-
Notifications
You must be signed in to change notification settings - Fork 0
/
problem26.rb
47 lines (39 loc) · 899 Bytes
/
problem26.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/bin/env ruby
require 'benchmark'
<<COMM
A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:1/2 = 0.5
1/3 = 0.(3)
1/4 = 0.25
1/5 = 0.2
1/6 = 0.1(6)
1/7 = 0.(142857)
1/8 = 0.125
1/9 = 0.(1)
1/10 = 0.1
Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.
Find the value of d 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.
COMM
def divide y
x = 1
res = []
n = 0
xs = []
while true
x *= 10
break if x == 0
if xs.include?(x)
res.push "()"
break
end
if x > y
xs.push(x)
res.push(x / y)
x = x % y
end
n += 1
end
n
end
res = (1..1000).inject({}) {|acc, i| acc[divide(i)] = i; acc }
puts res.keys.max
puts res[res.keys.max]