-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpattern.py
113 lines (92 loc) · 3 KB
/
pattern.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from PIL import Image
import numpy as np
import turtle
# cnames = {
# 'dodgerblue': '#1E90FF',
# 'orange': '#FFA500',
# 'green': '#008000',
# 'red': '#FF0000',
# 'mediumslateblue': '#7B68EE',
# 'saddlebrown': '#8B4513',
# 'violet': '#EE82EE',
# 'dimgrey': '#696969',
# 'darkkhaki': '#BDB76B',
# 'turquoise': '#40E0D0',}
# This does not violate our random selection of colors,
# We set this up just to make sure that the color of the
# other shapes (i.e., square and prismatic) matches the random color of the circle
color_list = ['steelblue', 'darkorange', 'forestgreen', 'crimson', 'mediumpurple', 'saddlebrown',
'violet', 'gray', 'y', 'darkturquoise']
import matplotlib.pyplot as plt
def circle():
a, b = (0., 0.)
theta = np.arange(0, 2 * np.pi, 0.01)
# theta[-1] = 2 * np.pi
plt.figure(figsize=(6,6))
# 6x6-->7 0 250 20
# 3x3-->3.5
for r in range(10, 250, 20):
x = a + r * np.cos(theta)
y = b + r * np.sin(theta)
plt.plot(x, y, linewidth = 6.75)
plt.axis('off')
plt.savefig('circle.png')
plt.show()
def circle_density(d):
a, b = (0., 0.)
theta = np.arange(0, 2 * np.pi, 0.01)
# theta[-1] = 2 * np.pi
plt.figure(figsize=(6,6))
# 6x6-->7 0 250 20
# 3x3-->3.5
for r in range(10, d, 20):
x = a + r * np.cos(theta)
y = b + r * np.sin(theta)
plt.plot(x, y, linewidth = 6.75)
plt.axis('off')
plt.savefig('density/circle{}.png'.format(str(d)))
# plt.show()
def square(color_list, dense):
i = 0
plt.figure(figsize=(6,6))
for b in range(10, dense, 20):
x = np.arange(-b, b, 0.01)
y1 = [b] * len(x)
y2 = [-b] * len(x)
y = np.arange(-b, b, 0.01)
x1 = [-b] * len(y)
x2 = [b] * len(y)
plt.plot(x, y1, linewidth = 6.75, c = color_list[i])
plt.plot(x, y2, linewidth = 6.75, c = color_list[i])
plt.plot(x1, y, linewidth = 6.75, c = color_list[i])
plt.plot(x2, y, linewidth = 6.75, c = color_list[i])
i += 1
i = i % 10
plt.axis('off')
plt.savefig('density/squre{}.png'.format(dense))
# plt.show()
def prismatic(color_list, dense):
i = 0
plt.figure(figsize=(6,6))
for b in range(10, dense, 20):
b = b * 1.414
x = np.arange(-b, b, 0.005)
# print(x.min())
# print(x)
y1 = b - abs(x)
y2 = -b + abs(x)
plt.plot(x, y1, linewidth = 6.75, c = color_list[i])
plt.plot(x, y2, linewidth = 6.75, c = color_list[i])
i += 1
i = i % 10
plt.axis('off')
plt.savefig('density/rhom{}.png'.format(dense))
# plt.show()
def square2rhom(img_pth, d):
img = Image.open(img_pth).convert('RGB')
img = img.rotate(angle=45, resample=Image.BICUBIC, fillcolor = (255,255,255))
# plt.show()
# exit()
img.save('rhom{}.png'.format(d), quality=95)
if __name__ == '__main__':
circle()