forked from GERSL/Fmask
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatchCloudShadow.m
590 lines (521 loc) · 28.5 KB
/
MatchCloudShadow.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This functin is used to match cloud shadow with cloud.
% The similarity defineing cloud shadow is larger than 0.3 only for those
% clouds, of which all pixels are included in the Landsat observations.
% This minor modification was made because the match similarity may be
% wrong when some parts of cloud are out of the observations.
%
%
% mask out the shadow of cloud over water or not? By Shi, at 17, March, 2020
% fix the bug that cloud shadow would be projected on the other side in Sentinel-2 imagery when the azimuth angle > 180. By Shi, at 19, Jan., 2019
% use new match similarity becasue we do not know the potential clouds
% excluding self cloud and outsides are shadow or not. by Shi, at 21, April, 2018
% remove the overlap between final matched cloud shadow and the potential
% cloud shadow. by Shi, at 26, Mar., 2018.
% speed up the match of cloud shadow with cloud for large clouds using
% sampling projections. by Zhe and Shi. at 24, Mar., 2018.
% do not revisit for the big clouds (more than 10,000,000). by Shi. at 22, Mar., 2018
% match cloud shadow by following the sort from the center because the
% clouds loacted boundary will be easily affected due to the unkown of the
% pixels out of obervations. by Shi. at 15, Mar., 2018
% cloud's temperature may be warmer than surface when we wrongly give some
% surface to the cloud. This will result in no cloud shadow. by Shi. at 3, Mar., 2018
% fix the bugger that revisit clouds when less than 14 cloud objects. by Shi. at 11, Dec., 2017
% still improve the prediction of cloud shadow location when no DEMs. by Shi. at 13, Sept., 2017
% revisit the first 14 cloud objects. by Shi. at 21,Feb.,2017
% fix the bugger, struct2table for lt. struct2table. at 21,Feb.,2017
% search neighboring clouds by distance rule. by Shi. at 13,Feb.,2017
% fix the bugger that bias for the location of real cloud object. at 13,Oct.,2016
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ similar_num,data_cloud_matched, data_shadow_matched] = MatchCloudShadow(...
mask,plcim,plsim,isShadowater,waterAll,data_dem,data_bt_c,t_templ,t_temph,data_meta,ptm,num_near,angles_view)
dim=data_meta.Dim;
% get potential mask values
data_shadow_potential=zeros(dim,'uint8');
data_cloud_potential=(plcim>0)&mask==1;
data_shadow_potential(plsim==1)=1;% plshadow layer
clear plsim; % empty memory
% matched cloud & shadow layer
data_cloud_matched=zeros(dim,'uint8');
data_shadow_matched=zeros(dim,'double');
% revised percent of cloud on the scene after plcloud
revised_ptm=sum(data_cloud_potential(:))/sum(mask(:));
% When having too many clouds, we will not match cloud shadow.
if ptm <=40000||revised_ptm>=0.90 % 0.1% was changed to 40,000 pixels.
fprintf('Skip cloud shadow detection because high cloud cover\n');
data_cloud_matched(data_cloud_potential==true)=1;
data_shadow_matched(data_shadow_potential==false)=1;
data_shadow_matched=uint8(data_shadow_matched);
similar_num=-1;
else
clear pfpl;
%% parameters
clear plcim; % empty memory
% max similarity threshold
max_similar = 0.95;
% number of inward pixes (240m) for cloud base temperature
num_pix=3;
% enviromental lapse rate 6.5 degrees/km
rate_elapse=6.5;
% dry adiabatic lapse rate 9.8 degrees/km
rate_dlapse=9.8;
% max match pixels number
max_match_num =1000000; %more than 1 million pixels will result in ~2 mins runtime.
