-
Notifications
You must be signed in to change notification settings - Fork 38
/
lib_detection.py
217 lines (168 loc) · 6.45 KB
/
lib_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# pylint: disable=invalid-name, redefined-outer-name, missing-docstring, non-parent-init-called, trailing-whitespace, line-too-long
from os.path import splitext
import cv2
import numpy as np
from keras.models import model_from_json
import logging
logging.basicConfig(filename='log_file.txt',
filemode='a',
format='%(asctime)s,%(msecs)d %(name)s %(message)s',
datefmt='%H:%M:%S',
level=logging.DEBUG)
class Label:
def __init__(self, cl=-1, tl=np.array([0., 0.]), br=np.array([0., 0.]), prob=None):
self.__tl = tl
self.__br = br
self.__cl = cl
self.__prob = prob
def __str__(self):
return 'Class: %d, top left(x: %f, y: %f), bottom right(x: %f, y: %f)' % (
self.__cl, self.__tl[0], self.__tl[1], self.__br[0], self.__br[1])
def copy(self):
return Label(self.__cl, self.__tl, self.__br)
def wh(self): return self.__br - self.__tl
def cc(self): return self.__tl + self.wh() / 2
def tl(self): return self.__tl
def br(self): return self.__br
def tr(self): return np.array([self.__br[0], self.__tl[1]])
def bl(self): return np.array([self.__tl[0], self.__br[1]])
def cl(self): return self.__cl
def area(self): return np.prod(self.wh())
def prob(self): return self.__prob
def set_class(self, cl):
self.__cl = cl
def set_tl(self, tl):
self.__tl = tl
def set_br(self, br):
self.__br = br
def set_wh(self, wh):
cc = self.cc()
self.__tl = cc - .5 * wh
self.__br = cc + .5 * wh
def set_prob(self, prob):
self.__prob = prob
class DLabel(Label):
def __init__(self, cl, pts, prob):
self.pts = pts
tl = np.amin(pts, axis=1)
br = np.amax(pts, axis=1)
Label.__init__(self, cl, tl, br, prob)
# image processing
def im2single(Image):
return Image.astype('float32') / 255
def getWH(shape):
return np.array(shape[1::-1]).astype(float)
def IOU(tl1, br1, tl2, br2):
wh1, wh2 = br1-tl1, br2-tl2
assert((wh1 >= 0).all() and (wh2 >= 0).all())
intersection_wh = np.maximum(np.minimum(br1, br2) - np.maximum(tl1, tl2), 0)
intersection_area = np.prod(intersection_wh)
area1, area2 = (np.prod(wh1), np.prod(wh2))
union_area = area1 + area2 - intersection_area
return intersection_area/union_area
def IOU_labels(l1, l2):
return IOU(l1.tl(), l1.br(), l2.tl(), l2.br())
def nms(Labels, iou_threshold=0.5):
SelectedLabels = []
Labels.sort(key=lambda l: l.prob(), reverse=True)
for label in Labels:
non_overlap = True
for sel_label in SelectedLabels:
if IOU_labels(label, sel_label) > iou_threshold:
non_overlap = False
break
if non_overlap:
SelectedLabels.append(label)
return SelectedLabels
def load_model(path):
path = splitext(path)[0]
with open('%s.json' % path, 'r') as json_file:
model_json = json_file.read()
model = model_from_json(model_json, custom_objects={})
model.load_weights('%s.h5' % path)
return model
def find_T_matrix(pts, t_pts):
A = np.zeros((8, 9))
for i in range(0, 4):
xi = pts[:, i]
xil = t_pts[:, i]
xi = xi.T
A[i*2, 3:6] = -xil[2]*xi
A[i*2, 6:] = xil[1]*xi
A[i*2+1, :3] = xil[2]*xi
A[i*2+1, 6:] = -xil[0]*xi
[U, S, V] = np.linalg.svd(A)
H = V[-1, :].reshape((3, 3))
return H
def getRectPts(tlx, tly, brx, bry):
return np.matrix([[tlx, brx, brx, tlx], [tly, tly, bry, bry], [1, 1, 1, 1]], dtype=float)
def normal(pts, side, mn, MN):
pts_MN_center_mn = pts * side
pts_MN = pts_MN_center_mn + mn.reshape((2, 1))
pts_prop = pts_MN / MN.reshape((2, 1))
return pts_prop
# Reconstruction function from predict value into plate crpoped from image
def reconstruct(I, Iresized, Yr, lp_threshold):
# 4 max-pooling layers, stride = 2
net_stride = 2**4
side = ((208 + 40)/2)/net_stride
# one line and two lines license plate size
one_line = (470, 110)
two_lines = (280, 200)
Probs = Yr[..., 0]
Affines = Yr[..., 2:]
xx, yy = np.where(Probs > lp_threshold)
# CNN input image size
WH = getWH(Iresized.shape)
# output feature map size
MN = WH/net_stride
vxx = vyy = 0.5 #alpha
base = lambda vx, vy: np.matrix([[-vx, -vy, 1], [vx, -vy, 1], [vx, vy, 1], [-vx, vy, 1]]).T
labels = []
labels_frontal = []
for i in range(len(xx)):
x, y = xx[i], yy[i]
affine = Affines[x, y]
prob = Probs[x, y]
mn = np.array([float(y) + 0.5, float(x) + 0.5])
# affine transformation matrix
A = np.reshape(affine, (2, 3))
A[0, 0] = max(A[0, 0], 0)
A[1, 1] = max(A[1, 1], 0)
# identity transformation
B = np.zeros((2, 3))
B[0, 0] = max(A[0, 0], 0)
B[1, 1] = max(A[1, 1], 0)
pts = np.array(A*base(vxx, vyy))
pts_frontal = np.array(B*base(vxx, vyy))
pts_prop = normal(pts, side, mn, MN)
frontal = normal(pts_frontal, side, mn, MN)
labels.append(DLabel(0, pts_prop, prob))
labels_frontal.append(DLabel(0, frontal, prob))
final_labels = nms(labels, 0.1)
final_labels_frontal = nms(labels_frontal, 0.1)
#print(final_labels_frontal)
# LP size and type
out_size, lp_type = (two_lines, 2) if ((final_labels_frontal[0].wh()[0] / final_labels_frontal[0].wh()[1]) < 1.7) else (one_line, 1)
TLp = []
if len(final_labels):
final_labels.sort(key=lambda x: x.prob(), reverse=True)
for _, label in enumerate(final_labels):
t_ptsh = getRectPts(0, 0, out_size[0], out_size[1])
ptsh = np.concatenate((label.pts * getWH(I.shape).reshape((2, 1)), np.ones((1, 4))))
H = find_T_matrix(ptsh, t_ptsh)
Ilp = cv2.warpPerspective(I, H, out_size, borderValue=0)
TLp.append(Ilp)
return final_labels, TLp, lp_type
def detect_lp(model, I, max_dim, lp_threshold):
min_dim_img = min(I.shape[:2])
factor = float(max_dim) / min_dim_img
w, h = (np.array(I.shape[1::-1], dtype=float) * factor).astype(int).tolist()
Iresized = cv2.resize(I, (w, h))
T = Iresized.copy()
T = T.reshape((1, T.shape[0], T.shape[1], T.shape[2]))
Yr = model.predict(T)
Yr = np.squeeze(Yr)
#print(Yr.shape)
L, TLp, lp_type = reconstruct(I, Iresized, Yr, lp_threshold)
return L, TLp, lp_type