct, y_correct, vis_correct = None, None, None
# Generate drop down list values of rally id
rally_keys = []
rally_dirs = get_rally_dirs(data_dir, split)
rally_dirs = [os.path.join(data_dir, d) for d in rally_dirs]
for rally_dir in rally_dirs:
file_format_str = os.path.join('{}', 'match', '{}', 'frame', '{}')
_, match_id, rally_id = parse.parse(file_format_str, rally_dir)
rally_keys.append(f'{match_id}_{rally_id}')
rally_id_map = {k: i for i, k in enumerate(rally_keys)}
# Load drop frame dict if split is test
if split == 'test':
drop_frame_dict = json.load(open(f'{data_dir}/drop_frame.json'))
start_f, end_f = drop_frame_dict['start'], drop_frame_dict['end']
else:
start_f, end_f = None, None
# Create dash app
app = dash.Dash(__name__)
app.layout = html.Div(children=[
# Drop down lists
html.Div(children=[
html.Div(children=[
html.Label(['Model:'], style={'font-weight': 'bold', "text-align": "center"}),
dcc.Dropdown(eval_file_list, eval_file_list[0]['value'], id='eval-file-dropdown')
], style=dict(width='20%', margin='10px')),
html.Div(children=[
html.Label(['Rally ID:'], style={'font-weight': 'bold', "text-align": "center"}),
dcc.Dropdown(rally_keys, rally_keys[0], id='rally-dropdown')
], style={'width':'20%', 'margin':'10px'})
], style={'display':'flex', 'justify-content':'center', 'text-align':'center'}),
dcc.Input(id='write-mag', type='hidden', value='not_saved'),
dcc.Input(id='reset-mag', type='hidden', value='not_reseted'),
# Time series plot
html.Div(children=[
html.Div(children=[
dcc.Graph(
id='time_fig',
figure=go.Figure(),
config={'scrollZoom':True}
),
], style=dict(width='90%')),
], style={'display':'flex', 'justify-content':'center', 'text-align':'center'}),
# Buttons
html.Div(children=[
html.Button('Write Result', id='write-btn', n_clicks=0, style={'width':'160px', 'height':'40px', 'margin': '10px'}),
html.Button('Reset Label', id='reset-btn', n_clicks=0, style={'width':'160px', 'height':'40px', 'margin': '10px'})
], style={'display':'flex', 'justify-content': 'center', 'align-items': 'center'}),
# Frame plot
html.Div(children=[
dcc.Graph(
id='frame_fig',
figure=go.Figure(),
config={'scrollZoom':True}
),
], style={'display':'flex', 'justify-content':'center', 'align-items': 'center'}),
])
@app.callback(
Output('time_fig', 'figure'),
[Input('eval-file-dropdown', 'value'),
Input('rally-dropdown', 'value')]
)
def change_dropdown(eval_file, rally_key):
global match_id, rally_id, x_gt, y_gt, vis_gt, x_pred, y_pred, vis_pred, x_correct, y_correct, vis_correct
# Bar chart settings
bar_width = 1
y_min, y_max = - 0.2, 1.5
colors = {'TP': '#65AD6C', 'TN': '#D47D7D', 'FP1': 'green', 'FP2': 'red', 'FN': 'blue'}
# Parse rally key
rally_key_splits = rally_key.split('_')
match_id, rally_id = rally_key_splits[0], '_'.join(rally_key_splits[1:])
# Read ground truth label
csv_gt = os.path.join(data_dir, split, f'match{match_id}', 'csv', f'{rally_id}_ball.csv')
gt_df = pd.read_csv(csv_gt, encoding='utf8')
x_gt, y_gt, vis_gt = np.array(gt_df['X']), np.array(gt_df['Y']), np.array(gt_df['Visibility'])
# Init correct result
x_correct, y_correct, vis_correct = np.array(gt_df['X']), np.array(gt_df['Y']), np.array(gt_df['Visibility'])
# Read prediction results
print(f'File: {eval_file}')
eval_dict = json.load(open(eval_file))['pred_dict'][rally_key]
x_pred, y_pred, vis_pred = np.array(eval_dict['X']), np.array(eval_dict['Y']), np.array(eval_dict['Visibility'])
# Parse prediction result into stack bar chart data
bar_list = {}
timestamp = np.arange(len(gt_df))
for pred_type in pred_types:
bar_list[pred_type] = (np.array(eval_dict['Type']) == pred_types_map[pred_type]).astype('int')