% sun angles
sun_zenith_deg=data_meta.Zen;
sun_azimuth_deg=data_meta.Azi;
% sun angle geometry
sun_elevation_deg=90-sun_zenith_deg;
sun_elevation_rad=deg2rad(sun_elevation_deg);
% solar azimuth anngle
Sun_tazi=sun_azimuth_deg-90;
sun_tazi_rad=deg2rad(Sun_tazi);
clear sun_elevation_deg sun_elevation_deg;
% view angles for Sentinel 2 images, which will be used compute the
% average values for each cloud. Note that the Landsat's view angles
% can be estimated by the obersations of the entire scene.
if strcmp(data_meta.Sensor,'S_MSI')
VAA = angles_view.VAA;
VZA = angles_view.VZA ;
clear angles_view;
% mini matched similarity
Tsimilar=0.425;
% Tsimilar=0.4;
% threshold for matching buffering
Tbuffer=0.90;
elseif strcmp(data_meta.Sensor,'L_OLI_TIRS')||...
strcmp(data_meta.Sensor,'L_ETM_PLUS')||...
strcmp(data_meta.Sensor,'L_TM')
% mini matched similarity
% Tsimilar=0.35;
Tsimilar=0.3;
% threshold for matching buffering
Tbuffer=0.95;
% view angle geometry for Landsat
% get track derection
[rows,cols]=find(mask==1);
[cor_ul_y,num]=min(rows);cor_ul_x=cols(num);
[cor_lr_y,num]=max(rows);cor_lr_x=cols(num);
[cor_ll_x,num]=min(cols);cor_ll_y=rows(num);
[cor_ur_x,num]=max(cols);cor_ur_y=rows(num);
% get view angle geometry
[A,B,C,omiga_par,omiga_per]=getSensorViewGeo(cor_ul_x,cor_ul_y,cor_ur_x,cor_ur_y,cor_ll_x,cor_ll_y,cor_lr_x,cor_lr_y);
clear cor_ul_x cor_ul_y cor_ur_x cor_ur_y cor_ll_x cor_ll_y cor_lr_x cor_lr_y;
else
error('Only Landsats 4-7, Landsat 8 and Sentinel 2 data can be supported./n');
end
% the lowest elevation.
if ~isempty(data_dem)
dem_base_heigh=double(prctile(data_dem(mask),0.001));
else
dem_base_heigh=0;
end
% expand 1,000 pixels for the potential cloud shadow layer.
dim_expd=2000;
% spatial resolution of the image
sub_size=data_meta.Resolution(1);
win_height=dim(1);win_width=dim(2);
% intervals within each matching process.
step_interval=2*sub_size*tan(sun_elevation_rad);
%% project all potential cloud shadow and cloud (can be matched) along sun light based on DEMs.
% cloud shadow may be overlap with another cloud, so we need to
% project the all potential cloud and potential cloud shadow pixels.
[recorderRow,recorderCol] = ProjectDEM2Plane(dim,...
mask,...
data_dem,dem_base_heigh,sun_elevation_rad,sun_tazi_rad,...
sun_azimuth_deg,dim_expd,...
data_meta.Resolution);
% create cloud objtects using 8-by-8 pixels connection.
[segm_cloud,num]=bwlabeln(data_cloud_potential,8);
s = regionprops(segm_cloud,'area');
area_final = [s.Area];
obj_num=area_final;
clear segm_cloud_init L idx area_final s;
% Get the x,y of each cloud
% Matrix used in recording the x,y
stats= regionprops(segm_cloud,'Centroid','PixelList');
match_clds=zeros(1,num,'uint8'); % cloud shadow match similarity (m)
matched_clds_centroid=[]; % centers of cloud having shadow
height_clds_recorder=[]; % cloud shadow match heights (m)
% Use iteration to get the optimal move distance
% Calulate the moving cloud shadow
similar_num=zeros(1,num); % cloud shadow match similarity (m)
l_pt=0.175; h_pt=1-l_pt;
dim_expand=dim+2*dim_expd;
record_base_h_num=0;
num_revisited = 0;
if num > num_near
num_revisited=num_near;
end
num_all=num+num_revisited;
% min moving distance (min high 200 meters) unit: pixels
i_xy_min=200/(sub_size*tan(sun_elevation_rad));
for cloud_type_cur= 1:num_all %num
% revisit the first 14 cloud objects.
cloud_type=cloud_type_cur;
if cloud_type>num && num_revisited<num
cloud_type=cloud_type_cur - num; % fix this bug.
end
% moving cloud xys
XY_type_all=zeros(obj_num(cloud_type),2);
% % record the max threshold moving cloud xys
% tmp_XY_type_all=zeros(obj_num(cloud_type),2);
% corrected for view angle xys
tmp_xys_all=zeros(obj_num(cloud_type),2);
% record the original xys
orin_xys_all=zeros(obj_num(cloud_type),2);
% record the original xys
orin_xys_all(:,:)=stats(cloud_type,:).PixelList(:,:);
% record this orinal ids
orin_cid_all=sub2ind(dim,orin_xys_all(:,2),orin_xys_all(:,1));
% assume object is round r_obj is radium of object
r_obj=sqrt(obj_num(cloud_type)/2*pi);
% refine cloud height range (m)
% initialize height and similarity info
if isempty(data_dem)
base_heigh_cloud=0;
else
% if the above rule removed all pixels, back to MFmask.
dem_base_cloud=data_dem(orin_cid_all);
% The min height should be the max dem of dem_base_cloud.
