-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path矩阵连乘.cpp
56 lines (49 loc) · 1.32 KB
/
矩阵连乘.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include<iostream>
using namespace std;
const int MAX = 100;
int n;
int p[MAX+1],m[MAX][MAX],s[MAX][MAX];
//p用来记录矩阵,m[i][j]表示第i个矩阵到第j个矩阵的最优解,s[][]记录从哪里断开可以得到最优解
void matrixChain()
{
for(int i=1; i<=n; i++)
m[i][i]=0;
for(int r=2; r<=n; r++)//对角线循环 (r指链的长度)
{
for(int i=1; i<=n-r+1; i++) //行循环
{
int j=i+r-1;//列的控制
m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j];//计算m[i][j],矩阵的规模为 pi-1 * pi
s[i][j]=i;//在i位置断开
for(int k=i+1; k<j; k++)
{
int t=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];//在k位置断开,寻找最优解
if(t<m[i][j])
{
s[i][j]=k;
m[i][j]=t;
} //if
} //k
} //i
} //r
}
void traceback(int i,int j) //输出最优计算次序
{
if(i==j)
return;
traceback(i,s[i][j]);
traceback(s[i][j]+1,j);
cout<<"Multiply A"<<i<<","<<s[i][j]<<"and A"<<s[i][j]+1<<","<<j<<endl;//s[i][j]是最优断开位置
}
int main()
{
cin>>n;//矩阵的数量
for(int i=0; i<=n; i++) //输入矩阵的行数和列数(矩阵相容)
cin>>p[i];
matrixChain();
cout<<endl;
traceback(1,n);
cout<<endl;
cout<<"最少数乘次数为:"<<m[1][n]<<endl;
return 0;
}