bar_list['Error'] = bar_list['FN'] + bar_list['FP1'] + bar_list['FP2']
bar_list['TP'] = bar_list['TP'] * y_min
bar_list['TN'] = bar_list['TN'] * y_min
# Plot stack bar chart
hover_data = np.stack([x_gt, y_gt, vis_gt, x_pred, y_pred, vis_pred], axis=1)
time_fig = go.Figure()
for pred_type in pred_types:
time_fig.add_trace(
go.Bar(x=timestamp, y=bar_list[pred_type], customdata=hover_data,
width=bar_width, marker_color=colors[pred_type], name=pred_type,
legendgroup=pred_type, showlegend=True),
)
# Visualize effective trajectory
if split == 'test':
# The moment of serve
time_fig.add_vline(x=start_f[rally_key]-bar_width/2, line_width=1, line_dash='dash', line_color='gray')
# The moment of the ball touch ground
time_fig.add_vline(x=end_f[rally_key]-bar_width/2, line_width=1, line_dash='dash', line_color='gray')
time_fig.update_yaxes(title_text='Error Count', range=[y_min, y_max], fixedrange=True)
time_fig.update_xaxes(title_text='Frame ID')
time_fig.update_layout(barmode='stack', dragmode='pan', clickmode='event+select',
margin={'l':20, 'r':20, 't':50, 'b':10}, height=300,
title_text=f'Rally {rally_key} Error Distribution', title_x=0.5, legend_title='Error Type')
time_fig.update_traces(
hovertemplate="<br>".join([
"frame id: %{x}",
"label: ( %{customdata[0]}, %{customdata[1]} ), vis: %{customdata[2]}",
"pred: ( %{customdata[3]}, %{customdata[4]} ), vis: %{customdata[5]}",
])
)
return time_fig
@app.callback(
Output('write-mag', 'value'),
Input('write-btn', 'n_clicks')
)
def save_corrected_result(n_clicks):
global match_id, rally_id, x_correct, y_correct, vis_correct
if n_clicks:
correct_dir = os.path.join(data_dir, split, f'match{match_id}', 'corrected_csv')
if not os.path.exists(correct_dir):
os.makedirs(correct_dir)
out_csv_file = os.path.join(correct_dir, f'{rally_id}_ball.csv')
df = pd.DataFrame({'Frame': [i for i in range(len(vis_correct))],
'Visibility': vis_correct,
'X': x_correct,
'Y': y_correct})
df.to_csv(out_csv_file, index=False)
print(f'{out_csv_file} saved')
return f'{out_csv_file}_saved'
@app.callback(
Output('frame_fig', 'figure'),
[Input('time_fig', 'hoverData'),
Input('frame_fig', 'clickData'),
Input('reset-btn', 'n_clicks')]
)
def show_frame(hoverData, clickData, n_clicks):
global prev_click, match_id, rally_id, frame_id, x_gt, y_gt, vis_gt, x_pred, y_pred, vis_pred, x_correct, y_correct, vis_correct
trigger = dash.callback_context.triggered[0]["prop_id"]
marker_size = 10
traj_len = 9
frame_id = hoverData['points'][0]['x']
# Read frame image
img_path = os.path.join(data_dir, split, f'match{match_id}', 'frame', f'{rally_id}', f'{frame_id}.{IMG_FORMAT}')
assert os.path.exists(img_path), f'Image not found: {img_path}'
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_fig = px.imshow(img)
if prev_click != n_clicks:
# Reset corrected label
prev_click = n_clicks
x_correct[frame_id] = x_gt[frame_id]
y_correct[frame_id] = y_gt[frame_id]
vis_correct[frame_id] = vis_gt[frame_id]
frame_fig = go.Figure()
frame_fig.add_trace(img_fig.data[0])
frame_fig.add_trace(
go.Scatter(x=x_gt[frame_id-int(traj_len/2):frame_id+int(traj_len/2)+1],
y=y_gt[frame_id-int(traj_len/2):frame_id+int(traj_len/2)+1],
marker_color=[f'rgba(255, {170+10*i}, 0, {0.3+0.05*i})' for i in range(9)],
text=[f for f in range(frame_id-int(traj_len/2), frame_id+int(traj_len/2)+1)],
mode='markers', marker_size=marker_size, name='neighbor')
)
frame_fig.add_trace(
go.Scatter(x=x_pred[frame_id:frame_id+1], y=y_pred[frame_id:frame_id+1],
marker_color=['rgba(0, 255, 0, 0.5)'], text=[frame_id],
mode='markers', marker_size=marker_size, name='pred')
)