% However, the commission error from snow may lead to overestimate the base heigh.
base_heigh_cloud=prctile(dem_base_cloud,100*h_pt)-dem_base_heigh;
clear dem_base_cloud;
end
% Min cloud base height (m)
Min_cl_height=200.00 + base_heigh_cloud; % 2738
% Max cloud base height (m)
Max_cl_height=12000.00 + base_heigh_cloud;
if ~isempty(data_bt_c) % if have no temperature data.
% Temperature of the cloud object
temp_obj_all=data_bt_c(orin_cid_all);
% the base temperature for cloud
% number of inward pixes for correct temperature
% num_pix=8;
pct_obj=(r_obj-num_pix)^2/r_obj^2;
pct_obj=min(pct_obj,1); % pct of edge pixel should be less than 1
t_obj=quantile(temp_obj_all(:),pct_obj);
clear pct_obj;
t_obj=double(t_obj);
% put the edge of the cloud the same value as t_obj
temp_obj_all(temp_obj_all>t_obj)=t_obj;
if ~(t_templ<t_obj||t_temph<t_obj) % cloud's temperature may be warmer than surface when we wrongly give some surface to the cloud.
Min_cl_height=max(Min_cl_height,10*(t_templ-400-t_obj)/rate_dlapse);
Max_cl_height=min(Max_cl_height,10*(t_temph+400-t_obj));
end
end
% when reaching big clouds, the max bias for cloud shadow will
% be estimated, but exclude dem info.
if obj_num(cloud_type) > max_match_num
% renew the arrays
% randomly selection.
samples_rand_all=randperm(obj_num(cloud_type));
samples_mov=samples_rand_all(1:max_match_num);
clear samples_rand_all;
% moving cloud xys
XY_type=XY_type_all(samples_mov,:);
% corrected for view angle xys
tmp_xys=tmp_xys_all(samples_mov,:);
% record this orinal ids
orin_xys = orin_xys_all(samples_mov,:);
% orin_xys = orin_xys_all(samples_mov,1);
if ~isempty(data_bt_c) % if have no temperature data.
% Temperature of the cloud object
temp_obj=temp_obj_all(samples_mov);
end
else
% give all pixels
% moving cloud xys
XY_type=XY_type_all;
% corrected for view angle xys
tmp_xys=tmp_xys_all;
% record the original xys
orin_xys=orin_xys_all;
% record this orinal ids
% orin_cid=orin_cid_all;
if ~isempty(data_bt_c) % if have no temperature data.
% temperature
temp_obj=temp_obj_all;
end
end
% record_h=0;
record_thresh=0;
record_base_h=0;
record_base_h_near=0;% it is available only when >0
center_cur=stats(cloud_type,:).Centroid;
if strcmp(data_meta.Sensor,'S_MSI')
VZAxy = pi/180*mean(single(VZA(orin_cid_all))/100);
VAAxy = pi/180*mean(single(VAA(orin_cid_all))/100);
end
% height estimated by neighboring clouds.
if record_base_h_num>=num_near
% the centers of already matched clouds
% current cloud's center
% the nearest cloud among all matched clouds.
