diff --git a/test/algorithms/regressors/__init__.py b/test/algorithms/regressors/__init__.py new file mode 100644 index 000000000..96c0cf22b --- /dev/null +++ b/test/algorithms/regressors/__init__.py @@ -0,0 +1,11 @@ +# This code is part of Qiskit. +# +# (C) Copyright IBM 2021. +# +# This code is licensed under the Apache License, Version 2.0. You may +# obtain a copy of this license in the LICENSE.txt file in the root directory +# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. +# +# Any modifications or derivative works of this code must retain this +# copyright notice, and modified files need to carry a notice indicating +# that they have been altered from the originals. diff --git a/test/algorithms/regressors/test_neural_network_regressor.py b/test/algorithms/regressors/test_neural_network_regressor.py index efcd722d4..392c7ee09 100644 --- a/test/algorithms/regressors/test_neural_network_regressor.py +++ b/test/algorithms/regressors/test_neural_network_regressor.py @@ -11,17 +11,17 @@ # that they have been altered from the originals. """ Test Neural Network Regressor """ -from ddt import ddt, data -from qiskit import QuantumCircuit, Aer -from qiskit.algorithms.optimizers import L_BFGS_B, COBYLA +from test import QiskitMachineLearningTestCase + +import numpy as np +from ddt import data, ddt + +from qiskit import Aer, QuantumCircuit +from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B from qiskit.circuit import Parameter from qiskit.utils import QuantumInstance - from qiskit_machine_learning.algorithms.regressors import NeuralNetworkRegressor from qiskit_machine_learning.neural_networks import TwoLayerQNN -from test import QiskitMachineLearningTestCase - -import numpy as np @ddt @@ -43,6 +43,7 @@ def setUp(self): num_samples = 20 eps = 0.2 + # pylint: disable=invalid-name lb, ub = -np.pi, np.pi self.X = (ub - lb) * np.random.rand(num_samples, 1) + lb self.y = np.sin(self.X[:, 0]) + eps * (2 * np.random.rand(num_samples) - 1) @@ -55,7 +56,8 @@ def setUp(self): ('bfgs', 'statevector'), ('bfgs', 'qasm'), ) - def test_classifier_with_opflow_qnn(self, config): + def test_regressor_with_opflow_qnn(self, config): + """ Test Neural Network Regressor with Opflow QNN (Two Layer QNN).""" opt, q_i = config num_qubits = 1 diff --git a/test/algorithms/regressors/test_qsvr.py b/test/algorithms/regressors/test_qsvr.py index 77061b6a9..da78cb385 100644 --- a/test/algorithms/regressors/test_qsvr.py +++ b/test/algorithms/regressors/test_qsvr.py @@ -13,7 +13,6 @@ """ Test QSVR """ import unittest - from test import QiskitMachineLearningTestCase import numpy as np @@ -22,8 +21,8 @@ from qiskit.circuit.library import ZZFeatureMap from qiskit.utils import QuantumInstance from qiskit_machine_learning.algorithms import QSVR -from qiskit_machine_learning.kernels import QuantumKernel from qiskit_machine_learning.exceptions import QiskitMachineLearningError +from qiskit_machine_learning.kernels import QuantumKernel class TestQSVR(QiskitMachineLearningTestCase): diff --git a/test/algorithms/regressors/test_vqr.py b/test/algorithms/regressors/test_vqr.py index 24737aece..0e257cf5e 100644 --- a/test/algorithms/regressors/test_vqr.py +++ b/test/algorithms/regressors/test_vqr.py @@ -13,17 +13,15 @@ """ Test Neural Network Regressor """ import unittest - -from qiskit.circuit import Parameter - from test import QiskitMachineLearningTestCase import numpy as np -from ddt import ddt, data +from ddt import data, ddt + from qiskit import Aer, QuantumCircuit from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B +from qiskit.circuit import Parameter from qiskit.utils import QuantumInstance - from qiskit_machine_learning.algorithms import VQR @@ -47,6 +45,7 @@ def setUp(self): num_samples = 20 eps = 0.2 + # pylint: disable=invalid-name lb, ub = -np.pi, np.pi self.X = (ub - lb) * np.random.rand(num_samples, 1) + lb self.y = np.sin(self.X[:, 0]) + eps * (2 * np.random.rand(num_samples) - 1) @@ -68,7 +67,7 @@ def setUp(self): def test_vqr(self, config): """ Test VQR.""" - opt, q_i, has_var_form = config + opt, q_i, has_ansatz = config if q_i == 'statevector': quantum_instance = self.sv_quantum_instance @@ -86,16 +85,16 @@ def test_vqr(self, config): feature_map = QuantumCircuit(num_qubits, name='fm') feature_map.ry(param_x, 0) - if has_var_form: + if has_ansatz: param_y = Parameter('y') - var_form = QuantumCircuit(num_qubits, name='vf') - var_form.ry(param_y, 0) + ansatz = QuantumCircuit(num_qubits, name='vf') + ansatz.ry(param_y, 0) else: - var_form = None + ansatz = None # construct regressor regressor = VQR(feature_map=feature_map, - var_form=var_form, + ansatz=ansatz, optimizer=optimizer, quantum_instance=quantum_instance)