frame_fig.add_trace(
go.Scatter(x=x_gt[frame_id:frame_id+1], y=y_gt[frame_id:frame_id+1],
marker_color=['rgba(255, 0, 0, 0.5)'], text=[frame_id],
mode='markers', marker_size=marker_size, name='gt')
)
frame_fig.update_layout(dragmode='pan', clickmode='event+select',
margin={'l':0, 'r':0, 't':0, 'b':0}, autosize=False, width=1280, height=720,
title_text=f'f_{frame_id} label: ({x_correct[frame_id]}, {y_correct[frame_id]})')
frame_fig.update_layout(legend=dict(orientation='h', yanchor='bottom', y=1.02, xanchor='right', x=0.5))
return frame_fig
if trigger == "frame_fig.clickData":
# Show clicked point
#print(f'click_data: {clickData}')
click_x = clickData['points'][0]['x']
click_y = clickData['points'][0]['y']
x_correct[frame_id] = click_x
y_correct[frame_id] = click_y
vis_correct[frame_id] = 1 if click_x == 0 and click_y == 0 else 0
frame_fig = go.Figure()
frame_fig.add_trace(img_fig.data[0])
frame_fig.add_trace(
go.Scatter(x=x_gt[frame_id-int(traj_len/2):frame_id+int(traj_len/2)+1],
y=y_gt[frame_id-int(traj_len/2):frame_id+int(traj_len/2)+1],
marker_color=[f'rgba(255, {170+10*i}, 0, {0.3+0.05*i})' for i in range(9)],
text=[f for f in range(frame_id-int(traj_len/2), frame_id+int(traj_len/2)+1)],
mode='markers', marker_size=marker_size, name='neighbor')
)
frame_fig.add_trace(
go.Scatter(x=x_pred[frame_id:frame_id+1], y=y_pred[frame_id:frame_id+1],
marker_color=['rgba(0, 255, 0, 0.5)'], text=[frame_id],
mode='markers', marker_size=marker_size, name='pred')
)
frame_fig.add_trace(
go.Scatter(x=x_gt[frame_id:frame_id+1], y=y_gt[frame_id:frame_id+1],
marker_color=['rgba(255, 0, 0, 0.5)'], text=[frame_id],
mode='markers', marker_size=marker_size, name='gt')
)
frame_fig.add_trace(
go.Scatter(x=[click_x], y=[click_y],
marker_color=['rgba(0, 0, 255, 1.)'], text=[frame_id],
mode='markers', marker_size=marker_size, name='correct')
)
frame_fig.update_layout(dragmode='pan', clickmode='event+select',
margin={'l':0, 'r':0, 't':0, 'b':0}, autosize=False, width=1280, height=720,
title_text=f'f_{frame_id} label: ({x_correct[frame_id]}, {y_correct[frame_id]})')
frame_fig.update_layout(legend=dict(orientation='h', yanchor='bottom', y=1.02, xanchor='right', x=0.5))
return frame_fig
if trigger == "time_fig.hoverData":
# Show hovered frame with neighbor labels
#print(f'hover_data: {hoverData}')
selectedData = None
frame_fig = go.Figure()
frame_fig.add_trace(img_fig.data[0])
frame_fig.add_trace(
go.Scatter(x=x_gt[frame_id-int(traj_len/2):frame_id+int(traj_len/2)+1],
y=y_gt[frame_id-int(traj_len/2):frame_id+int(traj_len/2)+1],
marker_color=[f'rgba(255, {170+10*i}, 0, {0.3+0.05*i})' for i in range(9)],
text=[f for f in range(frame_id-int(traj_len/2), frame_id+int(traj_len/2)+1)],
mode='markers', marker_size=marker_size, name='neighbor')
)
frame_fig.add_trace(
go.Scatter(x=x_pred[frame_id:frame_id+1], y=y_pred[frame_id:frame_id+1],
marker_color=['rgba(0, 255, 0, 0.5)'], text=[frame_id],
mode='markers', marker_size=marker_size, name='pred')
)
frame_fig.add_trace(
go.Scatter(x=x_gt[frame_id:frame_id+1], y=y_gt[frame_id:frame_id+1],
marker_color=['rgba(255, 0, 0, 0.5)'], text=[frame_id],
mode='markers', marker_size=marker_size, name='gt')
)
frame_fig.update_layout(dragmode='pan', clickmode='event+select',
margin={'l':0, 'r':0, 't':0, 'b':0}, autosize=False, width=1280, height=720,
title_text=f'f_{frame_id} label: ({x_correct[frame_id]}, {y_correct[frame_id]})')
frame_fig.update_layout(legend=dict(orientation='h', yanchor='bottom', y=1.02, xanchor='right', x=0.5))
return frame_fig
else:
raise PreventUpdate
if __name__ == '__main__':
app.run_server(host=host, debug=debug)