% remove the self cloud heigh
[nearest_cloud_centers,nearest_dis]=knnsearch(matched_clds_centroid,center_cur,'k',num_near, 'distance','cityblock');% less time-consuming method chebychev
if cloud_type_cur>num % remove its self for the first 14 clouds when coming back.
nearest_cloud_centers(nearest_dis==0)=[];
end
% get all matched clouds' height.
record_base_h_tmp=height_clds_recorder(nearest_cloud_centers);
record_base_h_near=prctile(record_base_h_tmp,100*h_pt);
h_pre_std=std(record_base_h_tmp);
clear record_base_h_tmp;
if h_pre_std>=1000||record_base_h_near <= Min_cl_height||record_base_h_near >= Max_cl_height
record_base_h_near=0;
end
clear h_pre_std;
end
dist_pre=0;
dist_passed=false;
dist_first=true;
% all pixels of projected cloud object
if numel(orin_cid_all(:))==0
dist_passed=true;
else
cpc_i=center_cur(2);
cpc_j=center_cur(1);
end
% indicates the number of the matched cloud shadows for this
% current cloud.
num_matched=0;
for base_h=Min_cl_height:step_interval:Max_cl_height % iterate in height (m)
% Get the true postion of the cloud
% calculate cloud DEM with initial base height
if strcmp(data_meta.Sensor,'S_MSI')
h=base_h; % have no temperature data. cannot serve as 3D object.
elseif strcmp(data_meta.Sensor,'L_OLI_TIRS')||...
strcmp(data_meta.Sensor,'L_ETM_PLUS')||...
strcmp(data_meta.Sensor,'L_TM')
h=double(10*(t_obj-temp_obj)/rate_elapse+base_h);% relative to the reference plane. Cloud top's height.
end
% the height for the bias of the real cloud location should exclude the
% surface elevation below the cloud object.
h_bias=h-base_heigh_cloud;% hc-Ec the height between cloud object and its surface.
if strcmp(data_meta.Sensor,'S_MSI')
[tmp_xys(:,1),tmp_xys(:,2)]= getRealCloudPositionS2(orin_xys(:,1),...
orin_xys(:,2),h_bias,VZAxy,VAAxy,data_meta.Resolution);
elseif strcmp(data_meta.Sensor,'L_OLI_TIRS')||...
strcmp(data_meta.Sensor,'L_ETM_PLUS')||...
strcmp(data_meta.Sensor,'L_TM')
sensor_heigh_bias=base_heigh_cloud+dem_base_heigh; % used to exclude the elevation of cloud' surface.
[tmp_xys(:,1),tmp_xys(:,2)]=getRealCloudPosition(orin_xys(:,1),...
orin_xys(:,2),h_bias,A,B,C,omiga_par,omiga_per,sensor_heigh_bias);
else
error('Only Landsats 4-7, Landsat 8 and Sentinel 2 data can be supported./n');
end
% shadow moved distance (pixel) to calculate the cloud
% shadow locaiton.
% real cloud height relative to the plane.
i_xy=h/(sub_size*tan(sun_elevation_rad));
XY_type(:,2)=round(tmp_xys(:,1)-i_xy*cos(sun_tazi_rad)); % X is for j,2
XY_type(:,1)=round(tmp_xys(:,2)-i_xy*sin(sun_tazi_rad)); % Y is for i,1
clear i_xy;
% this location is relative to reference plane.
tmp_j_plane=XY_type(:,2);% col
tmp_i_plane=XY_type(:,1);% row
clear XY_type;
% back project
% dim_expd=1000;% 1000 pixels buffer
% some projected pixels out of observations.
tmp_i_plane_expd_tmp=tmp_i_plane+dim_expd;
tmp_j_plane_expd_tmp=tmp_j_plane+dim_expd;
avail_pixels=find(tmp_i_plane_expd_tmp>0&tmp_j_plane_expd_tmp>0&...
tmp_i_plane_expd_tmp<=dim_expand(1)&tmp_j_plane_expd_tmp<=dim_expand(2));
tmp_i_plane_expd=tmp_i_plane_expd_tmp(avail_pixels);
tmp_j_plane_expd=tmp_j_plane_expd_tmp(avail_pixels);
clear tmp_i_plane_expd_tmp tmp_j_plane_expd_tmp avail_pixels;
tmp_id_plane_expd=sub2ind(dim_expand,tmp_i_plane_expd,tmp_j_plane_expd); % matched shadow locations
clear tmp_i_plane_expd tmp_j_plane_expd;
% search the responding locations in real surface (derived
% from the relation-lookup table).
tmp_i_obs=recorderRow(tmp_id_plane_expd);
tmp_j_obs=recorderCol(tmp_id_plane_expd);
clear tmp_id_plane_expd tmp_id_plane_expd;
% cloud shadow must be beyond the location of the orgianl cloud.
if ~dist_passed
% the center of cloud shadow in real image.
sum_cpmp_i=sum(tmp_i_obs(:));
sum_cpmp_j=sum(tmp_j_obs(:));
area_cpmp=numel(tmp_j_obs(:));
ctmp_i=sum_cpmp_i/area_cpmp;
ctmp_j=sum_cpmp_j/area_cpmp;
clear sum_cpmp_i sum_cpmp_j area_cpmp;
% distance between orginal cloud and its cloud shadow,
% Note we ignored the mini bias from view angles here.
dist_cur = pdist2([ctmp_j,ctmp_i],[cpc_j,cpc_i],'Euclidean');
% dist_cur = floor(dist_cur);
clear ctmp_j ctmp_i;
if dist_first
dist_pre = dist_cur;
dist_first = false;
else
% the distance between the center of cloud and
% cloud shadow over plane decreases
if dist_pre >= dist_cur || dist_cur<i_xy_min % should move more than 200 meter high.
dist_pre = dist_cur;
record_thresh = 0;
% record_h=0;
continue;
else
dist_passed = true; % can go
end
end
end
% calculate the similarity for the matched cloud shadow.
% the id that is out of the entire image
% out-of-scene pixels should be found. the relationship
% between locations at plane and DEM is lack.
out_id=(tmp_i_obs<1|tmp_i_obs>win_height|tmp_j_obs<1|tmp_j_obs>win_width);
out_all=sum(out_id(:));
% exclude the pixels out of the entire image.
tmp_ii_obs=tmp_i_obs(out_id==0);
tmp_jj_obs=tmp_j_obs(out_id==0);
clear out_id tmp_i_obs tmp_j_obs;
tmp_id=sub2ind(dim,tmp_ii_obs,tmp_jj_obs); % matched shadow locations
clear tmp_ii_obs tmp_jj_obs;
out_obs=mask(tmp_id)==0;
id_ex_self = segm_cloud(tmp_id)~=cloud_type;
% 1st rule: out of obervations; 2nd rule: located in
% potential shadow or other clouds (exclude the self cloud).
% Special case #1:
% for the cloud shadow previoudly matched, the new one
% cannot reach the boundary and other clouds, which easily
% result in the overestimation of silimarity.
match_id_unsure = out_obs | ...
(id_ex_self&(data_cloud_potential(tmp_id)==1));
match_id_sure = id_ex_self&data_shadow_potential(tmp_id)==1;
% we do not provide the cloud shadow for the clouds over water
% when shadow is 100% over water, stop to match cloud
% shadow.
if ~isShadowater && sum(waterAll(tmp_id))==length(tmp_id)
break;
end
% give half weight to the macthed pixels located in outside and other
% clouds.
matched_all=sum(match_id_sure(:))+0.5*sum(match_id_unsure(:))+out_all;
total_all=sum(id_ex_self(:))+out_all;
thresh_match=matched_all/total_all;
clear match_id total_all;
% used to determine whether the iteration continues or not.
iter_con=true; % continues as default.
clear id_ex_self;
if num_matched > 0&&... % already have cloud shadow previously
(record_base_h_near > 0 && base_h >= record_base_h_near) % or more than the predicted cloud height.
iter_con=false;
end
clear pt_unsure;
% check the matched cloud shadow or not?
% the following rules are used to decide to continue or not.
if iter_con
if (thresh_match >= Tbuffer*record_thresh)&&...
(base_h < Max_cl_height-step_interval)&&...
(record_thresh < max_similar)
if thresh_match > record_thresh
% record max similarity and the corresponding cloud base height.
record_thresh=thresh_match;
% record_h=h;
record_base_h=base_h;
end
continue;
else
if (record_thresh >= Tsimilar)
% successfully find a cloud shadow
num_matched=num_matched+1; % indicates one more cloud shadow was found out.
% only when expected height available. (record_base_h_near>0)
if base_h<record_base_h_near
% but allow the searching reach to the neighboring clouds' height
if thresh_match>=record_thresh||thresh_match>=max_similar
record_thresh=thresh_match;
% record_h=h;
record_base_h=base_h;
end
continue; % much reach the predicted cloud height.
end
else
record_thresh=0;
continue;
end
end
end
% 1: continues; 0: not continue and get a cloud shadow
if num_matched<1
break;
end
if r_obj>num_pix&&...
cloud_type_cur<=num % cannot re-add for the first 14 clouds
matched_clds_centroid=[matched_clds_centroid;center_cur];
match_clds(cloud_type)=1;
height_clds_recorder=[height_clds_recorder;record_base_h];
% height_clds_recorder(cloud_type)=record_base_h;
record_base_h_num=record_base_h_num+1;
end
similar_num(cloud_type)=record_thresh;
if isequal(data_meta.Sensor,'S_MSI')
record_h = record_base_h;
h_bias=record_h-base_heigh_cloud;% hc-Ec
[tmp_xys_all(:,1),tmp_xys_all(:,2)]= getRealCloudPositionS2(orin_xys_all(:,1),...
orin_xys_all(:,2),h_bias,VZAxy,VAAxy,data_meta.Resolution);
elseif isequal(data_meta.Sensor,'L_OLI_TIRS')||...
isequal(data_meta.Sensor,'L_ETM_PLUS')||...
isequal(data_meta.Sensor,'L_TM')
record_h = double(10*(t_obj-temp_obj_all)/rate_elapse+record_base_h);
h_bias=record_h-base_heigh_cloud;% hc-Ec
sensor_heigh_bias=base_heigh_cloud+dem_base_heigh;
[tmp_xys_all(:,1),tmp_xys_all(:,2)]=getRealCloudPosition(orin_xys_all(:,1),...
orin_xys_all(:,2),h_bias,A,B,C,omiga_par,omiga_per,sensor_heigh_bias);
else
error('Only Landsats 4-7, Landsat 8 and Sentinel 2 data can be supported./n');
end
clear orin_xys_all;
i_vir=record_h/(sub_size*tan(sun_elevation_rad));
tmp_XY_type_all(:,2)=round(tmp_xys_all(:,1)-i_vir*cos(sun_tazi_rad)); % X is for col j,2
tmp_XY_type_all(:,1)=round(tmp_xys_all(:,2)-i_vir*sin(sun_tazi_rad)); % Y is for row i,1
clear tmp_xys_all i_vir;
tmp_scol_plane=tmp_XY_type_all(:,2);
tmp_srow_plane=tmp_XY_type_all(:,1);
clear tmp_XY_type_all;
tmp_tmp_i_plane_expd=tmp_srow_plane+dim_expd;
tmp_tmp_j_plane_expd=tmp_scol_plane+dim_expd;
clear tmp_srow_plane tmp_scol_plane;
avail_pixels=find(tmp_tmp_i_plane_expd>0&tmp_tmp_j_plane_expd>0&...
tmp_tmp_i_plane_expd<dim_expand(1)&tmp_tmp_j_plane_expd<dim_expand(2));
tmp_tmp_i_plane_expd=tmp_tmp_i_plane_expd(avail_pixels);
tmp_tmp_j_plane_expd=tmp_tmp_j_plane_expd(avail_pixels);
clear avail_pixels;
% matched shadow locations at plane.
tmp_tmp_id_plane_expd=sub2ind(dim_expand,tmp_tmp_i_plane_expd,tmp_tmp_j_plane_expd);
clear tmp_tmp_i_plane_expd tmp_tmp_j_plane_expd;
% matched shadow locations at real image (DEM surface).
tmp_srow=recorderRow(tmp_tmp_id_plane_expd);
tmp_scol=recorderCol(tmp_tmp_id_plane_expd);
clear tmp_tmp_id_plane_expd;
% remove the pixels out of box.
out_ids=tmp_srow<1|tmp_scol<1|...
tmp_srow>win_height|tmp_scol>win_width;
tmp_srow(out_ids)=[];
tmp_scol(out_ids)=[];
clear out_ids;
tmp_sid=sub2ind(dim,tmp_srow,tmp_scol);
clear tmp_srow tmp_scol;
% give shadow_cal=1
% data_shadow_matched(tmp_sid)=1;
if cloud_type_cur>num % re-visit the first 14 clouds.
% remove the matched before.
data_shadow_matched((data_shadow_matched==cloud_type))=0;
% and give new cloud shadow to this.
end
data_shadow_matched(tmp_sid)=cloud_type;
clear tmp_sid;
clear center_cur;
break;
end
end
data_cloud_matched=data_cloud_potential;
data_shadow_matched=uint8(data_shadow_matched>0);
% remove the cloud.
data_shadow_matched(data_cloud_matched==1)=0;
end
end